1
|
Espinoza KS, Snider AJ. Therapeutic Potential for Sphingolipids in Inflammatory Bowel Disease and Colorectal Cancer. Cancers (Basel) 2024; 16:789. [PMID: 38398179 PMCID: PMC10887199 DOI: 10.3390/cancers16040789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammatory bowel disease (IBD), characterized by chronic inflammation in the intestinal tract, increases the risk for the development of colorectal cancer (CRC). Sphingolipids, which have been implicated in IBD and CRC, are a class of bioactive lipids that regulate cell signaling, differentiation, apoptosis, inflammation, and survival. The balance between ceramide (Cer), the central sphingolipid involved in apoptosis and differentiation, and sphingosine-1-phosphate (S1P), a potent signaling molecule involved in proliferation and inflammation, is vital for the maintenance of normal cellular function. Altered sphingolipid metabolism has been implicated in IBD and CRC, with many studies highlighting the importance of S1P in inflammatory signaling and pro-survival pathways. A myriad of sphingolipid analogues, inhibitors, and modulators have been developed to target the sphingolipid metabolic pathway. In this review, the efficacy and therapeutic potential for modulation of sphingolipid metabolism in IBD and CRC will be discussed.
Collapse
Affiliation(s)
- Keila S. Espinoza
- Department of Physiology, University of Arizona, Tucson, AZ 85721, USA;
| | - Ashley J. Snider
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
2
|
Shibuya N, Higashiyama M, Akita Y, Shirakabe K, Ito S, Nishii S, Mizoguchi A, Inaba K, Tanemoto R, Sugihara N, Hanawa Y, Wada A, Horiuchi K, Yoshikawa K, Kurihara C, Okada Y, Watanabe C, Komoto S, Tomita K, Saruta M, Hokari R. Deoxycholic acid enhancement of lymphocyte migration through direct interaction with the intestinal vascular endothelium. J Gastroenterol Hepatol 2021; 36:2523-2530. [PMID: 33783040 DOI: 10.1111/jgh.15509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM The small intestine plays a central role in gut immunity, and enhanced lymphocyte migration is involved in the pathophysiology of various enteropathy. Bile acid (BA) is closely related to lipid metabolism and gut microbiota and essential for gut homeostasis. However, the effects of BA on gut immunity have not been studied in detail, especially on the small intestine and lymphocyte migration. Therefore, we aimed to investigate the effect of BA on small intestinal lymphocyte microcirculation. METHODS The effect of deoxycholic acid (DCA), taurocholic acid (tCA), or cholic acid (CA) on the indomethacin (IND)-induced small intestinal enteropathy in mice was investigated. Lymphocyte movements were evaluated after exposure to BA using intravital microscopy. The effects of BA on surface expression of adhesion molecules on the vascular endothelium and lymphocytes through BA receptors were examined in vitro. RESULTS IND-induced small intestinal enteropathy was histologically aggravated by DCA treatment alone. The expression of adhesion molecules ICAM-1 and VCAM-1 was significantly enhanced by DCA. Exposure to DCA increased lymphocyte adhesion in the microvessels of the ileum, which was partially blocked by anti-α4β1 integrin antibody in vivo. The expression of ICAM-1 and VCAM-1 was significantly enhanced by DCA in vitro, which was partially suppressed by the sphingosine-1-phosphate receptor 2 (S1PR2) antagonist. The S1PR2 antagonist significantly ameliorated IND-induced and DCA-exaggerated small intestinal injury. CONCLUSION DCA exacerbated IND-induced small intestinal enteropathy. DCA directly acts on the vascular endothelium and enhances the expression levels of adhesion molecules partially via S1PR2, leading to enhanced small intestinal lymphocyte migration.
Collapse
Affiliation(s)
- Naoki Shibuya
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | | | - Yoshihiro Akita
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Kazuhiko Shirakabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Suguru Ito
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Shin Nishii
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Akinori Mizoguchi
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Kenichi Inaba
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Rina Tanemoto
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Nao Sugihara
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Yoshinori Hanawa
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Akinori Wada
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Kazuki Horiuchi
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Kenichi Yoshikawa
- Department of General Internal Medicine, Eiseikai Minamitama Hospital, Tokyo, Japan
| | - Chie Kurihara
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Yoshikiyo Okada
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Chikako Watanabe
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Shunsuke Komoto
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Kengo Tomita
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
3
|
Pérez-Jeldres T, Alvarez-Lobos M, Rivera-Nieves J. Targeting Sphingosine-1-Phosphate Signaling in Immune-Mediated Diseases: Beyond Multiple Sclerosis. Drugs 2021; 81:985-1002. [PMID: 33983615 PMCID: PMC8116828 DOI: 10.1007/s40265-021-01528-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid metabolite that exerts its actions by engaging 5 G-protein-coupled receptors (S1PR1-S1PR5). S1P receptors are involved in several cellular and physiological events, including lymphocyte/hematopoietic cell trafficking. An S1P gradient (low in tissues, high in blood), maintained by synthetic and degradative enzymes, regulates lymphocyte trafficking. Because lymphocytes live long (which is critical for adaptive immunity) and recirculate thousands of times, the S1P-S1PR pathway is involved in the pathogenesis of immune-mediated diseases. The S1PR1 modulators lead to receptor internalization, subsequent ubiquitination, and proteasome degradation, which renders lymphocytes incapable of following the S1P gradient and prevents their access to inflammation sites. These drugs might also block lymphocyte egress from lymph nodes by inhibiting transendothelial migration. Targeting S1PRs as a therapeutic strategy was first employed for multiple sclerosis (MS), and four S1P modulators (fingolimod, siponimod, ozanimod, and ponesimod) are currently approved for its treatment. New S1PR modulators are under clinical development for MS, and their uses are being evaluated to treat other immune-mediated diseases, including inflammatory bowel disease (IBD), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and psoriasis. A clinical trial in patients with COVID-19 treated with ozanimod is ongoing. Ozanimod and etrasimod have shown promising results in IBD; while in phase 2 clinical trials, ponesimod has shown improvement in 77% of the patients with psoriasis. Cenerimod and amiselimod have been tested in SLE patients. Fingolimod, etrasimod, and IMMH001 have shown efficacy in RA preclinical studies. Concerns relating to S1PR modulators are leukopenia, anemia, transaminase elevation, macular edema, teratogenicity, pulmonary disorders, infections, and cardiovascular events. Furthermore, S1PR modulators exhibit different pharmacokinetics; a well-established first-dose event associated with S1PR modulators can be mitigated by gradual up-titration. In conclusion, S1P modulators represent a novel and promising therapeutic strategy for immune-mediated diseases.
Collapse
Affiliation(s)
- Tamara Pérez-Jeldres
- Pontificia Universidad Católica de Chile, Santiago, Chile
- Hospital San Borja-Arriarán, Santiago, Chile
| | - Manuel Alvarez-Lobos
- Pontificia Universidad Católica de Chile, Santiago, Chile
- Hospital San Borja-Arriarán, Santiago, Chile
| | - Jesús Rivera-Nieves
- San Diego VA Medical Center (SDVAMC), San Diego, CA, USA.
- Division of Gastroenterology, Department of Medicine, University of California San Diego (UCSD), 9500 Gilman Drive Bldg. BRF-II Rm. 4A32, San Diego, CA, 92093-0063, USA.
| |
Collapse
|
4
|
Pérez-Jeldres T, Tyler CJ, Boyer JD, Karuppuchamy T, Yarur A, Giles DA, Yeasmin S, Lundborg L, Sandborn WJ, Patel DR, Rivera-Nieves J. Targeting Cytokine Signaling and Lymphocyte Traffic via Small Molecules in Inflammatory Bowel Disease: JAK Inhibitors and S1PR Agonists. Front Pharmacol 2019; 10:212. [PMID: 30930775 PMCID: PMC6425155 DOI: 10.3389/fphar.2019.00212] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/19/2019] [Indexed: 12/11/2022] Open
Abstract
The inflammatory Bowel diseases (IBDs) are a chronic, relapsing inflammatory diseases of the gastrointestinal tract with heterogeneous behavior and prognosis. The introduction of biological therapies including anti-TNF, anti-IL-12/23, and anti-integrins, has revolutionized the treatment of IBD, but these drugs are not universally effective. Due to the complex molecular structures of biologics, they are uniformly immunogenic. New discoveries concerning the underlying mechanisms involved in the pathogenesis of IBD have allowed for progress in the development of new treatment options. The advantage of small molecules (SMs) over biological therapies includes their lack of immunogenicity, short half-life, oral administration, and low manufacturing cost. Among these, the Janus Kinases (JAKs) inhibition has emerged as a novel strategy to modulate downstream cytokine signaling during immune-mediated diseases. These drugs target various cytokine signaling pathways that participate in the pathogenesis of IBD. Tofacitinib, a JAK inhibitor targeting predominantly JAK1 and JAK3, has been approved for the treatment of ulcerative colitis (UC), and there are other specific JAK inhibitors under development that may be effective in Crohn's. Similarly, the traffic of lymphocytes can now be targeted by another SM. Sphingosine-1-phosphate receptor (S1PR) agonism is a novel strategy that acts, in part, by interfering with lymphocyte recirculation, through blockade of lymphocyte egress from lymph nodes. S1PR agonists are being studied in IBD and other immune-mediated disorders. This review will focus on SM drugs approved and under development, including JAK inhibitors (tofacitinib, filgotinib, upadacitinib, peficitinib) and S1PR agonists (KRP-203, fingolimod, ozanimod, etrasimod, amiselimod), and their mechanism of action.
Collapse
Affiliation(s)
- Tamara Pérez-Jeldres
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, United States
- Department of Medicine, Pontifical Universidad Católica de Chile, Santiago, Chile
- San Borja Arriarán Clinic Hospital, Santiago, Chile
| | - Christopher J. Tyler
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Joshua D. Boyer
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Thangaraj Karuppuchamy
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Andrés Yarur
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Daniel A. Giles
- La Jolla Institute for Allergy and Immunology, San Diego, CA, United States
| | - Shaila Yeasmin
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, United States
| | - Luke Lundborg
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, United States
| | - William J. Sandborn
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, United States
| | - Derek R. Patel
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, United States
| | - Jesús Rivera-Nieves
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|