1
|
De la Rosa González A, Guerra-Ojeda S, Camacho-Villa MA, Valls A, Alegre E, Quintero-Bernal R, Martorell P, Chenoll E, Serna-García M, Mauricio MD, Serna E. Effect of Probiotics on Gastrointestinal Health Through the Aryl Hydrocarbon Receptor Pathway: A Systematic Review. Foods 2024; 13:3479. [PMID: 39517263 PMCID: PMC11545787 DOI: 10.3390/foods13213479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Probiotics are living microorganisms recognized for conferring health benefits on the host by modulating the gut microbiota. They interact with various signaling pathways, including the aryl hydrocarbon receptor (AhR), which plays a crucial role in maintaining intestinal homeostasis and immune function. The activation of AhR by probiotics has been associated with benefits such as improved intestinal barrier function, reduced inflammation, and modulation of immune responses. This systematic review aims to summarize current knowledge on the signaling of AhR, mediated by probiotics in physiological conditions and gastrointestinal pathologies. We conducted a comprehensive search across databases, including PubMed and Embase, up until July 2024. Out of 163 studies screened, 18 met the inclusion criteria. Our findings revealed in healthy populations that probiotic consumption increases the production of AhR ligands promoting intestinal immune tolerance. Furthermore, in populations with gastrointestinal pathologies, probiotics ameliorated symptoms through AhR activation by Trp metabolites, leading to the upregulation of the anti-inflammatory response.
Collapse
Affiliation(s)
| | - Sol Guerra-Ojeda
- Department of Physiology, Universitat de Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.V.); (E.A.); (E.S.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - María Alejandra Camacho-Villa
- HARPEER Research Group, Yumbo 760001, Colombia; (A.D.l.R.G.); (M.A.C.-V.); (R.Q.-B.)
- Pain Study Group (GED), Physical Therapy School, Universidad Industrial de Santander, Bucaramanga Santander 680002, Colombia
| | - Alicia Valls
- Department of Physiology, Universitat de Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.V.); (E.A.); (E.S.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- MODULAhR Group, Universitat de Valencia, 46010 Valencia, Spain
| | - Eva Alegre
- Department of Physiology, Universitat de Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.V.); (E.A.); (E.S.)
| | | | - Patricia Martorell
- Archer Daniels Midland (ADM), Nutrition, Health & Wellness, Biopolis S. L. Parc Cientific, University of Valencia, 46980 Paterna, Spain; (P.M.); (E.C.)
| | - Empar Chenoll
- Archer Daniels Midland (ADM), Nutrition, Health & Wellness, Biopolis S. L. Parc Cientific, University of Valencia, 46980 Paterna, Spain; (P.M.); (E.C.)
| | - Marta Serna-García
- Department of Dentistry, Faculty of Health Sciences, Universidad Europea de Valencia, 46010 Valencia, Spain;
| | - Maria D. Mauricio
- Department of Physiology, Universitat de Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.V.); (E.A.); (E.S.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- MODULAhR Group, Universitat de Valencia, 46010 Valencia, Spain
| | - Eva Serna
- Department of Physiology, Universitat de Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.V.); (E.A.); (E.S.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- MODULAhR Group, Universitat de Valencia, 46010 Valencia, Spain
| |
Collapse
|
2
|
Filidou E, Kandilogiannakis L, Shrewsbury A, Kolios G, Kotzampassi K. Probiotics: Shaping the gut immunological responses. World J Gastroenterol 2024; 30:2096-2108. [PMID: 38681982 PMCID: PMC11045475 DOI: 10.3748/wjg.v30.i15.2096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
Probiotics are live microorganisms exerting beneficial effects on the host's health when administered in adequate amounts. Among the most popular and adequately studied probiotics are bacteria from the families Lactobacillaceae, Bifidobacteriaceae and yeasts. Most of them have been shown, both in vitro and in vivo studies of intestinal inflammation models, to provide favorable results by means of improving the gut microbiota composition, promoting the wound healing process and shaping the immunological responses. Chronic intestinal conditions, such as inflammatory bowel diseases (IBD), are characterized by an imbalance in microbiota composition, with decreased diversity, and by relapsing and persisting inflammation, which may lead to mucosal damage. Although the results of the clinical studies investigating the effect of probiotics on patients with IBD are still controversial, it is without doubt that these microorganisms and their metabolites, now named postbiotics, have a positive influence on both the host's microbiota and the immune system, and ultimately alter the topical tissue microenvironment. This influence is achieved through three axes: (1) By displacement of potential pathogens via competitive exclusion; (2) by offering protection to the host through the secretion of various defensive mediators; and (3) by supplying the host with essential nutrients. We will analyze and discuss almost all the in vitro and in vivo studies of the past 2 years dealing with the possible favorable effects of certain probiotic genus on gut immunological responses, highlighting which species are the most beneficial against intestinal inflammation.
Collapse
Affiliation(s)
- Eirini Filidou
- Faculty of Medicine, Laboratory of Pharmacology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Leonidas Kandilogiannakis
- Faculty of Medicine, Laboratory of Pharmacology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Anne Shrewsbury
- Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| | - George Kolios
- Faculty of Medicine, Laboratory of Pharmacology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, Thessaloniki 54636, Greece
| |
Collapse
|
3
|
Hao Z, Ding X, Wang J. Effects of gut bacteria and their metabolites on gut health of animals. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:223-252. [PMID: 38763528 DOI: 10.1016/bs.aambs.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The intestine tract is a vital site for the body to acquire nutrients, serving as the largest immune organ. Intestinal health is crucial for maintaining a normal physiological state. Abundant microorganisms reside in the intestine, colonized in a symbiotic manner. These microorganisms can generate various metabolites that influence host physiological activities. Microbial metabolites serve as signaling molecules or metabolic substrates in the intestine, and some intestinal microorganisms act as probiotics and promote intestinal health. Researches on host, probiotics, microbial metabolites and their interactions are ongoing. This study reviews the effects of gut bacteria and their metabolites on intestinal health to provide useful references for animal husbandry.
Collapse
Affiliation(s)
- Zhuang Hao
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China
| | - Xuedong Ding
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China
| | - Jing Wang
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China.
| |
Collapse
|
4
|
Liang X, Li Y, Zhao Z, Ding R, Sun J, Chi C. Safety and efficacy of adding postbiotics in infant formula: a systematic review and meta-analysis. Pediatr Res 2024; 95:43-51. [PMID: 37700163 DOI: 10.1038/s41390-023-02813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/08/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
Postbiotics, as emerging products, were added to infant formula, but their safety and efficacy are unclear. To clarify this issue, we wrote this meta-analysis. We searched PubMed, Embase, Web of Science and ProQuest from its establishment to February 2023. The review was registered on PROSPERO database (CRD42022352405). The effects of infant formula with and without postbiotics were compared, and the incidence of serious adverse events (SAEs), digestive symptoms, concentration of stool secretory immunoglobulin A (SIgA), and growth and development indexes were analyzed. Nine randomized controlled trials with 2065 participants were included. The addition of postbiotics to infant formula was found to increase the concentration of stool SIgA (P < 0.05) with very low certainty of evidence, without significantly impacting the incidence of SAEs, infantile colic, flatulence, diarrhea, vomiting, abdominal pain and gastrointestinal disorders, the daily weight gain, the total gain in body length and the daily head circumference gain (all P > 0.05). Adding postbiotics to the formula is safe for infants, which would not increase the incidence of SAEs, infantile colic, flatulence, diarrhea, vomiting, abdominal pain, and gastrointestinal disorders, and could increase the concentration of stool SIgA. IMPACT: Our study provides evidence that the addition of postbiotics to infant formula is safe but not effective. This is the first systematic review and meta-analysis of postbiotics. This study provides strong evidence for the safety of postbiotics and lays a foundation for related clinical trials.
Collapse
Affiliation(s)
- Xifeng Liang
- School of Nursing, Weifang Medical University, Weifang, China
- School of Nursing, Jining Medical University, Jining, China
| | - Yu Li
- School of Nursing, Weifang Medical University, Weifang, China
- School of Nursing, Jining Medical University, Jining, China
| | - Zhijiao Zhao
- School of Nursing, Weifang Medical University, Weifang, China
| | - Ru Ding
- School of Nursing, Weifang Medical University, Weifang, China
| | - Jing Sun
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia.
- Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, QLD, Australia.
| | - Cheng Chi
- School of Nursing, Jining Medical University, Jining, China.
| |
Collapse
|
5
|
Lu J, Gong Y, Gao Y, Yang Y, Zhang Y, Zhang Z, Shi X. Wolfberry, Yam, and Chrysanthemum polysaccharides increased intestinal Akkermansia muciniphila abundance and hepatic YAP1 expression to alleviate DILI. FASEB J 2023; 37:e23286. [PMID: 37950623 DOI: 10.1096/fj.202301388r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 11/13/2023]
Abstract
Drug-induced liver injury (DILI) is frequently induced by high dose of acetaminophen (APAP) and is concomitant with disturbances of gut flora. Akkermansia muciniphila is beneficial for the repair of liver injury. Lycium barbarum polysaccharide, yam polysaccharide, and chrysanthemum polysaccharide all have anti-inflammatory and antioxidation effects. The objective of this study is to investigate the potential of lycium barbarum polysaccharide, yam polysaccharide, and chrysanthemum polysaccharide (LYC) in improving DILI by increasing the abundance of A. muciniphila. Initially, screening for the optimal concentrations of wolfberry, yam, and chrysanthemum (WYC) or LYC to promote A. muciniphila proliferation in vitro and validated in antibiotic (ATB)-treated KM mice. Subsequently, APAP-induced DILI model in BALB/c mice were constructed to examine the treatment effects of LYC. Our findings indicate that the optimal concentration ratio of WYC was 2:3:2, and LYC was 1:1:1. WYC increased A. muciniphila proliferation in vitro and in ATB-treated mice under this ratio. Meanwhile, LYC increased A. muciniphila abundance in vitro and the combination LYC with A. muciniphila promoted the proliferation of A. muciniphila in ATB-treated mice. The overdose of APAP resulted in the impairment of the intestinal barrier function and subsequent leakage of lipopolysaccharide (LPS). Moreover, LYC increased A. muciniphila abundance, reduced intestinal inflammation and permeability, and upregulated the expression of the tight junction protein zonula occludens protein 1 (ZO-1) and occludin contents in the gut. Lastly, LYC inhibited LPS leakage and upregulated hepatic YAP1 expression, ultimately leading to the repair of DILI.
Collapse
Affiliation(s)
- Junlan Lu
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yi Gong
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuting Gao
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yanguang Yang
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuman Zhang
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhiqin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
6
|
Hou JJ, Ma AH, Qin YH. Activation of the aryl hydrocarbon receptor in inflammatory bowel disease: insights from gut microbiota. Front Cell Infect Microbiol 2023; 13:1279172. [PMID: 37942478 PMCID: PMC10628454 DOI: 10.3389/fcimb.2023.1279172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disease that affects more than 3.5 million people, with rising prevalence. It deeply affects patients' daily life, increasing the burden on patients, families, and society. Presently, the etiology of IBD remains incompletely clarified, while emerging evidence has demonstrated that altered gut microbiota and decreased aryl hydrocarbon receptor (AHR) activity are closely associated with IBD. Furthermore, microbial metabolites are capable of AHR activation as AHR ligands, while the AHR, in turn, affects the microbiota through various pathways. In light of the complex connection among gut microbiota, the AHR, and IBD, it is urgent to review the latest research progress in this field. In this review, we describe the role of gut microbiota and AHR activation in IBD and discussed the crosstalk between gut microbiota and the AHR in the context of IBD. Taken as a whole, we propose new therapeutic strategies targeting the AHR-microbiota axis for IBD, even for other related diseases caused by AHR-microbiota dysbiosis.
Collapse
Affiliation(s)
| | | | - Yue-Hua Qin
- Department of Gastroenterology, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
7
|
Gutierrez A, Pucket B, Engevik MA. Bifidobacterium and the intestinal mucus layer. MICROBIOME RESEARCH REPORTS 2023; 2:36. [PMID: 38045921 PMCID: PMC10688832 DOI: 10.20517/mrr.2023.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 12/05/2023]
Abstract
Bifidobacterium species are integral members of the human gut microbiota and these microbes have significant interactions with the intestinal mucus layer. This review delves into Bifidobacterium-mucus dynamics, shedding light on the multifaceted nature of this relationship. We cover conserved features of Bifidobacterium-mucus interactions, such as mucus adhesion and positive regulation of goblet cell and mucus production, as well as species and strain-specific attributes of mucus degradation. For each interface, we explore the molecular mechanisms underlying these interactions and their potential implications for human health. Notably, we emphasize the ability of Bifidobacterium species to positively influence the mucus layer, shedding light on its potential as a mucin-builder and a therapeutic agent for diseases associated with disrupted mucus barriers. By elucidating the complex interplay between Bifidobacterium and intestinal mucus, we aim to contribute to a deeper understanding of the gut microbiota-host interface and pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Alyssa Gutierrez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brenton Pucket
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Melinda A. Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|