1
|
Wang B, Dou X, Liu K, Wei G, He A, Wang Y, Wang C, Kong W, Zhang X. Intelligent Evaluation and Dynamic Prediction of Oyster Freshness with Electronic Nose Based on the Distribution of Volatile Compounds Using GC-MS Analysis. Foods 2024; 13:3110. [PMID: 39410145 PMCID: PMC11475790 DOI: 10.3390/foods13193110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The quality of oysters is reflected by volatile organic components. To rapidly assess the freshness level of oysters and elucidate the changes in flavor substances during storage, the volatile compounds of oysters stored at 4, 12, 20, and 28 °C over varying durations were analyzed using GC-MS and an electronic nose. Data from both GC-MS and electronic nose analyses revealed that alcohols, acids, and aldehydes are the primary contributors to the rancidity of oysters. Notably, the relative and absolute contents of Cis-2-(2-Pentenyl) furan and other heterocyclic compounds exhibited an upward trend. This observation suggests the potential for developing a simpler test for oyster freshness based on these compounds. Linear Discriminant Analysis (LDA) demonstrated superior performance compared to Principal Component Analysis (PCA) in differentiating oyster samples at various storage times. At 4 °C, the classification accuracy of the optimal support vector machine (SVM) and random forest (RF) models exceeded 90%. At 12 °C, 20 °C, and 28 °C, the classification accuracy of the best SVM and RF models surpassed 95%. Pearson correlation analysis of the concentrations of various volatile compounds and characteristic markers with the sensor response values indicated that the selected sensors were more aligned with the volatiles emitted by oysters. Consequently, the volatile compounds in oysters during storage can be predicted based on the response information from the sensors in the detection system. This study also demonstrates that the detection system serves as a viable alternative to GC-MS for evaluating oysters of varying freshness grades.
Collapse
Affiliation(s)
- Baichuan Wang
- Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing 100083, China; (B.W.); (K.L.)
- Yantai Institute of China Agricultural University, Yantai 264670, China (Y.W.); (C.W.)
| | - Xinyue Dou
- Yantai Institute of China Agricultural University, Yantai 264670, China (Y.W.); (C.W.)
| | - Kang Liu
- Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing 100083, China; (B.W.); (K.L.)
| | - Guangfen Wei
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China; (G.W.)
| | - Aixiang He
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China; (G.W.)
| | - Yuhan Wang
- Yantai Institute of China Agricultural University, Yantai 264670, China (Y.W.); (C.W.)
| | - Chenyang Wang
- Yantai Institute of China Agricultural University, Yantai 264670, China (Y.W.); (C.W.)
| | - Weifu Kong
- Yantai Institute of China Agricultural University, Yantai 264670, China (Y.W.); (C.W.)
| | - Xiaoshuan Zhang
- Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing 100083, China; (B.W.); (K.L.)
| |
Collapse
|
2
|
Hou Z, Xia R, Li Y, Xu H, Wang Y, Feng Y, Pan S, Wang Z, Ren H, Qian G, Wang H, Zhu J, Xin G. Key components, formation pathways, affecting factors, and emerging analytical strategies for edible mushrooms aroma: A review. Food Chem 2024; 438:137993. [PMID: 37992603 DOI: 10.1016/j.foodchem.2023.137993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
Aroma is one of the decisive factors affecting the quality and consumer acceptance of edible mushrooms. This review summarized the key components and formation pathways of edible mushroom aroma. It also elaborated on the affecting factors and emerging analytical strategies of edible mushroom aroma. A total of 1308 volatile organic compounds identified in edible mushrooms, 61 were key components. The formation of these compounds is closely related to fatty acid metabolism, amino acid metabolism, lentinic acid metabolism, and terpenoid metabolism. The aroma profiles of edible mushrooms were affected by genetic background, preharvest factors, and preservation methods. Molecular sensory science and omics techniques are emerging analytical strategies to reveal aroma information of edible mushrooms. This review would provide valuable data and insights for future research on edible mushroom aroma.
Collapse
Affiliation(s)
- Zhenshan Hou
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Rongrong Xia
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Yunting Li
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Heran Xu
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Yafei Wang
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Yao Feng
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Song Pan
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Zijian Wang
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Hongli Ren
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Guanlin Qian
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Huanyu Wang
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Jiayi Zhu
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China
| | - Guang Xin
- Shenyang Agricultural University, College of Food Science, Shenyang 110866, Liaoning, China; Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan 114007, Liaoning, China.
| |
Collapse
|
3
|
Atasoy M, Álvarez Ordóñez A, Cenian A, Djukić-Vuković A, Lund PA, Ozogul F, Trček J, Ziv C, De Biase D. Exploitation of microbial activities at low pH to enhance planetary health. FEMS Microbiol Rev 2024; 48:fuad062. [PMID: 37985709 PMCID: PMC10963064 DOI: 10.1093/femsre/fuad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
Awareness is growing that human health cannot be considered in isolation but is inextricably woven with the health of the environment in which we live. It is, however, under-recognized that the sustainability of human activities strongly relies on preserving the equilibrium of the microbial communities living in/on/around us. Microbial metabolic activities are instrumental for production, functionalization, processing, and preservation of food. For circular economy, microbial metabolism would be exploited to produce building blocks for the chemical industry, to achieve effective crop protection, agri-food waste revalorization, or biofuel production, as well as in bioremediation and bioaugmentation of contaminated areas. Low pH is undoubtedly a key physical-chemical parameter that needs to be considered for exploiting the powerful microbial metabolic arsenal. Deviation from optimal pH conditions has profound effects on shaping the microbial communities responsible for carrying out essential processes. Furthermore, novel strategies to combat contaminations and infections by pathogens rely on microbial-derived acidic molecules that suppress/inhibit their growth. Herein, we present the state-of-the-art of the knowledge on the impact of acidic pH in many applied areas and how this knowledge can guide us to use the immense arsenal of microbial metabolic activities for their more impactful exploitation in a Planetary Health perspective.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University & Research and Technical University Delft, Droevendaalsesteeg 4, 6708 PB,Wageningen, the Netherlands
| | - Avelino Álvarez Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Adam Cenian
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Department of Physical Aspects of Ecoenergy, 14 Fiszera St., 80-231 Gdańsk, Poland
| | - Aleksandra Djukić-Vuković
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Peter A Lund
- Institute of Microbiology and Infection,School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Fatih Ozogul
- Department of Seafood Processing and Technology, Faculty of Fisheries, Cukurova University, Balcali, 01330, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Balcali, 01330 Adana, Turkey
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization – Volcani Center, 68 HaMaccabim Road , P.O.B 15159 Rishon LeZion 7505101, Israel
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
4
|
Yan Y, Wang M, Chen N, Wang X, Fu C, Li Y, Gan X, Lv P, Zhang Y. Isolation, structures, bioactivities, application and future prospective for polysaccharides from Tremella aurantialba: A review. Front Immunol 2022; 13:1091210. [PMID: 36569950 PMCID: PMC9773546 DOI: 10.3389/fimmu.2022.1091210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Since ancient times, Tremella aurantialba has been proposed to have medicinal and food benefits. Modern phytochemistry and pharmacological studies have demonstrated that polysaccharides, the main components from T. aurantialba appear to be an all-round talent resisting a variety of chronic inflammatory diseases and protecting against different types of tumors, diabetes and cardiovascular diseases. These health and pharmacological benefits have gained much attention from scholars around the world. Further, more and more methods for polysaccharides extraction, purification, structure identification have been proposed. Significantly, the bioactivity of fungus polysaccharides is affected by many factors such as extraction and purification conditions and chemical structure. This paper provides an overview of recent advances in the isolation, structural features and biological effects of polysaccharides derived from T. aurantialba, covers recent advances in the field and outlines future research and applications of these polysaccharides.
Collapse
Affiliation(s)
- Yonghuan Yan
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China,Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, Hebei, China
| | - Mengtian Wang
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China,Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, Hebei, China
| | - Ning Chen
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Xu Wang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, Hebei, China,Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Chenghao Fu
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yuemin Li
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Xiaoruo Gan
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Pin Lv
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China,*Correspondence: Pin Lv, ; Yan Zhang,
| | - Yan Zhang
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China,Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, Hebei, China,*Correspondence: Pin Lv, ; Yan Zhang,
| |
Collapse
|
5
|
Yan Y, Wang M, Gan X, Wang X, Fu C, Li Y, Chen N, Lv P, Zhang Y. Evaluation of pharmacological activities and active components in Tremella aurantialba by instrumental and virtual analyses. Front Nutr 2022; 9:1083581. [PMID: 36570135 PMCID: PMC9767953 DOI: 10.3389/fnut.2022.1083581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
As a kind of medicinal and edible homologous fungus, there is a lack of data on the medicinal value of Tremella aurantialba. In this study, ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF/MS) was used to screen the chemical components in T. aurantialba. Then, network pharmacology was used to reveal the potential biological activities, active compounds, and therapeutic targets of T. aurantialba. Finally, the potential binding sites of the active compounds of T. aurantialba and key targets were studied by molecular docking. Results showed that 135 chemical components in T. aurantialba, especially linoleic acid, and linolenic acid have significant biological activities in neuroprotective, anticancer, immune, hypoglycemic, and cardiovascular aspects. The existence of these bioactive natural products in T. aurantialba is consistent with the traditional use of T. aurantialba. Moreover, the five diseases have comorbidity molecular mechanisms and therapeutic targets. The molecular docking showed that linolenic acid, adenosine, and vitamin D2 had higher binding energy with RXRA, MAPK1, and JUN, respectively. This study is the first to systematically identify chemical components in T. aurantialba and successfully predict its bioactivity, key active compounds, and drug targets, providing a reliable novel strategy for future research on the bioactivity development and utilization of T. aurantialba.
Collapse
Affiliation(s)
- Yonghuan Yan
- Hebei Key Laboratory of Forensic Medicine, School of Forensic Medicine, Hebei Medical University, Shijiazhuang, China,Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Mengtian Wang
- Hebei Key Laboratory of Forensic Medicine, School of Forensic Medicine, Hebei Medical University, Shijiazhuang, China,Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Xiaoruo Gan
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Cell Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Xu Wang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China,Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Cell Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Chenghao Fu
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Cell Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yuemin Li
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Cell Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Ning Chen
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Cell Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Pin Lv
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Department of Cell Biology, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China,*Correspondence: Pin Lv,
| | - Yan Zhang
- Hebei Key Laboratory of Forensic Medicine, School of Forensic Medicine, Hebei Medical University, Shijiazhuang, China,Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China,Yan Zhang,
| |
Collapse
|
6
|
Lu L, Hu Z, Hu X, Li D, Tian S. Electronic tongue and electronic nose for food quality and safety. Food Res Int 2022; 162:112214. [DOI: 10.1016/j.foodres.2022.112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
|
7
|
Zhu M, Hu Z, Liang M, Song L, Wu W, Li R, Li Z, Zhang J. Evaluation of the flavor compounds of
Pleurotus eryngii
as affected by baking temperatures using
HS‐SPME‐GC‐MS
and electronic nose. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mengwei Zhu
- College of Food and Bioengineering Zhengzhou University of Light Industry 450001 Zhengzhou Henan China
| | - Zhizhong Hu
- Technology Center, China Tobacco Guangxi Industrial Co., Ltd 530000 Nanning Guangxi China
| | - Miao Liang
- College of Food and Bioengineering Zhengzhou University of Light Industry 450001 Zhengzhou Henan China
| | - Lingyong Song
- Technology Center, China Tobacco Guangxi Industrial Co., Ltd 530000 Nanning Guangxi China
| | - Wentao Wu
- Technology Center, China Tobacco Guangxi Industrial Co., Ltd 530000 Nanning Guangxi China
| | - Ruili Li
- College of Food and Bioengineering Zhengzhou University of Light Industry 450001 Zhengzhou Henan China
| | - Zhihua Li
- Technology Center, China Tobacco Guangxi Industrial Co., Ltd 530000 Nanning Guangxi China
| | - Junsong Zhang
- College of Food and Bioengineering Zhengzhou University of Light Industry 450001 Zhengzhou Henan China
| |
Collapse
|
8
|
Gu H, Lv R, Huang X, Chen Q, Dong Y. Rapid quantitative assessment of lipid oxidation in a rapeseed oil-in-water (o/w) emulsion by three-dimensional fluorescence spectroscopy. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Wei L, Wei S, Hu D, Feng L, Liu Y, Liu H, Liao W. Comprehensive Flavor Analysis of Volatile Components During the Vase Period of Cut Lily ( Lilium spp. 'Manissa') Flowers by HS-SPME/GC-MS Combined With E-Nose Technology. FRONTIERS IN PLANT SCIENCE 2022; 13:822956. [PMID: 35783924 PMCID: PMC9247614 DOI: 10.3389/fpls.2022.822956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Volatile compounds could affect the flavor and ornamental quality of cut flowers, but the flavor change occurring during the vase period of the cut flower is unclear. To clarify the dynamic changes during the vase period of cut lily (Lilium spp. 'Manissa') flowers, comprehensive flavor profiles were characterized by the electronic nose (E-nose) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME/GC-MS). The response value of sensor W2W was significantly higher than other sensors, and its response value reached the highest on day 4. A total of 59 volatiles were detected in cut lilies by HS-SPME/GC-MS, mainly including aldehydes, alcohols, and esters. There were 19 volatiles with odor activity values (OAVs) greater than 1. Floral and fruity aromas were stronger, followed by a pungent scent. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) could effectively discriminate lily samples derived from different vase times on the basis of E-nose and HS-SPME-GC-MS. In summary, our study investigates the flavor change profile and the diversity of volatile compounds during the vase period of cut lilies, and lilies on day 4 after harvest exhibited excellent aroma and flavor taking into consideration of the flavor intensity and diversity. This provided theoretical guidance for the assessment of scent volatiles and flavor quality during the vase period of cut lily flowers and will be helpful for the application of cut lilies during the postharvest process.
Collapse
|
10
|
Gancarz M, Dobrzański B, Malaga-Toboła U, Tabor S, Combrzyński M, Ćwikła D, Strobel WR, Oniszczuk A, Karami H, Darvishi Y, Żytek A, Rusinek R. Impact of Coffee Bean Roasting on the Content of Pyridines Determined by Analysis of Volatile Organic Compounds. Molecules 2022; 27:1559. [PMID: 35268660 PMCID: PMC8911706 DOI: 10.3390/molecules27051559] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
The aim of the study was to analyze the process of roasting coffee beans in a convection-conduction roaster (CC) without a heat exchanger and a convection-conduction-radiation roaster (CCR) with a heat exchanger for determination of the aroma profile. The aroma profile was analyzed using the SPME/GC-MS technique, and an Agrinose electronic nose was used to determine the aroma profile intensity. Arabica coffee beans from five regions of the world, namely, Peru, Costa Rica, Ethiopia, Guatemala, and Brazil, were the research material. The chemometric analyses revealed the dominance of azines, alcohols, aldehydes, hydrazides, and acids in the coffee aroma profile. Their share distinguished the aroma profiles depending on the country of origin of the coffee beans. The high content of pyridine from the azine group was characteristic for the coffee roasting process in the convection-conduction roaster without a heat exchanger, which was shown by the PCA analysis. The increased content of pyridine resulted from the appearance of coal tar, especially in the CC roaster. Pyridine has an unpleasant and bitter plant-like odor, and its excess is detrimental to the human organism. The dominant and elevated content of pyridine is a defect of the coffee roasting process in the CC roaster compared to the process carried out in the CCR machine. The results obtained with the Agrinose showed that the CC roasting method had a significant effect on the sensor responses. The effect of coal tar on the coffee beans resulted in an undesirable aroma profile characterized by increased amounts of aromatic volatile compounds and higher responses of Agrinose sensors.
Collapse
Affiliation(s)
- Marek Gancarz
- Institute of Agrophysics Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (M.G.); (A.Ż.)
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland; (U.M.-T.); (S.T.)
| | - Bohdan Dobrzański
- Pomology, Nursery and Enology Department, University of Life Sciences in Lublin, Głęboka 28, 20-400 Lublin, Poland;
| | - Urszula Malaga-Toboła
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland; (U.M.-T.); (S.T.)
| | - Sylwester Tabor
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland; (U.M.-T.); (S.T.)
| | - Maciej Combrzyński
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Daniel Ćwikła
- Rodzinna Palarnia Coffee and Sons Roastery, Boczna Lubomelskiej 4, 20-070 Lublin, Poland;
| | - Wacław Roman Strobel
- Institute of Technology and Life Sciences—National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Hamed Karami
- Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran;
| | - Yousef Darvishi
- Department of Biosystems Engineering, University of Tehran, Tehran P.O. Box 113654117, Iran;
| | - Alaksandra Żytek
- Institute of Agrophysics Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (M.G.); (A.Ż.)
| | - Robert Rusinek
- Institute of Agrophysics Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (M.G.); (A.Ż.)
| |
Collapse
|
11
|
Nutritional Function and Flavor Evaluation of a New Soybean Beverage Based on Naematelia aurantialba Fermentation. Foods 2022; 11:foods11030272. [PMID: 35159425 PMCID: PMC8834624 DOI: 10.3390/foods11030272] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
The soy beverage is a healthy product rich in plant protein; however, its unpleasant flavor affects consumer acceptance. The aim of this study was to determine the feasibility of using Naematelia aurantialba as a strain for the preparation of fermented soybean beverages (FSB). Increases in Zeta potential, particle size, and viscosity make soy beverages more stable. We found that nutrient composition was increased by fermenting N. aurantialba, and the antioxidant activity of soybean beverages significantly increased after 5 days of fermentation. By reducing the content of beany substances such as hexanal and increasing the content of 1-octen-3-ol, the aroma of soybean beverages fermented by N. aurantialba changed from “beany, green, and fatty” to “mushroom and aromatic”. The resulting FSB had reduced bitterness but considerably increased sourness while maintaining the fresh and sweet taste of unfermented soybean beverages (UFSB). This study not only provides a theoretical basis for the market promotion of FSB but also provides a reference for basidiomycetes-fermented beverages.
Collapse
|
12
|
Gu H, Huang X, Sun Y, Lv R, Chen Q. Qualitative and Quantitative Analysis of Oxidative Degradation Products in Frying Oil by Three-Dimensional Fluorescence Spectroscopy with Metalloporphyrin-Based Sensor. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Liu K, Zhang C, Xu J, Liu Q. Research advance in gas detection of volatile organic compounds released in rice quality deterioration process. Compr Rev Food Sci Food Saf 2021; 20:5802-5828. [PMID: 34668316 DOI: 10.1111/1541-4337.12846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
Rice quality deterioration will cause grievous waste of stored grain and various food safety problems. Gas detection of volatile organic compounds (VOCs) produced by deterioration is a nondestructive detection method to judge rice quality and alleviate rice spoilage. This review discussed the research advance of VOCs detection in terms of nondestructive detection methods of rice quality deterioration, applications of VOCs in grain detection, inspection of characteristic gas produced during rice spoilage, rice deterioration prevention and control, and detection of VOCs released by rice mildew and insect attack. According to the main causes of rice quality deterioration and major sources of VOCs with off-odor generated during rice storage, deterioration can be divided into mold and insect infection. The results of literature manifested that researches mainly focused on the infection of Aspergillus in the mildew process and the attack of certain pests in recent years, thus the research scope was limited. In this paper, the gas detection methods combined with the chemometrics to qualitatively analyze the VOCs, as well as the correlation with the number of colonies and insects were further studied based on the common dominant strains during rice mildew, that is, Aspergillus and Penicillium fungi, and the common pests during storage, that is, Sitophilus oryzae and Rhyzopertha dominica. Furthermore, this paper pointed out that the quantitative determination of characteristic VOCs, the numeration relationship between VOCs and the degree of mildew and insect infestation, the further expansion of detection range, and the application of degraded rice should be the spotlight of future research.
Collapse
Affiliation(s)
- Kewei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, People's Republic of China
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou, People's Republic of China
| | - Jinyong Xu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, People's Republic of China
| | - Qiaoquan Liu
- Key Laboratories of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
14
|
Dai C, Huang X, Sun J, Tian X, Aheto JH, Niu S. Development of a portable electronic nose for
in‐situ
detection of submerged fermentation of
Tremella aurantialba. J Food Saf 2021. [DOI: 10.1111/jfs.12902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chunxia Dai
- School of Electrical and Information Engineering Jiangsu University Zhenjiang Jiangsu China
- Changzhou Qianjing Rehabilitation Co., Ltd. Changzhou Jiangsu China
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University Zhenjiang Jiangsu China
| | - Jun Sun
- School of Electrical and Information Engineering Jiangsu University Zhenjiang Jiangsu China
| | - Xiaoyu Tian
- School of Food and Biological Engineering, Jiangsu University Zhenjiang Jiangsu China
| | - Joshua H. Aheto
- School of Food and Biological Engineering, Jiangsu University Zhenjiang Jiangsu China
| | - Shuai Niu
- School of Food and Biological Engineering, Jiangsu University Zhenjiang Jiangsu China
| |
Collapse
|
15
|
Classification and Identification of Essential Oils from Herbs and Fruits Based on a MOS Electronic-Nose Technology. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060142] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The frequent occurrence of adulterated or counterfeit plant products sold in worldwide commercial markets has created the necessity to validate the authenticity of natural plant-derived palatable products, based on product-label composition, to certify pricing values and for regulatory quality control (QC). The necessity to confirm product authenticity before marketing has required the need for rapid-sensing, electronic devices capable of quickly evaluating plant product quality by easily measurable volatile (aroma) emissions. An experimental MAU-9 electronic nose (e-nose) system, containing a sensor array with 9 metal oxide semiconductor (MOS) gas sensors, was developed with capabilities to quickly identify and classify volatile essential oils derived from fruit and herbal edible-plant sources. The e-nose instrument was tested for efficacy to discriminate between different volatile essential oils present in gaseous emissions from purified sources of these natural food products. Several chemometric data-analysis methods, including pattern recognition algorithms, principal component analysis (PCA), and support vector machine (SVM) were utilized and compared. The classification accuracy of essential oils using PCA, LDA and QDA, and SVM methods was at or near 100%. The MAU-9 e-nose effectively distinguished between different purified essential oil aromas from herbal and fruit plant sources, based on unique e-nose sensor array responses to distinct, essential-oil specific mixtures of volatile organic compounds (VOCs).
Collapse
|
16
|
Gancarz M, Malaga-Toboła U, Oniszczuk A, Tabor S, Oniszczuk T, Gawrysiak-Witulska M, Rusinek R. Detection and measurement of aroma compounds with the electronic nose and a novel method for MOS sensor signal analysis during the wheat bread making process. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Tian XY, Aheto JH, Dai C, Ren Y, Bai JW. Monitoring microstructural changes and moisture distribution of dry-cured pork: a combined confocal laser scanning microscopy and hyperspectral imaging study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2727-2735. [PMID: 33124042 DOI: 10.1002/jsfa.10899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Various spectral profiles, including reflectance, absorbance, and Kubelka-Munk spectra, have been derived from hyperspectral images and used to develop multivariate models to evaluate changes in the quality of meat and meat products as a function of processing. However, none of these has the capacity to produce images of the structural changes often associated with processing. This study explored the feasibility of combining hyperspectral imaging (HSI) with confocal laser scanning microscopy (CLSM) to examine the impact of processing on microstructural changes and the evolution of moisture. Reflectance spectra features were obtained and transformed into absorbance and Kubelka-Munk spectra and their ability to predict moisture content using models established on partial least-squares regression were evaluated. RESULTS The partial least-squares regression model (full-band wavelength) dubbed Rs-MSC yielded the best result, with R c 2 = 0.967 , RMSEC = 0.127, R cv 2 = 0.949 , RMSECV = 0.418, R p 2 = 0.937 , RMSEP = 0.824. Next, a total of 16 optimum wavelengths were selected using the competitive adaptive reweighted sampling algorithm. These wavelengths also yielded good results for Rs-MSC, with R c 2 = 0.958 , RMSEC = 0.840, R cv 2 = 0.931 , RMSECV = 0.118, R p 2 = 0.926 , RMSEP = 0.121. Regarding moisture distribution and microstructure analysis, HSI and CLSM were able to reveal moisture content distribution and conformational differences in microstructure in the test samples. CONCLUSION Using HSI in synergy with CLSM may offer a reliable means for assessing both the chemical and structural changes that occur in other congener food products during processing. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao-Yu Tian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Joshua H Aheto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Chunxia Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Yi Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Smart Agriculture, Suzhou Polytechnic Institute of Agriculture, Suzhou, P. R. China
| | - Jun-Wen Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
18
|
Tian X, Aheto JH, Bai J, Dai C, Ren Y, Chang X. Quantitative analysis and visualization of moisture and anthocyanins content in purple sweet potato by Vis–NIR hyperspectral imaging. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiao‐Yu Tian
- School of Food and Biological Engineering Jiangsu University Zhenjiang P.R. China
| | - Joshua H. Aheto
- School of Food and Biological Engineering Jiangsu University Zhenjiang P.R. China
| | - Jun‐Wen Bai
- School of Food and Biological Engineering Jiangsu University Zhenjiang P.R. China
| | - Chunxia Dai
- School of Food and Biological Engineering Jiangsu University Zhenjiang P.R. China
- School of Electrical and Information Engineering Jiangsu University Zhenjiang P.R. China
| | - Yi Ren
- School of Food and Biological Engineering Jiangsu University Zhenjiang P.R. China
- School of Smart Agriculture Suzhou Polytechnic Institute of Agriculture Suzhou P.R. China
| | - Xianhui Chang
- School of Food and Biological Engineering Jiangsu University Zhenjiang P.R. China
| |
Collapse
|
19
|
Application of volatile and spectral profiling together with multimode data fusion strategy for the discrimination of preserved eggs. Food Chem 2020; 343:128515. [PMID: 33160772 DOI: 10.1016/j.foodchem.2020.128515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 02/02/2023]
Abstract
The maturity level of eggs during pickling is conventionally assessed by choosing few eggs from each curing batch to crack open. Yet, this method is destructive, creates waste and has consequences for financial losses. In this work, the feasibility of integrating electronic nose (EN) with reflectance hyperspectral (RH) and transmittance hyperspectral (TH) data for accurate classification of preserved eggs (PEs) at different maturation periods was investigated. Classifier models based solely on RH and TH with EN achieved a training accuracy (93.33%, 97.78%) and prediction accuracy (88.89%; 93.33%) respectively. The fusion of the three datasets, (EN + RH + TH) as a single classifier model yielded an overall training accuracy of 98.89% and prediction accuracy of 95.56%. Also, 52 volatile compounds were obtained from the PE headspace, of which 32 belonged to seven functional groups. This study demonstrates the ability to integrate EN with RH and TH data to effectively identify PEs during processing.
Collapse
|
20
|
Discrimination of five brands of instant vermicelli seasonings by HS-SPME/GC-MS and electronic nose. Journal of Food Science and Technology 2020; 57:4160-4170. [PMID: 33071337 DOI: 10.1007/s13197-020-04454-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 01/10/2023]
Abstract
The flavor profile of five brands of instant vermicelli seasonings were identified by headspace solid-phase micro-extraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS) and electronic nose (e-nose). GC-MS showed that the volatile compounds of instant vermicelli seasonings were significantly different. Alkenes, alcohols, aldehydes and ketones were the major volatile compounds in instant vermicelli seasonings. The seasonings could be classified based on differences in volatile compounds. The overall volatiles profiles were also analyzed by e-nose. E-nose determination and GC-MS statistical analysis had similar results. The volatile compounds showed good correlation with e-nose sensors according to partial least square regression models. Both methods had good potential application in evaluating flavor quality and differentiating among instant vermicelli seasonings.
Collapse
|
21
|
Guo Z, Guo C, Chen Q, Ouyang Q, Shi J, El-Seedi HR, Zou X. Classification for Penicillium expansum Spoilage and Defect in Apples by Electronic Nose Combined with Chemometrics. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2130. [PMID: 32283830 PMCID: PMC7180459 DOI: 10.3390/s20072130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 11/18/2022]
Abstract
It is crucial for the efficacy of the apple storage to apply methods like electronic nose systems for detection and prediction of spoilage or infection by Penicillium expansum. Based on the acquisition of electronic nose signals, selected sensitive feature sensors of spoilage apple and all sensors were analyzed and compared by the recognition effect. Principal component analysis (PCA), principle component analysis-discriminant analysis (PCA-DA), linear discriminant analysis (LDA), partial least squares discriminate analysis (PLS-DA) and K-nearest neighbor (KNN) were used to establish the classification model of apple with different degrees of corruption. PCA-DA has the best prediction, the accuracy of training set and prediction set was 100% and 97.22%, respectively. synergy interval (SI), genetic algorithm (GA) and competitive adaptive reweighted sampling (CARS) are three selection methods used to accurately and quickly extract appropriate feature variables, while constructing a PLS model to predict plaque area. Among them, the PLS model with unique variables was optimized by CARS method, and the best prediction result of the area of the rotten apple was obtained. The best results are as follows: Rc = 0.953, root mean square error of calibration (RMSEC) = 1.28, Rp = 0.972, root mean square error of prediction (RMSEP) = 1.01. The results demonstrated that the electronic nose has a potential application in the classification of rotten apples and the quantitative detection of spoilage area.
Collapse
Affiliation(s)
- Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chuang Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hesham R. El-Seedi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
22
|
Classification of Chinese vinegar varieties using electronic nose and fuzzy Foley-Sammon transformation. Journal of Food Science and Technology 2019; 57:1310-1319. [PMID: 32180627 DOI: 10.1007/s13197-019-04165-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/19/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Abstract
Due to the difference of raw materials and brewing technology, the quality and flavours of vinegar are different. Different kinds of vinegar have different functions and effects. Therefore, it is important to classify the vinegar varieties correctly. This work presented a new fuzzy feature extraction algorithm, called fuzzy Foley-Sammon transformation (FFST), and designed the electronic nose (E-nose) system for classifying vinegar varieties successfully. Principal component analysis (PCA) and standard normal variate (SNV) were used as the data preprocessing algorithms for the E-nose system. FFST, Foley-Sammon transformation (FST) and linear discriminant analysis (LDA) were used to extract discriminant information from E-nose data, respectively. Then, K nearest neighbor (KNN) served as a classifier for the classification of vinegar varieties. The highest identification accuracy rate was 96.92% by using the FFST and KNN. Therefore, the E-nose system combined with the FFST was an effective method to identify Chinese vinegar varieties and this method has wide application prospects.
Collapse
|
23
|
Huang X, Yu S, Xu H, Aheto JH, Bonah E, Ma M, Wu M, Zhang X. Rapid and nondestructive detection of freshness quality of postharvest spinaches based on machine vision and electronic nose. J Food Saf 2019. [DOI: 10.1111/jfs.12708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xingyi Huang
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu China
| | - Shanshan Yu
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu China
| | - Haixia Xu
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| | - Joshua H. Aheto
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu China
| | - Ernest Bonah
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu China
| | - Mei Ma
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu China
| | - Mengzi Wu
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu China
| | - Xiaorui Zhang
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu China
| |
Collapse
|
24
|
Bonah E, Huang X, Yi R, Aheto JH, Osae R, Golly M. Electronic nose classification and differentiation of bacterial foodborne pathogens based on support vector machine optimized with particle swarm optimization algorithm. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13236] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ernest Bonah
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu PR China
- Food and Drugs AuthorityLaboratory Services Department Cantonments Accra Ghana
| | - Xingyi Huang
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu PR China
| | - Ren Yi
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu PR China
- School of Smart AgricultureSuzhou Polytechnic Institute of Agriculture Suzhou PR China
| | - Joshua H. Aheto
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu PR China
| | - Richard Osae
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu PR China
| | - Moses Golly
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu PR China
| |
Collapse
|
25
|
Gu S, Li L, Huang H, Wang B, Zhang T. Antitumor, Antiviral, and Anti-Inflammatory Efficacy of Essential Oils from Atractylodes macrocephala Koidz. Produced with Different Processing Methods. Molecules 2019; 24:molecules24162956. [PMID: 31443182 PMCID: PMC6719198 DOI: 10.3390/molecules24162956] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Atractylodes macrocephala Koidz. has been used as an invigorating spleen drug for eliminating dampness and phlegm in China. According to recent researches, different processing methods may affect the drug efficacy, so we collected A. macrocephala from the Zhejiang Province, produced with different processing methods, crude A. macrocephala (CA) and bran-processed A. macrocephala (BA), then analyzed its essential oils (EOs) by GC/MS. The results showed 34 components representing 98.44% of the total EOs of CA were identified, and 46 components representing 98.02% of the total EOs of BA were identified. Atractylone is the main component in A. macrocephala. Compared with CA, BA has 46 detected compounds, 28 of which were identical, and 6 undetected compounds. Pharmacodynamic results revealed that the EOs of CA and atractylone exhibited more effective anticancer activity in HepG2, MCG803, and HCT-116 cells than the EOs of BA; while the EOs of BA exhibited simple antiviral effect on viruses H3N2, both the EOs and atractylone show anti-inflammatory activity by inhibiting the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in ANA-1 cells.
Collapse
Affiliation(s)
- Sihao Gu
- School of Pharmacy, Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai 201203, China
| | - Ling Li
- School of Pharmacy, Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai 201203, China
| | - Hai Huang
- Experimental Teaching Center of Pharmaceutical Sciences, School of Pharmacy, Fudan University, 826 Zhang-heng Rd, Shanghai 201203, China
| | - Bing Wang
- School of Pharmacy, Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai 201203, China.
| | - Tong Zhang
- School of Pharmacy, Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai 201203, China.
| |
Collapse
|
26
|
Aheto JH, Huang X, Tian X, Ren Y, Bonah E, Alenyorege EA, Lv R, Dai C. Combination of spectra and image information of hyperspectral imaging data for fast prediction of lipid oxidation attributes in pork meat. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13225] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Joshua H. Aheto
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang Jiangsu China
| | - Xingyi Huang
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang Jiangsu China
| | - Xiaoyu Tian
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang Jiangsu China
| | - Yi Ren
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang Jiangsu China
- Suzhou Polytechnic Institute of Agriculture; Suzhou China
| | - Ernest Bonah
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang Jiangsu China
- Laboratory Services Department; Food and Drugs Authority; Accra Ghana
| | - Evans A. Alenyorege
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang Jiangsu China
- Faculty of Agriculture; University for Development Studies; Tamale Ghana
| | - Riqin Lv
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang Jiangsu China
- School of Biological Science and Food Engineering; Chuzhou University; No. 1528 Fengle Avenue, Yu District, Zhangzhou City China
| | - Chunxia Dai
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang Jiangsu China
- School of Electrical and Information Engineering; Jiangsu University; Zhenjiang Jiangsu China
| |
Collapse
|
27
|
Dai C, Huang X, Huang D, Lv R, Sun J, Zhang Z, Aheto JH. Real‐time detection of saponin content during the fermentation process of
Tremella aurantialba
using a homemade artificial olfaction system. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Chunxia Dai
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu China
- School of Electrical and Information EngineeringJiangsu University Zhenjiang Jiangsu China
| | - Xingyi Huang
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu China
| | - Daming Huang
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu China
| | - Riqin Lv
- School of Biological Science and Food EngineeringChuzhou University Chuzhou Anhui China
| | - Jun Sun
- School of Electrical and Information EngineeringJiangsu University Zhenjiang Jiangsu China
| | - Zhicai Zhang
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu China
| | - Joshua H. Aheto
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu China
| |
Collapse
|
28
|
Jia W, Liang G, Jiang Z, Wang J. Advances in Electronic Nose Development for Application to Agricultural Products. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01552-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|