1
|
Moser P, Lopes NA, Locali-Pereira AR, Nicoletti VR. Long-term storage of pink pepper essential oil microencapsulated by chickpea protein/pectin complexes: volatile release, antioxidant and antimicrobial activities. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2411-2421. [PMID: 39431182 PMCID: PMC11486883 DOI: 10.1007/s13197-024-06007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 10/22/2024]
Abstract
Pink pepper essential oil was microencapsulated with chickpea protein (CP) and chickpea protein/pectin (CP-HMP) by spray drying. The reconstitution and storage properties of the powders were evaluated after drying. The impact of microencapsulation in the volatiles release, antioxidant and antimicrobial activity of oil was evaluated during 135 days of storage. CP resulted in more soluble powders (93.52%), CP/HMP resulted in denser powders (0.39 g/mL) while wall material did not influence the wettability. Free pink pepper essential oil (FEO) showed a slight loss of the predominant terpenes (α-pinene, β-pinene, β-mircene, δ-3-carene and D-limonene) after encapsulation. In general, all samples showed an increase in the volatiles release during storage. The evaluation of mass loss showed that FEO had a high release of volatiles, followed by CP and CP-HMP. The antioxidant activity of the FEO decreased (10.8 μg Trolox/mg of oil) after 135 days of storage, whereas the antioxidant activity of CP (14.9) and CP-HMP (14) increased. Both microcapsules presented antimicrobial activity against Bacillus subtilis and Staphylococcus aureus during storage. CP microcapsules had a strong inhibitory effect against the strains tested, and this advantage was even more evident in long-term storage.
Collapse
Affiliation(s)
- Poliana Moser
- Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José do Rio Preto, Cristóvão Colombo 2265, São José do Rio Preto, 15054-000 Brazil
| | - Nathalie Almeida Lopes
- Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José do Rio Preto, Cristóvão Colombo 2265, São José do Rio Preto, 15054-000 Brazil
| | - Adilson Roberto Locali-Pereira
- Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José do Rio Preto, Cristóvão Colombo 2265, São José do Rio Preto, 15054-000 Brazil
| | - Vânia Regina Nicoletti
- Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José do Rio Preto, Cristóvão Colombo 2265, São José do Rio Preto, 15054-000 Brazil
| |
Collapse
|
2
|
Nanophytosomes as a protection system to improve the gastrointestinal stability and bioavailability of phycocyanin. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Altay Ö, Köprüalan Ö, İlter I, Koç M, Ertekin FK, Jafari SM. Spray drying encapsulation of essential oils; process efficiency, formulation strategies, and applications. Crit Rev Food Sci Nutr 2022; 64:1139-1157. [PMID: 36004620 DOI: 10.1080/10408398.2022.2113364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Essential oils (EOs) have many beneficial qualities, including antimicrobial, antioxidant, antiviral, and antifungal activities, along with good aroma, which have played a significant role in pharmaceutical, textile, and food industries. However, their high volatility and sensibility to external factors, as well as susceptibility to deterioration caused by environmental and storage conditions, or even common processing, and consequently limited water solubility, makes it difficult to incorporate them into aqueous food matrices and limits their industrial application. Spray-drying encapsulation has been proposed as a solution and a challenging research field to retard oil oxidation, extend EO's shelf life, improve their physicochemical stability, achieve controlled release, suggest novel uses, and therefore boost their added value. The objective of this review is to discuss various used wall materials, infeed emulsion properties, the main formulation and process variables affecting the physicochemical properties and release characteristics of the EOs-loaded particles obtained by spray-drying, the stability of EOs during storage, and the applications of encapsulated EOs powders in foods and nutrition, pharmaceuticals, and textile industries. The current review also summarizes recent advances in spray drying approaches for improving encapsulation efficiency, flavor retention, controlled release, and applicability of encapsulated EOs, thereby expanding their use and functionalities.
Collapse
Affiliation(s)
- Özgül Altay
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Türkiye
| | - Özgün Köprüalan
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Türkiye
| | - Işıl İlter
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Türkiye
- Department of Food Engineering, Faculty of Engineering, Manisa Celal Bayar University, Manisa, Türkiye
| | - Mehmet Koç
- Department of Food Engineering, Faculty of Engineering, Aydın Adnan Menderes University, Aydın, Türkiye
| | - Figen Kaymak Ertekin
- Department of Food Engineering, Faculty of Engineering, Ege University, İzmir, Türkiye
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
4
|
Li X, Zhang Z, Harris A, Yang L. Bridging the gap between fundamental research and product development of long acting injectable PLGA microspheres. Expert Opin Drug Deliv 2022; 19:1247-1264. [PMID: 35863759 DOI: 10.1080/17425247.2022.2105317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Long acting Injectable PLGA microspheres have gained more and more interest and attention in the field of life cycle management of pharmaceutical products due to their biocompatibility and biodegradability. So far, a multitude of trial-and-error experiments at lab scale have been used for establishing the correlation relationship between critical process parameters, critical material attributes and critical quality attributes. However, few published studies have elaborated on the development of PLGA microspheres from an industrial perspective. AREAS COVERED In this review, the scale-up feasibility of translational technologies of PLGA microspheres manufacturing have been evaluated. Additionally, state-of-the-art of technologies and facilities in PLGA development have been summarized. Meanwhile, the industrial knowledge matrix of PLGA microspheres development and research are establishing which provide comprehensive insight for understanding properties of PLGA microspheres as controlled/sustained release vehicle. EXPERT OPINION There is still big gap between fundamental research in academic institute and product development in pharmaceuticals. Therefore, the difference and connection between them should be identified gradually for better understanding of PLGA microspheres development.
Collapse
Affiliation(s)
- Xun Li
- Ferring Product Development China, Global R&D life cycle management department, Ferring Pharmaceuticals (Asia) Company Limited, Beijing China
| | - Zhanpeng Zhang
- Ferring Product Development China, Global R&D life cycle management department, Ferring Pharmaceuticals (Asia) Company Limited, Beijing China
| | - Alan Harris
- Global R&D life cycle management department, Ferring International Center SA, St-Prex, Switzerland
| | - Lin Yang
- Ferring Product Development China, Global R&D life cycle management department, Ferring Pharmaceuticals (Asia) Company Limited, Beijing China
| |
Collapse
|