1
|
Hong S, Moon JS, Yoon SS, Kim HY, Lee YJ. Genetic and Phenotypic Diversity of Listeria monocytogenes in Pig Slaughterhouses in Korea. Foodborne Pathog Dis 2024; 21:1-9. [PMID: 37819680 DOI: 10.1089/fpd.2023.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that has variable subtypes associated with human listeriosis and occurs in food and processing environments. This study was conducted to provide the genetic and phenotypic characterization of L. monocytogenes in pig carcasses and environments of slaughterhouses in Korea. A total of 22 L. monocytogenes were isolated from eight of 26 pig slaughterhouses between 2020 and 2022, and the most common serotype was 1/2c (40.9%), followed by serotypes 1/2b (31.8%) and 1/2a (27.3%). The isolates showed a significantly high prevalence of virulence genes located in Listeria pathogenicity island-1 (LIPI-1) and internalins (90.9-100%; p < 0.05). However, the prevalence rates of llsX, ptsA, and stress survival islet-1 (SSI-1) located in LIPI-3, LIPI-4, and SSI were only 9.1%, 22.7%, and 31.8%, respectively. In addition, among the epidemic clones (EC), ECI, ECII, ECIII, and ECV, only one isolate was represented as ECV. Isolates identified from the same slaughterhouses were divided into two or more pulsotypes, except for two slaughterhouses. Furthermore, the seven STs were classified into seven clonal complexes (CCs) (CC8, CC9, CC37, CC87, CC121, CC155, and CC288), and all CCs belonged to lineages I (31.8%) and II (68.1%). Interestingly, the isolates showed a high prevalence of oxacillin resistance (59.1%), and most isolates of the serotypes 1/2a and 1/2b exhibited oxacillin resistance, whereas only one of nine serotype 1/2c isolates exhibited oxacillin resistance. These results provide the genetic diversity of L. monocytogenes in pig carcasses and environments of slaughterhouses, and continuous monitoring will be helpful in predicting food safety risks.
Collapse
Affiliation(s)
- Serim Hong
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-San Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Soon-Seek Yoon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Ha-Young Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Fox E, Gosling R(B, Gil BM, Møretrø T, Stessl B, da Silva Felício MT, Messens W, Simon AC, Alvarez‐Ordóñez A. Persistence of microbiological hazards in food and feed production and processing environments. EFSA J 2024; 22:e8521. [PMID: 38250499 PMCID: PMC10797485 DOI: 10.2903/j.efsa.2024.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Listeria monocytogenes (in the meat, fish and seafood, dairy and fruit and vegetable sectors), Salmonella enterica (in the feed, meat, egg and low moisture food sectors) and Cronobacter sakazakii (in the low moisture food sector) were identified as the bacterial food safety hazards most relevant to public health that are associated with persistence in the food and feed processing environment (FFPE). There is a wide range of subtypes of these hazards involved in persistence in the FFPE. While some specific subtypes are more commonly reported as persistent, it is currently not possible to identify universal markers (i.e. genetic determinants) for this trait. Common risk factors for persistence in the FFPE are inadequate zoning and hygiene barriers; lack of hygienic design of equipment and machines; and inadequate cleaning and disinfection. A well-designed environmental sampling and testing programme is the most effective strategy to identify contamination sources and detect potentially persistent hazards. The establishment of hygienic barriers and measures within the food safety management system, during implementation of hazard analysis and critical control points, is key to prevent and/or control bacterial persistence in the FFPE. Once persistence is suspected in a plant, a 'seek-and-destroy' approach is frequently recommended, including intensified monitoring, the introduction of control measures and the continuation of the intensified monitoring. Successful actions triggered by persistence of L. monocytogenes are described, as well as interventions with direct bactericidal activity. These interventions could be efficient if properly validated, correctly applied and verified under industrial conditions. Perspectives are provided for performing a risk assessment for relevant combinations of hazard and food sector to assess the relative public health risk that can be associated with persistence, based on bottom-up and top-down approaches. Knowledge gaps related to bacterial food safety hazards associated with persistence in the FFPE and priorities for future research are provided.
Collapse
|
3
|
Kaptchouang Tchatchouang CD, Fri J, Montso PK, Amagliani G, Schiavano GF, Manganyi MC, Baldelli G, Brandi G, Ateba CN. Evidence of Virulent Multi-Drug Resistant and Biofilm-Forming Listeria Species Isolated from Various Sources in South Africa. Pathogens 2022; 11:pathogens11080843. [PMID: 36014964 PMCID: PMC9416180 DOI: 10.3390/pathogens11080843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Listeriosis is a foodborne disease caused by Listeria monocytogenes species and is known to cause severe complications, particularly in pregnant women, young children, the elderly, and immunocompromised individuals. The aim of this study was to investigate the presence of Listeria species in food and water using both biochemical and species-specific PCR analysis. L. monocytogenes isolates were further screened for the presence of various antibiotic resistance, virulence, and biofilm-forming determinants profiles using phenotypic and genotypic assays. A total of 207 samples (composed of meat, milk, vegetables, and water) were collected and analyzed for presence of L. monocytogenes using species specific PCR analysis. Out of 267 presumptive isolates, 53 (19.85%) were confirmed as the Listeria species, and these comprised 26 L. monocytogenes, 3 L. innocua, 2 L. welshimeri, and 1 L. thailandensis. The remaining 21 Listeria species were classified as uncultured Listeria, based on 16SrRNA sequence analysis results. A large proportion (76% to 100%) of the L. monocytogenes were resistant to erythromycin (76%), clindamycin (100%), gentamicin (100%), tetracycline (100%), novobiocin (100%), oxacillin (100%), nalidixic acid (100%), and kanamycin (100%). The isolates revealed various multi-drug resistant (MDR) phenotypes, with E-DA-GM-T-NO-OX-NA-K being the most predominant MDR phenotypes observed in the L. monocytogenes isolates. The virulence genes prfA, hlyA, actA, and plcB were detected in 100%, 68%, 56%, and 20% of the isolates, respectively. In addition, L. monocytogenes isolates were capable of forming strong biofilm at 4 °C (%) after 24 to 72 h incubation periods, moderate for 8% isolates at 48 h and 20% at 72 h (p < 0.05). Moreover, at 25 °C and 37 °C, small proportions of the isolates displayed moderate (8−20%) biofilm formation after 48 and 72 h incubation periods. Biofilm formation genes flaA and luxS were detected in 72% and 56% of the isolates, respectively. These findings suggest that proper hygiene measures must be enforced along the food chain to ensure food safety.
Collapse
Affiliation(s)
- Christ-Donald Kaptchouang Tchatchouang
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
| | - Justine Fri
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
| | - Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
| | - Giulia Amagliani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (G.A.); (G.B.); (G.B.)
| | | | - Madira Coutlyne Manganyi
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | - Giulia Baldelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (G.A.); (G.B.); (G.B.)
| | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (G.A.); (G.B.); (G.B.)
| | - Collins Njie Ateba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; (C.-D.K.T.); (J.F.); (P.K.M.)
- Correspondence: ; Tel.: +27-18-389-2247
| |
Collapse
|
4
|
Charlebois S, Juhasz M, Music J, Vézeau J. A review of Canadian and international food safety systems: Issues and recommendations for the future. Compr Rev Food Sci Food Saf 2021; 20:5043-5066. [PMID: 34390310 DOI: 10.1111/1541-4337.12816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/27/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022]
Abstract
In January 2019, the Safe Food for Canadians Act/Safe Food for Canadians regulations (heretofore identified as SFCR) came into force across Canada and brought a more streamlined process to food safety practice in Canada. Food trade and production processes have evolved rapidly in recent decades, as Canada imports and exports food products; therefore it is critically important to remain aware of the latest advances responding to a range of challenges and opportunities in the food safety value chain. Looking through the optics of the recent SFCR framework, this paper places the spotlight on leading domestic and international research and practices to help strengthen food safety policies of the future. By shedding some light on new research, we also draw attention to international developments that are noteworthy, and place those in context as to how new Canadian food safety policy and regulation can be further advanced. The paper will benchmark Canada through a review study of food safety best practices by juxtaposing (i) stated aspirations with, (ii) actual performance in leading Organization for Economic Cooperation and Development (OECD) jurisdictions.
Collapse
Affiliation(s)
- Sylvain Charlebois
- Food Distribution and Policy, Faculty of Management, Faculty of Agriculture, Agri-food Analytics Lab, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark Juhasz
- Food Distribution and Policy, Faculty of Management, Faculty of Agriculture, Agri-food Analytics Lab, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Janet Music
- Food Distribution and Policy, Faculty of Management, Faculty of Agriculture, Agri-food Analytics Lab, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Janèle Vézeau
- Food Distribution and Policy, Faculty of Management, Faculty of Agriculture, Agri-food Analytics Lab, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
5
|
Prevalence of Listeria Species on Food Contact Surfaces in Washington State Apple Packinghouses. Appl Environ Microbiol 2021; 87:AEM.02932-20. [PMID: 33608295 PMCID: PMC8091025 DOI: 10.1128/aem.02932-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
The 2014 caramel apple listeriosis outbreak was traced back to cross-contamination between food contact surfaces (FCS) of equipment used for packing and fresh apples. For Washington state, the leading apple producer in the United States with 79% of its total production directed to the fresh market, managing the risk of apple contamination with Listeria monocytogenes within the packing environment is crucial. The objectives of this study were to determine the prevalence of Listeria spp. on FCS in Washington state apple packinghouses over two packing seasons and to identify those FCS types with the greatest likelihood to harbor Listeria spp. Five commercial apple packinghouses were visited quarterly over two consecutive year-long packing seasons. A range of 27 to 50 FCS were swabbed at each facility to detect Listeria spp. at two sample times, (i) postsanitation and (ii) in-process (3 h of packinghouse operation), following a modified protocol of the FDA's Bacteriological Analytical Manual method. Among 2,988 samples tested, 4.6% (n = 136) were positive for Listeria spp. Wax coating was the unit operation from which Listeria spp. were most frequently isolated. The FCS that showed the greatest prevalence of Listeria spp. were polishing brushes, stainless steel dividers and brushes under fans/blowers, and dryer rollers. The prevalence of Listeria spp. on FCS increased throughout apple storage time. The results of this study will aid apple packers in controlling for contamination and harborage of L. monocytogenes and improving cleaning and practices for sanitation of the FCS on which Listeria spp. are the most prevalent.IMPORTANCE Since 2014, fresh apples have been linked to outbreaks and recalls associated with postharvest cross-contamination with the foodborne pathogen L. monocytogenes These situations drive both public health burden and economic loss and underscore the need for continued scrutiny of packinghouse management to eliminate potential Listeria niches. This research assesses the prevalence of Listeria spp. on FCS in apple packinghouses and identifies those FCS most likely to harbor Listeria spp. Such findings are essential for the apple-packing industry striving to further understand and exhaustively mitigate the risk of contamination with L. monocytogenes to prevent future listeriosis outbreaks and recalls.
Collapse
|
6
|
Ferone M, Gowen A, Fanning S, Scannell AGM. Microbial detection and identification methods: Bench top assays to omics approaches. Compr Rev Food Sci Food Saf 2020; 19:3106-3129. [PMID: 33337061 DOI: 10.1111/1541-4337.12618] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022]
Abstract
Rapid detection of foodborne pathogens, spoilage microbes, and other biological contaminants in complex food matrices is essential to maintain food quality and ensure consumer safety. Traditional methods involve culturing microbes using a range of nonselective and selective enrichment methods, followed by biochemical confirmation among others. The time-to-detection is a key limitation when testing foods, particularly those with short shelf lives, such as fresh meat, fish, dairy products, and vegetables. Some recent detection methods developed include the use of spectroscopic techniques, such as matrix-assisted laser desorption ionization-time of flight along with hyperspectral imaging protocols.This review presents a comprehensive overview comparing insights into the principles, characteristics, and applications of newer and emerging techniques methods applied to the detection and identification of microbes in food matrices, to more traditional benchtop approaches. The content has been developed to provide specialist scientists a broad view of bacterial identification methods available in terms of their benefits and limitations, which may be useful in the development of future experimental design. The case is also made for incorporating some of these emerging methods into the mainstream, for example, underutilized potential of spectroscopic techniques and hyperspectral imaging.
Collapse
Affiliation(s)
- Mariateresa Ferone
- UCD School of Agriculture and Food Science, Dublin, Ireland.,UCD School of Biosystems and Food Engineering, Dublin, Ireland.,UCD Institute of Food and Health, Dublin, Ireland
| | - Aoife Gowen
- UCD School of Agriculture and Food Science, Dublin, Ireland.,UCD School of Biosystems and Food Engineering, Dublin, Ireland.,UCD Institute of Food and Health, Dublin, Ireland
| | - Séamus Fanning
- UCD Institute of Food and Health, Dublin, Ireland.,UCD-Centre for Food Safety, Dublin, Ireland.,UCD School of Public Health, Physiotherapy and Sport Science University College Dublin, Dublin, Ireland
| | - Amalia G M Scannell
- UCD School of Agriculture and Food Science, Dublin, Ireland.,UCD Institute of Food and Health, Dublin, Ireland.,UCD-Centre for Food Safety, Dublin, Ireland
| |
Collapse
|
7
|
Spanu C, Jordan K. Listeria monocytogenes environmental sampling program in ready-to-eat processing facilities: A practical approach. Compr Rev Food Sci Food Saf 2020; 19:2843-2861. [PMID: 33337052 DOI: 10.1111/1541-4337.12619] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen that is frequently found in the environment. It can easily enter food processing environments and contaminate food, potentially causing public health issues. Food business operators (FBOs) are responsible for the control of L. monocytogenes in the food processing environment, particularly in facilities producing ready-to-eat food. The design and implementation of an effective environmental monitoring program (EMP) for L. monocytogenes is an integral part of controlling L. monocytogenes. An effective EMP, including all aspects from sampling, to analysis, to data interpretation, to implementation of corrective actions (including food disposition), is a tool that will help with identification and control of L. monocytogenes contamination. It should be used in conjunction with end product testing, not as a replacement for it. An EMP should be specifically designed for a particular facility on a case-by-case risk-based approach, by a food safety team within the facility. It should be reviewed regularly (at least every 6 months) and verified for its effectiveness. The control of L. monocytogenes in the food industry involves the full commitment of management and of all personnel involved with the safety of foods placed on the market, thus reducing the risk of listeriosis to consumers. Several regulatory and guidance documents provide recommendations for designing aspects of an effective L. monocytogenes EMP. However, a comprehensive review of the key components of an EMP in a single document is lacking. The objective of the present review is to provide FBOs with a practical guide to design, implementation, and verification of an EMP tailored by the food safety team for each food business.
Collapse
Affiliation(s)
- Carlo Spanu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Kieran Jordan
- Department of Food Safety, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|