1
|
Hua Z, Zhu MJ. Innovative Hurdle Strategies for Listeria Control on Food-Contact Surfaces: A Peroxyacetic Acid-Steam Approach. Foods 2024; 13:2481. [PMID: 39200408 PMCID: PMC11353402 DOI: 10.3390/foods13162481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
The persistence of Listeria monocytogenes biofilms on equipment surfaces poses a significant risk of cross-contamination, necessitating effective surface decontamination strategies. This study assessed the effectiveness of hurdle treatments combining peroxyacetic acid (PAA) and saturated steam against 7-day-old L. innocua (a non-pathogenic surrogate for L. monocytogenes) biofilms on stainless steel (SS), polyester (PET), and rubber surfaces. Results demonstrated >6 log10 CFU/coupon L. innocua reductions on SS and PET surfaces after PAA (40 ppm, 1 min) followed by steam treatment (100 °C, 6 s). On rubber surfaces, PAA (80 ppm, 1 min) followed by steam treatment (100 °C, 6 s) resulted in ~5 log10 CFU/coupon L. innocua reduction. The presence of apple juice soil reduced the efficacy of hurdle treatments, with PAA (40 ppm, 1 min) and steam exposure (6 s) resulting in 5.6, 5.8, and 4.2 log10 CFU/coupon reductions of L. innocua on SS, PET, and rubber, respectively. The efficacy of this antimicrobial combination was further reduced by surface defects, especially in the presence of organic matter. Nevertheless, the treatment still achieved >5 log10 CFU/coupon reductions of L. innocua on worn SS and PET soiled with apple juice and ~4.5 log10 CFU/coupon reduction on worn, soiled rubber surfaces. These findings highlight that PAA treatments followed by a brief steam exposure are effective strategies for controlling Listeria on food-contact surfaces.
Collapse
Affiliation(s)
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA;
| |
Collapse
|
2
|
Hua Z, Zhu MJ. Unlocking the Hidden Threat: Impacts of Surface Defects on the Efficacy of Sanitizers Against Listeria monocytogenes Biofilms on Food-contact Surfaces in Tree Fruit Packing Facilities. J Food Prot 2024; 87:100213. [PMID: 38176613 DOI: 10.1016/j.jfp.2023.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Food-contact surfaces showing signs of wear pose a substantial risk of Listeria monocytogenes contamination and may serve as persistent sources of cross-contamination in fresh produce packinghouses. This study offers a comprehensive exploration into the influence of surface defects on the efficacies of commonly used sanitizers against L. monocytogenes biofilms on major food-contact surfaces. The 7-day-old L. monocytogenes biofilms were cultivated on food-contact surfaces, including stainless steel, polyvinyl chloride, polyester, low-density polyethylene, and rubber, with and without defects and organic matter. Biofilms on those surfaces were subjected to treatments of 200 ppm chlorine, 400 ppm quaternary ammonium compound (QAC), or 160 ppm peroxyacetic acid (PAA). Results showed that surface defects significantly (P < 0.05) increased the population of L. monocytogenes in biofilms on non-stainless steel surfaces and compromised the efficacies of sanitizers against L. monocytogenes biofilms across various surface types. A 5-min treatment of 200 ppm chlorine caused 1.84-3.39 log10 CFU/coupon reductions of L. monocytogenes on worn surfaces, compared to 2.79-3.93 log10 CFU/coupon reduction observed on new surfaces. Similarly, a 5-min treatment with 400 ppm QAC caused 2.05-2.88 log10 CFU/coupon reductions on worn surfaces, compared to 2.51-3.66 log10 CFU/coupon reductions on new surfaces. Interestingly, PAA sanitization (160 ppm, 1 min) exhibited less susceptibility to surface defects, leading to 3.41-4.35 log10 CFU/coupon reductions on worn surfaces, in contrast to 3.68-4.64 log10 CFU/coupon reductions on new surfaces. Furthermore, apple juice soiling diminished the efficacy of sanitizers against L. monocytogenes biofilms on worn surfaces (P < 0.05). These findings underscore the critical importance of diligent equipment maintenance and thorough cleaning processes to effectively eliminate L. monocytogenes contamination on food-contact surfaces.
Collapse
Affiliation(s)
- Zi Hua
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
3
|
Tasanapak K, Kucharoenphaibul S, Wongwigkarn J, Sitthisak S, Thummeepak R, Chaibenjawong P, Chatdumrong W, Nimanussornkul K. Prevalence and virulence genes of Staphylococcus aureus from food contact surfaces in Thai restaurants. PeerJ 2023; 11:e15824. [PMID: 37601259 PMCID: PMC10434075 DOI: 10.7717/peerj.15824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Background Staphylococcus aureus is one of the most common pathogens responsible for food poisoning due to its ability to produce staphylococcal enterotoxin (SE). S. aureus can form biofilms on the surfaces of food processing devices, enabling the distribution of SE on foods through cross-contamination events. Thailand is known for its exotic cuisine, but there is no data on the prevalence of SE-harboring S. aureus in restaurants in Thailand. Methods In this study, we conducted surface swabs on surfaces of kitchen utensil that come into contact with food and on the hands of food handlers working in restaurants in the north part of Thailand. Isolated S. aureus was investigated for biofilm formation, virulence, and SE genes. Results Two hundred S. aureus were isolated from 650 samples. The highest prevalence of S. aureus contamination was detected on the hands of food handlers (78%), followed by chopping boards (26%), plates (23%), knives (16%), spoons (13%), and glasses (5%). All of them were methicillin-sensitive S. aureus (MSSA) and the mecA gene was not present in any strains. Biofilm formation was detected using the CRA method, and 49 (24.5%) were identified as biofilm-producing strains, with the hands of food handlers identified as the primary source of biofilm-producing strains. The prevelence of biofilm-related adhesion genes detected were: icaAD (13%), fnbA (14.5%), cna (6.5%), and bap (0.5%). Two classical enterotoxin genes, sec and sed, were also found in four and six of the S. aureus isolates, respectively, from hands and utensils. Conclusion The highest prevelence of S. aureus was detected on the hands of food handlers. S. aureus strains with biofilm and enterotoxin production abilities were discovered on food contact surfaces and the hands of food handlers, implying significant risk of food contamination from these sources that could be harmful to consumers. To avoid cross-contamination of food with food contact items, the food handlers' hands should be properly washed, and all food preparation equipment should be thoroughly cleaned.
Collapse
Affiliation(s)
- Kannipa Tasanapak
- Microbiology and Parasitology, Naresuan University, Muang, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, Thailand
| | | | - Jintana Wongwigkarn
- Microbiology and Parasitology, Naresuan University, Muang, Phitsanulok, Thailand
| | - Sutthirat Sitthisak
- Microbiology and Parasitology, Naresuan University, Muang, Phitsanulok, Thailand
| | - Rapee Thummeepak
- Microbiology and Parasitology, Naresuan University, Muang, Phitsanulok, Thailand
| | | | - Wassana Chatdumrong
- Microbiology and Parasitology, Naresuan University, Muang, Phitsanulok, Thailand
| | | |
Collapse
|
4
|
Simulated transmission and decontamination of Listeria monocytogenes biofilms from plastic cutting boards. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
5
|
Lin Z, Chen T, Zhou L, Yang H. Effect of chlorine sanitizer on metabolic responses of Escherichia coli biofilms "big six" during cross-contamination from abiotic surface to sponge cake. Food Res Int 2022; 157:111361. [PMID: 35761623 DOI: 10.1016/j.foodres.2022.111361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
Abstract
The effect of chlorine on Escherichia coli biofilm O157:H7 are well established; however, the effect on biofilm adhesion to food as well as the six emerging E. coli serotypes ("big six") have not been fully understood. Chlorine sanitization with 1-min 100 mg/L was applied against seven pathogenic E. coli (O111, O121:H19, O45:H2, O26:H11, O103:H11, O145, and O157:H7) biofilms on high-density polyethylene (HDPE) and stainless steel (SS) coupons, respectively. Using sponge cake as a food model, the adhesion behavior was evaluated by comparison of bacteria transfer rate before and after treatment. Besides, the metabolic profiles of biofilms were analyzed by nuclear magnetic resonance (NMR) spectrometer. A significant decrease in transfer rate (79% decline on SS and 33% decline on HDPE) was recorded as well as the distinctive pattern between SS and HDPE coupons was also noticed, with a low population (6-7 log CFU/coupon) attached and low survivals (0-3 log CFU/coupon) upon chlorine on SS, while high population (7-8 log CFU/coupon) attached and high survivals (5-7 log CFU/coupon) on HDPE. Moreover, O121:H19 and O26:H11 demonstrated the highest resistance to chlorine with the least metabolic status and pathways affected. O103:H11, O145, and O111 followed similar metabolic patterns on both surfaces. Distinct metabolic patterns were found in O45:H2 and O157:H7, where the former had more affected metabolic status and pathways on SS but less on HDPE, whereas the latter showed an opposite trend. Overall, a potential contamination source of STEC infection in flour products was demonstrated and metabolic changes induced by chlorine were revealed by NMR-based metabolomics, which provides insights to avoid "big six" biofilms contamination in food.
Collapse
Affiliation(s)
- Zejia Lin
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Tong Chen
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Lehao Zhou
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
6
|
Sharma S, Jaiswal S, Duffy B, Jaiswal AK. Advances in emerging technologies for the decontamination of the food contact surfaces. Food Res Int 2022; 151:110865. [PMID: 34980401 DOI: 10.1016/j.foodres.2021.110865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/13/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022]
Abstract
Foodborne pathogens could be transferred to food from food contact surfaces contaminated by poor hygiene or biofilm formation. The food processing industry has various conditions favouring microbes' adherence, such as moisture, nutrients, and the microbial inoculums obtained from the raw material. The function of the ideal antimicrobial surface is preventing initial attachment of the microbes, killing the microbes or/and removing the dead bacteria. This review article provides detail about the challenges food industries are facing with respect to food contact materials. It also summarises the merits and demerits of several sanitizing methods developed for industrial use. Furthermore, it reviews the new and emerging techniques that enhance the efficiency of reducing microbial contamination. Techniques such as surface functionalisation, high-intensity ultrasound, cold plasma technologies etc. which have high potential to be used for the decontamination of food contact surfaces are discussed. The emerging designs of antibacterial surfaces provide the opportunity to reduce or eradicate the adhesion of microorganisms. The most important purpose of these surfaces is to prevent the attachment of bacteria and to kill the bacteria that come in contact. These emerging technologies have a high potential for developing safe and inert food contact materials for the food industry.
Collapse
Affiliation(s)
- Shubham Sharma
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland; Centre for Research in Engineering and Surface Technology (CREST-Gateway), FOCAS Institute, Technological University Dublin - City Campus, Kevin Street, Dublin D08 CKP1, Ireland
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| | - Brendan Duffy
- Centre for Research in Engineering and Surface Technology (CREST-Gateway), FOCAS Institute, Technological University Dublin - City Campus, Kevin Street, Dublin D08 CKP1, Ireland
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| |
Collapse
|
7
|
Gallandat K, Kolus RC, Julian TR, Lantagne DS. A systematic review of chlorine-based surface disinfection efficacy to inform recommendations for low-resource outbreak settings. Am J Infect Control 2021; 49:90-103. [PMID: 32442652 PMCID: PMC7236738 DOI: 10.1016/j.ajic.2020.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Infectious diseases can be transmitted via fomites (contaminated surfaces/objects); disinfection can interrupt this transmission route. However, disinfection guidelines for low-resource outbreak settings are inconsistent and not evidence-based. METHODS A systematic review of surface disinfection efficacy studies was conducted to inform low-resource outbreak guideline development. Due to variation in experimental procedures, outcomes were synthesized in a narrative summary focusing on chlorine-based disinfection against 7 pathogens with potential to produce outbreaks in low-resource settings (Mycobacterium tuberculosis, Vibrio cholerae, Salmonella spp., hepatitis A virus, rotavirus, norovirus, and Ebola virus). RESULTS Data were extracted from 89 laboratory studies and made available, including 20 studies on relevant pathogens used in combination with surrogate data to determine minimum target concentration × time ("CT") factors. Stainless steel (68%) and chlorine-based disinfectants (56%) were most commonly tested. No consistent trend was seen in the influence of chlorine concentration and exposure time on disinfection efficacy. Disinfectant application mode; soil load; and surface type were frequently identified as influential factors in included studies. CONCLUSIONS This review highlights that surface disinfection efficacy estimates are strongly influenced by each study's experimental conditions. We therefore recommend laboratory testing to be followed by field-based testing/monitoring to ensure effectiveness is achieved in situ.
Collapse
Affiliation(s)
- Karin Gallandat
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK; Department of Civil and Environmental Engineering, Tufts University, Medford, MA.
| | - Riley C Kolus
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA; School of Medicine, Boston University, Boston, MA
| | - Timothy R Julian
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland; Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Daniele S Lantagne
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA
| |
Collapse
|
8
|
Ghasemi A, Niakousari M. Superwettability-based systems: Basic concepts, recent trends and future prospects for innovation in food engineering. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Hypericin-mediated photoinactivation of polymeric nanoparticles against Staphylococcus aureus. Photodiagnosis Photodyn Ther 2020; 30:101737. [DOI: 10.1016/j.pdpdt.2020.101737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
|
10
|
Gyawali R, Zimmerman T, Aljaloud SO, Ibrahim SA. Bactericidal activity of copper-ascorbic acid mixture against Staphylococcus aureus spp. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
The Effects of Dry, Humid and Wear Conditions on the Antimicrobial Efficiency of Triclosan-Containing Surfaces. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study evaluated the effects of triclosan-containing polyester surfaces under various conditions at concentrations of between 400 ppm and 850 ppm. Staphylococcus aureus was chosen for the tests because it rapidly develops resistance to many antimicrobial agents. The results show that dry and humid conditions have bacteriostatic activity that inhibits the growth of S. aureus, with a greater effect under dryness (p < 0.05). Further, concentrations as low as 400 ppm showed activities of 0.99 log10 and 0.19 log10 for dry and humid conditions, respectively. The study of the association between triclosan concentrations and bacterial inhibition showed a high correlation for dry (R2 = 0.968) and humid conditions (R2 = 0.986). Under wear conditions, triclosan showed a gradual reduction in its bacteriostatic activity due to successive washing/drying treatments (p < 0.05). Thus, the use of triclosan in low concentrations is suggested as achieving bacteriostatic activity. Moreover, its use can be considered as complementary to the cleaning and disinfection procedures carried out in the food industry. However, it must not replace them. Manufacturing processes must be improved to preserve the triclosan properties in the antimicrobial materials to control microorganisms involved in cross-contamination between surfaces and food.
Collapse
|
12
|
Kim H, Moon MJ, Kim CY, Ryu K. Efficacy of chemical sanitizers against Bacillus cereus on food contact surfaces with scratch and biofilm. Food Sci Biotechnol 2019; 28:581-590. [PMID: 30956871 PMCID: PMC6431354 DOI: 10.1007/s10068-018-0482-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022] Open
Abstract
This study was performed to investigate the efficacy of chemical sanitizers (viz., chlorine, chlorine dioxide, alcohol, and quaternary ammonium compound) against Bacillus cereus on five food contact materials under different conditions (smooth vs. scratched and with vs. without biofilms). After incubating materials in B. cereus suspension, cell adhesion on a smooth surface (10 cm2) was in the following ascending order: stainless steel (7.36 ± 0.08 log CFU), glass (7.51 ± 0.26 log CFU), polyethylene (7.66 ± 0.30 log CFU), polypropylene (7.76 ± 0.30 log CFU), and wood (8.02 ± 0.33 log CFU). The efficacy of sanitizers was dramatically reduced in the presence of a biofilm on all materials. Among four different chemical sanitizers, chlorine showed the best bactericidal activity against B. cereus on the surface with scratch and biofilm. Selection of adequate materials, maintenance of a smooth surface, and inhibition of biofilm formation are good practices for food safety.
Collapse
Affiliation(s)
- Hyochin Kim
- Imported Food Analysis Division, Seoul Regional Office, Ministry of Food and Drug Safety, Yangchun-Gu, Seoul, 07978 South Korea
| | - Min Ji Moon
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| | - Choon Young Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| | - Kyung Ryu
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| |
Collapse
|
13
|
Long-term antibacterial efficacy of disinfectants based on benzalkonium chloride and sodium hypochlorite tested on surfaces against resistant gram-positive bacteria. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Vázquez-Sánchez D, Galvão JA, Oetterer M. Contamination sources, biofilm-forming ability and biocide resistance of Staphylococcus aureus in tilapia-processing facilities. FOOD SCI TECHNOL INT 2017; 24:209-222. [PMID: 29169268 DOI: 10.1177/1082013217742753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major contamination sources, biofilm-forming ability and biocide resistance of Staphylococcus aureus in tilapia-processing plants were evaluated. Twenty-five processing control points were analysed twice in two factories, including whole tilapias, frozen fillets, water and food-contact surfaces. No final product was contaminated with S. aureus. However, high concentrations of S. aureus carrying enterotoxin ( se) genes were found in several processing points of both factories due to the application of inadequate hygienic and handling procedures, which generate a high risk of cross-contamination of the tilapia fillets with staphylococcal enterotoxins. Nine S. aureus strains were characterized by RAPD-PCR using primers AP-7, ERIC-2 and S. A wide diversity of se gene profiles was detected, most strains being multi- se-carriers. All S. aureus strains showed high biofilm-forming ability on stainless steel and polystyrene. Biofilm-forming ability was correlated with the presence of fliC H7 and the type of origin surface (metallic or plastic). A marked resistance of S. aureus to peracetic acid and sodium hypochlorite was also observed, required doses being higher than those recommended by manufacturers to be eradicated. Case-by-case approaches are thus recommended to determine the sources and degree of contamination present in each factory, which would allow applying precise responses that avoid, or at least reduce, the presence of bacterial pathogens and the emergence of antimicrobial resistance.
Collapse
Affiliation(s)
- Daniel Vázquez-Sánchez
- Department of Agri-Food Industry, Food and Nutrition, Laboratory of Freshwater Fish and Seafood Technology, 'Luiz de Queiroz' College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Juliana A Galvão
- Department of Agri-Food Industry, Food and Nutrition, Laboratory of Freshwater Fish and Seafood Technology, 'Luiz de Queiroz' College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Marília Oetterer
- Department of Agri-Food Industry, Food and Nutrition, Laboratory of Freshwater Fish and Seafood Technology, 'Luiz de Queiroz' College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| |
Collapse
|