1
|
Adams AD, Fiesco-Roa MÓ, Wong L, Jenkins GP, Malinowski J, Demarest OM, Rothberg PG, Hobert JA. Phenylalanine hydroxylase deficiency treatment and management: A systematic evidence review of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2023; 25:100358. [PMID: 37470789 DOI: 10.1016/j.gim.2022.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 07/21/2023] Open
Abstract
PURPOSE Elevated serum phenylalanine (Phe) levels due to biallelic pathogenic variants in phenylalanine hydroxylase (PAH) may cause neurodevelopmental disorders or birth defects from maternal phenylketonuria. New Phe reduction treatments have been approved in the last decade, but uncertainty on the optimal lifespan goal Phe levels for patients with PAH deficiency remains. METHODS We searched Medline and Embase for evidence of treatment concerning PAH deficiency up to September 28, 2021. Risk of bias was evaluated based on study design. Random-effects meta-analyses were performed to compare IQ, gestational outcomes, and offspring outcomes based on Phe ≤ 360 μmol/L vs > 360 μmol/L and reported as odds ratio and 95% CI. Remaining results were narratively synthesized. RESULTS A total of 350 studies were included. Risk of bias was moderate. Lower Phe was consistently associated with better outcomes. Achieving Phe ≤ 360 μmol/L before conception substantially lowered the risk of negative effect to offspring in pregnant individuals (odds ratio = 0.07, 95% CI = 0.04-0.14; P < .0001). Adverse events due to pharmacologic treatment were common, but medication reduced Phe levels, enabling dietary liberalization. CONCLUSIONS Reduction of Phe levels to ≤360 μmol/L through diet or medication represents effective interventions to treat PAH deficiency.
Collapse
Affiliation(s)
- April D Adams
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX; Division of Maternal-Fetal Medicine, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Moisés Ó Fiesco-Roa
- Programa de Maestría y Doctorado en Ciencias Médicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico; Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | | | | | | | - Paul G Rothberg
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Judith A Hobert
- University of Utah School of Medicine, Salt Lake City, UT; ARUP Laboratories, Salt Lake City, UT
| |
Collapse
|
2
|
Pinto A, Ilgaz F, Evans S, van Dam E, Rocha JC, Karabulut E, Hickson M, Daly A, MacDonald A. Phenylalanine Tolerance over Time in Phenylketonuria: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:3506. [PMID: 37630696 PMCID: PMC10458574 DOI: 10.3390/nu15163506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
In phenylketonuria (PKU), natural protein tolerance is defined as the maximum natural protein intake maintaining a blood phenylalanine (Phe) concentration within a target therapeutic range. Tolerance is affected by several factors, and it may differ throughout a person's lifespan. Data on lifelong Phe/natural protein tolerance are limited and mostly reported in studies with low subject numbers. This systematic review aimed to investigate how Phe/natural protein tolerance changes from birth to adulthood in well-controlled patients with PKU on a Phe-restricted diet. Five electronic databases were searched for articles published until July 2020. From a total of 1334 results, 37 articles met the eligibility criteria (n = 2464 patients), and 18 were included in the meta-analysis. The mean Phe (mg/day) and natural protein (g/day) intake gradually increased from birth until 6 y (at the age of 6 months, the mean Phe intake was 267 mg/day, and natural protein intake was 5.4 g/day; at the age of 5 y, the mean Phe intake was 377 mg/day, and the natural protein intake was 8.9 g/day). However, an increase in Phe/natural protein tolerance was more apparent at the beginning of late childhood and was >1.5-fold that of the Phe tolerance in early childhood. During the pubertal growth spurt, the mean natural protein/Phe tolerance was approximately three times higher than in the first year of life, reaching a mean Phe intake of 709 mg/day and a mean natural protein intake of 18 g/day. Post adolescence, a pooled analysis could only be performed for natural protein intake. The mean natural protein tolerance reached its highest (32.4 g/day) point at the age of 17 y and remained consistent (31.6 g/day) in adulthood, but limited data were available. The results of the meta-analysis showed that Phe/natural protein tolerance (expressed as mg or g per day) increases with age, particularly at the beginning of puberty, and reaches its highest level at the end of adolescence. This needs to be interpreted with caution as limited data were available in adult patients. There was also a high degree of heterogeneity between studies due to differences in sample size, the severity of PKU, and target therapeutic levels for blood Phe control.
Collapse
Affiliation(s)
- Alex Pinto
- Department of Dietetics, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK; (S.E.); (A.D.); (A.M.)
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth PL4 6AB, UK;
| | - Fatma Ilgaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Ankara, Turkey;
| | - Sharon Evans
- Department of Dietetics, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK; (S.E.); (A.D.); (A.M.)
| | - Esther van Dam
- Beatrix Children’s Hospital, University of Groningen, University Medical Center, 9700 RB Groningen, The Netherlands;
| | - Júlio César Rocha
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal;
- CINTESIS@RISE, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- Reference Centre of Inherited Metabolic Diseases, Centro Hospitalar Universitario de Lisboa Central, 1169-045 Lisboa, Portugal
| | - Erdem Karabulut
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey;
| | - Mary Hickson
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth PL4 6AB, UK;
| | - Anne Daly
- Department of Dietetics, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK; (S.E.); (A.D.); (A.M.)
| | - Anita MacDonald
- Department of Dietetics, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK; (S.E.); (A.D.); (A.M.)
| |
Collapse
|
3
|
Yilmaz O, Cochrane B, Wildgoose J, Pinto A, Evans S, Daly A, Ashmore C, MacDonald A. Phenylalanine free infant formula in the dietary management of phenylketonuria. Orphanet J Rare Dis 2023; 18:16. [PMID: 36698214 PMCID: PMC9878783 DOI: 10.1186/s13023-023-02621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/15/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Phenylalanine-free infant formula is an essential source of safe protein in a phenylalanine restricted diet, but its efficacy is rarely studied. We report a multicentre, open, longitudinal, prospective intervention study on a phenylalanine-free infant formula (PKU Start: Vitaflo International Ltd.). RESULTS This was a 2-part study: part I (28 days short term evaluation) and part II (12 months extension). Data was collected on infant blood phenylalanine concentrations, dietary intake, growth, and gastrointestinal tolerance. Ten infants (n = 8 males, 80%), with a median age of 14 weeks (range 4-36 weeks) were recruited from 3 treatment centres in the UK. Nine of ten infants completed the 28-day follow-up (one caregiver preferred the usual phenylalanine-free formula and discontinued the study formula after day 14) and 7/9 participated in study part II. The phenylalanine-free infant formula contributed a median of 57% (IQR 50-62%) energy and 53% (IQR 33-66%) of total protein intake from baseline to the end of the part II extension study. During the 12-month follow-up, infants maintained normal growth and satisfactory blood phenylalanine control. Any early gastrointestinal symptoms (constipation, colic, vomiting and poor feeding) improved with time. CONCLUSION The study formula was well tolerated, helped maintain good metabolic control, and normal growth in infants with PKU. The long-term efficacy of phenylalanine-free infant formula should continue to be observed and monitored.
Collapse
Affiliation(s)
- Ozlem Yilmaz
- Birmingham Women’s and Children’s Hospital, Birmingham, B4 6NH UK
- Department of Nutrition and Dietetics, Ankara Yildirim Beyazit University, 06760 Ankara, Turkey
| | - Barbara Cochrane
- Dietetic Department, Royal Hospital for Children, Queen Elizabeth Hospital, Glasgow, 51 4TF UK
| | - Jo Wildgoose
- Bradford Children’s Hospital, Bradford, BD5 0NA UK
| | - Alex Pinto
- Birmingham Women’s and Children’s Hospital, Birmingham, B4 6NH UK
| | - Sharon Evans
- Birmingham Women’s and Children’s Hospital, Birmingham, B4 6NH UK
| | - Anne Daly
- Birmingham Women’s and Children’s Hospital, Birmingham, B4 6NH UK
| | | | - Anita MacDonald
- Birmingham Women’s and Children’s Hospital, Birmingham, B4 6NH UK
| |
Collapse
|
4
|
Yilmaz O, Pinto A, Daly A, Ashmore C, Evans S, Yabanci Ayhan N, MacDonald A. Transitioning of protein substitutes in patients with phenylketonuria: evaluation of current practice. Orphanet J Rare Dis 2022; 17:395. [PMID: 36303225 PMCID: PMC9615388 DOI: 10.1186/s13023-022-02555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Background In children with phenylketonuria (PKU), transitioning protein substitutes at the appropriate developmental age is essential to help with their long-term acceptance and ease of administration. We assessed the parental experiences in transitioning from a second stage to third stage liquid or powdered protein substitute in patients with PKU. Results Sixteen interviews (23 open-ended questions) were carried out with parents/caregivers of children with PKU (8 females, 50%) with a median age of 8 years (range 5–11 years), continuously treated with diet, and on a third stage protein substitute. Parents/caregivers identified common facilitators and barriers during the third stage protein substitute transition process. The main facilitators were: child and parent motivation, parent knowledge of the transition process, a role model with PKU, low volume and easy preparation of the third stage protein substitute (liquid/powder), anticipation of increasing child independence, lower parent workload, attractive packaging, better taste and smell, school and teacher support, dietetic plans and guidance, PKU social events, child educational materials and written resources. The main barriers were child aversion to new protein substitutes, poor child behaviour, child aged > 5 years, parental fear of change, the necessity for parental time and persistence, loss of parental control, high product volume, different taste, smell, and texture of new protein substitutes, and peer bullying. Conclusion A stepwise, supportive approach is necessary when transitioning from second to third stage protein substitutes in PKU. Future studies are needed to develop guidance to assist parents/caregivers, health professionals, and teachers during the transition process.
Collapse
Affiliation(s)
- Ozlem Yilmaz
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B4 6NH, UK. .,Department of Nutrition and Dietetics, Faculty of Health Sciences, Ankara Yildirim Beyazit University, Ankara, 06760, Turkey. .,Department of Nutrition and Dietetics, Faculty of Health Sciences, Ankara University, Ankara, 06290, Turkey.
| | - Alex Pinto
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B4 6NH, UK
| | - Anne Daly
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B4 6NH, UK
| | - Catherine Ashmore
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B4 6NH, UK
| | - Sharon Evans
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B4 6NH, UK
| | - Nurcan Yabanci Ayhan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ankara University, Ankara, 06290, Turkey
| | - Anita MacDonald
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B4 6NH, UK.
| |
Collapse
|
5
|
Breastfeeding in Phenylketonuria: Changing Modalities, Changing Perspectives. Nutrients 2022; 14:nu14194138. [PMID: 36235790 PMCID: PMC9572443 DOI: 10.3390/nu14194138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Phenylketonuria (PKU) management aims to control phenylalanine (Phe) intakes. In newborns and infants this implies possible titration of Human milk (HM) with supplementation of Phe-free formula. HM benefits, better if prolonged, are well known in healthy populations, suggesting it may be used in PKU patients. Despite that, the current literature does not define recommendations on how best perform it in such a population. The main purpose of this study was to evaluate nutrition approaches in newborns and infants affected by PKU and to define if differences can influence the duration of breastfeeding. Data from 42 PKU infants were reviewed. Of these, 67% were breastfed with the use of three different approaches. The type of approach used impacted the duration of breastfeeding, which was longer when using a pre-measured amount of Phe-free formula administered prior to HM. This is the first study to suggest a specific method for breastfeeding in PKU. Considering widely known breastfeeding benefits, both for patients and their mothers, our data should encourage adequate awareness on how to choose correct breastfeeding modalities.
Collapse
|
6
|
Daly A, Evans S, Pinto A, Ashmore C, MacDonald A. Protein Substitutes in PKU; Their Historical Evolution. Nutrients 2021; 13:484. [PMID: 33540516 PMCID: PMC7912909 DOI: 10.3390/nu13020484] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/29/2022] Open
Abstract
Protein substitutes developed for phenylketonuria (PKU) are a synthetic source of protein commonly based on L-amino acids. They are essential in the treatment of phenylketonuria (PKU) and other amino acid disorders, allowing the antagonistic amino acid to be removed but with the safe provision of all other amino acids necessary for maintaining normal physiological function. They were first formulated by a chemist and used experimentally on a 2-year-old girl with PKU and their nutritional formulations and design have improved over time. Since 2008, a bioactive macropeptide has been used as a base for protein substitutes in PKU, with potential benefits of improved bone and gut health, nitrogen retention, and blood phenylalanine control. In 2018, animal studies showed that physiomimic technology coating the amino acids with a polymer allows a slow release of amino acids with an improved physiological profile. History has shown that in PKU, the protein substitute's efficacy is determined by its nutritional profile, amino acid composition, dose, timing, distribution, and an adequate energy intake. Protein substitutes are often given little importance, yet their pharmacological actions and clinical benefit are pivotal when managing PKU.
Collapse
Affiliation(s)
- Anne Daly
- Birmingham Women’s and Children’s Hospital, NHS Foundation Trust, Birmingham B4 6NH, UK; (S.E.); (A.P.); (C.A.); (A.M.)
| | | | | | | | | |
Collapse
|
7
|
MacDonald A, van Wegberg AMJ, Ahring K, Beblo S, Bélanger-Quintana A, Burlina A, Campistol J, Coşkun T, Feillet F, Giżewska M, Huijbregts SC, Leuzzi V, Maillot F, Muntau AC, Rocha JC, Romani C, Trefz F, van Spronsen FJ. PKU dietary handbook to accompany PKU guidelines. Orphanet J Rare Dis 2020; 15:171. [PMID: 32605583 PMCID: PMC7329487 DOI: 10.1186/s13023-020-01391-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/04/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Phenylketonuria (PKU) is an autosomal recessive inborn error of phenylalanine metabolism caused by deficiency in the enzyme phenylalanine hydroxylase that converts phenylalanine into tyrosine. MAIN BODY In 2017 the first European PKU Guidelines were published. These guidelines contained evidence based and/or expert opinion recommendations regarding diagnosis, treatment and care for patients with PKU of all ages. This manuscript is a supplement containing the practical application of the dietary treatment. CONCLUSION This handbook can support dietitians, nutritionists and physicians in starting, adjusting and maintaining dietary treatment.
Collapse
Affiliation(s)
- A MacDonald
- Dietetic Department, Birmingham Children's Hospital, Birmingham, UK
| | - A M J van Wegberg
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9700, RB, Groningen, The Netherlands
| | - K Ahring
- Department of PKU, Kennedy Centre, Glostrup, Denmark
| | - S Beblo
- Department of Women and Child Health, Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, University Hospitals, Leipzig, Germany
| | - A Bélanger-Quintana
- Metabolic Diseases Unit, Department of Paediatrics, Hospital Ramon y Cajal Madrid, Madrid, Spain
| | - A Burlina
- Division of Inherited Metabolic Diseases, Department of Paediatrics, University Hospital of Padova, Padova, Italy
| | - J Campistol
- Neuropaediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - T Coşkun
- Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - F Feillet
- Department of Paediatrics, Hôpital d'Enfants Brabois, CHU Nancy, Vandoeuvre les Nancy, France
| | - M Giżewska
- Department of Paediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, Szczecin, Poland
| | - S C Huijbregts
- Department of Clinical Child and Adolescent Studies-Neurodevelopmental Disorders, Faculty of Social Sciences, Leiden University, Leiden, The Netherlands
| | - V Leuzzi
- Department of Paediatrics, Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185, Rome, Italy
| | - F Maillot
- CHRU de Tours, Université François Rabelais, INSERM U1069, Tours, France
| | - A C Muntau
- University Children's Hospital, University Medical Centre Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - J C Rocha
- Nutrition & Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal. Centre for Health Technology and Services Research (CINTESIS), Porto, Portugal
| | - C Romani
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - F Trefz
- Department of Paediatrics, University of Heidelberg, Heidelberg, Germany
| | - F J van Spronsen
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9700, RB, Groningen, The Netherlands.
| |
Collapse
|
8
|
Evans S, Daly A, Wildgoose J, Cochrane B, Ashmore C, Kearney S, MacDonald A. Mealtime Anxiety and Coping Behaviour in Parents and Children During Weaning in PKU: A Case-Control Study. Nutrients 2019; 11:nu11122857. [PMID: 31766512 PMCID: PMC6950038 DOI: 10.3390/nu11122857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022] Open
Abstract
Solid food introduction may create anxiety for parents of children with phenylketonuria (PKU) due to the burden associated with protein substitute (PS) administration and natural protein restriction. In a longitudinal, prospective study, 20 mothers of children with PKU and 20 non-PKU control mothers completed 4 questionnaires (mealtime emotions, feed-time, Beck’s anxiety inventory and the coping health inventory for parents), examining parent/child mealtime emotions, anxiety, stress and coping strategies at child ages: weaning start, 8 months (m), 12 m, 15 m, 18 m and 24 m. Overall, mothers of children with PKU cope well with solid food introduction when applying a low-phenylalanine diet, with comparable low levels of stress and anxiety reported in both PKU and non-PKU groups. However, mothers of children with PKU reported peak scores in anxiety for emotive/cognitive symptoms at a child age of 15 m, and higher use of coping strategies at 15 m and 24 m (p < 0.05) of age. Generally, there was a trend that maternal anxiety regarding child rejection of PS increased with time, peaking between 12–24 m. In PKU, a child age of 12–18 m is identified as a key period when mothers feel most anxious/stressed with feeding, coinciding with raised blood phenylalanine levels probably associated with teething, illness and developing independence. Health professionals should be conscious of this vulnerable period and be prepared to offer more directional support as required.
Collapse
Affiliation(s)
- Sharon Evans
- Dietetic Department, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Birmingham B4 6NH, UK; (A.D.); (C.A.); (A.M.)
- Correspondence: ; Tel.: +44-121-333-8021
| | - Anne Daly
- Dietetic Department, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Birmingham B4 6NH, UK; (A.D.); (C.A.); (A.M.)
| | - Jo Wildgoose
- Dietetic Department, Bradford Teaching Hospitals NHS Trust, Bradford BD9 6RJ, UK;
| | - Barbara Cochrane
- Dietetic Department, Royal Hospital for Children Glasgow, Glasgow G51 4TF, UK;
| | - Catherine Ashmore
- Dietetic Department, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Birmingham B4 6NH, UK; (A.D.); (C.A.); (A.M.)
| | - Shauna Kearney
- Psychology Department, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Birmingham B4 6NH, UK;
| | - Anita MacDonald
- Dietetic Department, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Birmingham B4 6NH, UK; (A.D.); (C.A.); (A.M.)
| |
Collapse
|
9
|
Evans S, Daly A, Wildgoose J, Cochrane B, Chahal S, Ashmore C, Loveridge N, MacDonald A. Growth, Protein and Energy Intake in Children with PKU Taking a Weaning Protein Substitute in the First Two Years of Life: A Case-Control Study. Nutrients 2019; 11:nu11030552. [PMID: 30841589 PMCID: PMC6471165 DOI: 10.3390/nu11030552] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 01/10/2023] Open
Abstract
Growth issues have been observed in young children with phenylketonuria (PKU), but studies are conflicting. In infancy, there is an increasing trend to introduce a second-stage semi-solid weaning protein substitute (WPS) but there is concern that this may not meet energy requirements. In this longitudinal, prospective study, 20 children with PKU transitioning to a WPS, and 20 non-PKU controls were observed monthly from weaning commencement (4–6 months) to 12 m and at 15, 18 and 24 months of age for: weight, length, head circumference, body mass index (BMI), energy and macronutrient intake. Growth parameters were within normal range at all ages in both groups with no significant difference in mean z-scores except for accelerated length in the PKU group. No child with PKU had z-scores < −2 for any growth parameter at age 2 years. Total protein and energy intake in both groups were similar at all ages; however, from 12–24 months in the PKU group, the percentage of energy intake from carbohydrate increased (60%) but from fat decreased (25%) and inversely for controls (48% and 36%). In PKU, use of low volume WPS meets Phe-free protein requirements, facilitates transition to solid foods and supports normal growth. Further longitudinal study of growth, body composition and energy/nutrient intakes in early childhood are required to identify any changing trends.
Collapse
Affiliation(s)
- Sharon Evans
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham B4 6NH, UK.
| | - Anne Daly
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham B4 6NH, UK.
| | - Jo Wildgoose
- Bradford Teaching Hospitals NHS Trust, Bradford BD9 6RJ, UK.
| | | | - Satnam Chahal
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham B4 6NH, UK.
| | - Catherine Ashmore
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham B4 6NH, UK.
| | - Nik Loveridge
- Danone Early Life Nutrition, Macquarie Park, New South Wales, Australia.
| | - Anita MacDonald
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham B4 6NH, UK.
| |
Collapse
|
10
|
How Does Feeding Development and Progression onto Solid Foods in PKU Compare with Non-PKU Children During Weaning? Nutrients 2019; 11:nu11030529. [PMID: 30823463 PMCID: PMC6470524 DOI: 10.3390/nu11030529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
Weaning is complex for children with phenylketonuria (PKU). Breastmilk/infant formula and phenylalanine (Phe)-free infant protein-substitute (PS) are gradually replaced with equivalent amounts of Phe-containing food, a semi-solid/spoonable weaning PS and special low-protein foods. In PKU, feeding patterns/practices during weaning in PKU have not been formally evaluated. In this longitudinal, prospective, case-control study (n = 20) infants with PKU transitioning to a second-stage PS, were recruited at weaning (4–6 months) for a comparison of feeding practices and development with non-PKU infants. Subjects were monitored monthly to 12 months and at age 15 months, 18 months and 24 months for: feeding progression; food textures; motor skill development and self-feeding; feeding environment; gastrointestinal symptoms; and negative feeding behaviours. Children with PKU had comparable weaning progression to non-PKU infants including texture acceptance, infant formula volume and self-feeding skills. However, children with PKU had more prolonged Phe-free infant formula bottle-feeding and parental spoon feeding than controls; fewer meals/snacks per day; and experienced more flatulence (p = 0.0005), burping (p = 0.001), retching (p = 0.03); and less regurgitation (p = 0.003). Negative behaviours associated with PS at age 10–18 months, coincided with the age of teething. Use of semi-solid PS in PKU supports normal weaning development/progression but parents require support to manage the complexity of feeding and to normalise the social inclusivity of their child’s family food environment. Further study regarding parental anxiety associated with mealtimes is required.
Collapse
|
11
|
|
12
|
Evans S, Ford S, Adam S, Adams S, Ash J, Ashmore C, Caine G, Carruthers R, Cawtherley S, Chahal S, Clark A, Cochrane B, Daly A, Dines K, Dixon M, Dunlop C, Ellerton C, French M, Gaff L, Gingell C, Green D, Gribben J, Grimsley A, Hallam P, Hendroff U, Hill M, Hoban R, Howe S, Hunjan I, Kaalund K, Kelleher E, Khan F, Kitchen S, Lang K, Lowry S, Males J, Martin G, McStravick N, Micciche A, Newby C, Nicol C, Pereira R, Robertson L, Ross K, Simpson E, Singleton K, Skeath R, Stafford J, Terry A, Thom R, Tooke A, vanWyk K, White F, White L, MacDonald A. Development of national consensus statements on food labelling interpretation and protein allocation in a low phenylalanine diet for PKU. Orphanet J Rare Dis 2019; 14:2. [PMID: 30606267 PMCID: PMC6318866 DOI: 10.1186/s13023-018-0950-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 11/02/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the treatment of phenylketonuria (PKU), there was disparity between UK dietitians regarding interpretation of how different foods should be allocated in a low phenylalanine diet (allowed without measurement, not allowed, or allowed as part of phenylalanine exchanges). This led to variable advice being given to patients. METHODOLOGY In 2015, British Inherited Metabolic Disease Group (BIMDG) dietitians (n = 70) were sent a multiple-choice questionnaire on the interpretation of protein from food-labels and the allocation of different foods. Based on majority responses, 16 statements were developed. Over 18-months, using Delphi methodology, these statements were systematically reviewed and refined with a facilitator recording discussion until a clear majority was attained for each statement. In Phase 2 and 3 a further 7 statements were added. RESULTS The statements incorporated controversial dietary topics including: a practical 'scale' for guiding calculation of protein from food-labels; a general definition for exchange-free foods; and guidance for specific foods. Responses were divided into paediatric and adult groups. Initially, there was majority consensus (≥86%) by paediatric dietitians (n = 29) for 14 of 16 statements; a further 2 structured discussions were required for 2 statements, with a final majority consensus of 72% (n = 26/36) and 64% (n = 16/25). In adult practice, 75% of dietitians agreed with all initial statements for adult patients and 40% advocated separate maternal-PKU guidelines. In Phase 2, 5 of 6 statements were agreed by ≥76% of respondents with one statement requiring a further round of discussion resulting in 2 agreed statements with a consensus of ≥71% by dietitians in both paediatric and adult practice. In Phase 3 one statement was added to elaborate further on an initial statement, and this received 94% acceptance by respondents. Statements were endorsed by the UK National Society for PKU. CONCLUSIONS The BIMDG dietitians group have developed consensus dietetic statements that aim to harmonise dietary advice given to patients with PKU across the UK, but monitoring of statement adherence by health professionals and patients is required.
Collapse
Affiliation(s)
- British Inherited Metabolic Diseases Group (BIMDG) Dietitians Group
- Dietetic Department, Birmingham Women’s & Children’s NHS Foundation Trust, Birmingham Children’s Hospital, Steelhouse Lane, Birmingham, B4 6NH UK
- The National Society for Phenylketonuria, London, UK
- Queen Elizabeth University Hospital, Glasgow, UK
- Royal Victoria Infirmary, Newcastle upon Tyne, UK
- University Hospital of Wales, Cardiff, UK
- Mid Yorkshire Hospitals NHS Trust, Yorkshire, UK
- University College London Hospitals NHS Foundation Trust, London, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Children’s University Hospital Dublin, Dublin, Republic of Ireland
- Belfast Health & Social Care Trust, Belfast, UK
- Royal Hospital for Sick Children Edinburgh, Edinburgh, UK
- Leicester Royal Infirmary, Leicester, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Nottingham University Hospitals NHS Trust, Nottingham, UK
- Salford Royal NHS Foundation Trust, Salford, UK
- Evelina London Children’s Healthcare, London, UK
- Mater Misericordiae University Hospital Dublin, Dublin, Ireland
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
- Ninewells Hospital Dundee, Dundee, Scotland
- Sheffield Children’s NHS Foundation Trust, Sheffield, UK
- Aneurin Bevan University Health Board Wales, Newport, UK
- Bristol Royal Hospital for Children, Bristol, UK
- Norfolk and Norwich University Hospital, Norfolk, UK
- Royal Aberdeen Children’s Hospital, Aberdeen, UK
- Royal Manchester Children’s Hospital, Manchester, UK
- Alder Hey Children’s NHS Foundation Trust, Liverpool, UK
| | - Sharon Evans
- Dietetic Department, Birmingham Women’s & Children’s NHS Foundation Trust, Birmingham Children’s Hospital, Steelhouse Lane, Birmingham, B4 6NH UK
| | - Suzanne Ford
- The National Society for Phenylketonuria, London, UK
| | - Sarah Adam
- Queen Elizabeth University Hospital, Glasgow, UK
| | - Sandra Adams
- Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Jane Ash
- University Hospital of Wales, Cardiff, UK
| | - Catherine Ashmore
- Dietetic Department, Birmingham Women’s & Children’s NHS Foundation Trust, Birmingham Children’s Hospital, Steelhouse Lane, Birmingham, B4 6NH UK
| | | | - Rachel Carruthers
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Sarah Cawtherley
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Satnam Chahal
- Dietetic Department, Birmingham Women’s & Children’s NHS Foundation Trust, Birmingham Children’s Hospital, Steelhouse Lane, Birmingham, B4 6NH UK
| | - Anne Clark
- Children’s University Hospital Dublin, Dublin, Republic of Ireland
| | | | - Anne Daly
- Dietetic Department, Birmingham Women’s & Children’s NHS Foundation Trust, Birmingham Children’s Hospital, Steelhouse Lane, Birmingham, B4 6NH UK
| | - Karen Dines
- Belfast Health & Social Care Trust, Belfast, UK
| | - Marjorie Dixon
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Carolyn Dunlop
- Royal Hospital for Sick Children Edinburgh, Edinburgh, UK
| | | | | | - Lisa Gaff
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Cerys Gingell
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Diane Green
- Salford Royal NHS Foundation Trust, Salford, UK
| | | | | | - Paula Hallam
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Una Hendroff
- Mater Misericordiae University Hospital Dublin, Dublin, Ireland
| | - Melanie Hill
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Rachel Hoban
- Dietetic Department, Birmingham Women’s & Children’s NHS Foundation Trust, Birmingham Children’s Hospital, Steelhouse Lane, Birmingham, B4 6NH UK
| | - Sarah Howe
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Inderdip Hunjan
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Kit Kaalund
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Eimear Kelleher
- Mater Misericordiae University Hospital Dublin, Dublin, Ireland
| | - Farzana Khan
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Steve Kitchen
- Dietetic Department, Birmingham Women’s & Children’s NHS Foundation Trust, Birmingham Children’s Hospital, Steelhouse Lane, Birmingham, B4 6NH UK
| | - Karen Lang
- Ninewells Hospital Dundee, Dundee, Scotland
| | - Sharan Lowry
- Sheffield Children’s NHS Foundation Trust, Sheffield, UK
| | - Jo Males
- Aneurin Bevan University Health Board Wales, Newport, UK
| | - Georgina Martin
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | | | - Claire Nicol
- Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | | | - Louise Robertson
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Emma Simpson
- Royal Manchester Children’s Hospital, Manchester, UK
| | | | - Rachel Skeath
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Allyson Terry
- Alder Hey Children’s NHS Foundation Trust, Liverpool, UK
| | - Ruth Thom
- Belfast Health & Social Care Trust, Belfast, UK
| | - Alison Tooke
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Karen vanWyk
- Royal Manchester Children’s Hospital, Manchester, UK
| | - Fiona White
- Royal Manchester Children’s Hospital, Manchester, UK
| | - Lucy White
- Sheffield Children’s NHS Foundation Trust, Sheffield, UK
| | - Anita MacDonald
- Dietetic Department, Birmingham Women’s & Children’s NHS Foundation Trust, Birmingham Children’s Hospital, Steelhouse Lane, Birmingham, B4 6NH UK
| |
Collapse
|
13
|
Pinto A, Adams S, Ahring K, Allen H, Almeida MF, Garcia-Arenas D, Arslan N, Assoun M, Atik Altınok Y, Barrio-Carreras D, Belanger Quintana A, Bernabei SM, Bontemps C, Boyle F, Bruni G, Bueno-Delgado M, Caine G, Carvalho R, Chrobot A, Chyż K, Cochrane B, Correia C, Corthouts K, Daly A, De Leo S, Desloovere A, De Meyer A, De Theux A, Didycz B, Dijsselhof ME, Dokoupil K, Drabik J, Dunlop C, Eberle-Pelloth W, Eftring K, Ekengren J, Errekalde I, Evans S, Foucart A, Fokkema L, François L, French M, Forssell E, Gingell C, Gonçalves C, Gökmen Özel H, Grimsley A, Gugelmo G, Gyüre E, Heller C, Hensler R, Jardim I, Joost C, Jörg-Streller M, Jouault C, Jung A, Kanthe M, Koç N, Kok IL, Kozanoğlu T, Kumru B, Lang F, Lang K, Liegeois I, Liguori A, Lilje R, Ļubina O, Manta-Vogli P, Mayr D, Meneses C, Newby C, Meyer U, Mexia S, Nicol C, Och U, Olivas SM, Pedrón-Giner C, Pereira R, Plutowska-Hoffmann K, Purves J, Re Dionigi A, Reinson K, Robert M, Robertson L, Rocha JC, Rohde C, Rosenbaum-Fabian S, Rossi A, Ruiz M, Saligova J, Gutiérrez-Sánchez A, Schlune A, Schulpis K, Serrano-Nieto J, Skarpalezou A, Skeath R, Slabbert A, Straczek K, Giżewska M, Terry A, Thom R, Tooke A, Tuokkola J, van Dam E, van den Hurk TAM, van der Ploeg EMC, Vande Kerckhove K, Van Driessche M, van Wegberg AMJ, van Wyk K, Vasconcelos C, Velez García V, Wildgoose J, Winkler T, Żółkowska J, Zuvadelli J, MacDonald A. Weaning practices in phenylketonuria vary between health professionals in Europe. Mol Genet Metab Rep 2018; 18:39-44. [PMID: 30705824 PMCID: PMC6349955 DOI: 10.1016/j.ymgmr.2018.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022] Open
Abstract
Background In phenylketonuria (PKU), weaning is considered more challenging when compared to feeding healthy infants. The primary aim of weaning is to gradually replace natural protein from breast milk or standard infant formula with solids containing equivalent phenylalanine (Phe). In addition, a Phe-free second stage L-amino acid supplement is usually recommended from around 6 months to replace Phe-free infant formula. Our aim was to assess different weaning approaches used by health professionals across Europe. Methods A cross sectional questionnaire (survey monkey®) composed of 31 multiple and single choice questions was sent to European colleagues caring for inherited metabolic disorders (IMD). Centres were grouped into geographical regions for analysis. Results Weaning started at 17–26 weeks in 85% (n = 81/95) of centres, >26 weeks in 12% (n = 11/95) and < 17 weeks in 3% (n = 3/95). Infant's showing an interest in solid foods, and their age, were important determinant factors influencing weaning commencement. 51% (n = 48/95) of centres introduced Phe containing foods at 17–26 weeks and 48% (n = 46/95) at >26 weeks. First solids were mainly low Phe vegetables (59%, n = 56/95) and fruit (34%, n = 32/95). A Phe exchange system to allocate dietary Phe was used by 52% (n = 49/95) of centres predominantly from Northern and Southern Europe and 48% (n = 46/95) calculated most Phe containing food sources (all centres in Eastern Europe and the majority from Germany and Austria). Some centres used a combination of both methods. A second stage Phe-free L-amino acid supplement containing a higher protein equivalent was introduced by 41% (n = 39/95) of centres at infant age 26–36 weeks (mainly from Germany, Austria, Northern and Eastern Europe) and 37% (n = 35/95) at infant age > 1y mainly from Southern Europe. 53% (n = 50/95) of centres recommended a second stage Phe-free L-amino acid supplement in a spoonable or semi-solid form. Conclusions Weaning strategies vary throughout European PKU centres. There is evidence to suggest that different infant weaning strategies may influence longer term adherence to the PKU diet or acceptance of Phe-free L-amino acid supplements; rendering prospective long-term studies important. It is essential to identify an effective weaning strategy that reduces caregiver burden but is associated with acceptable dietary adherence and optimal infant feeding development.
Collapse
Affiliation(s)
- A Pinto
- Birmingham Women's and Children's Hospital, Birmingham, UK
| | - S Adams
- Royal Victoria Infirmary, Newcastle, UK
| | - K Ahring
- Department of PKU, Kennedy Centre, Department of Paediatrics and Adolescents Medicine, Copenhagen University Hospital, Glostrup, Denmark
| | - H Allen
- Sheffield Children's NHS Foundation Trust, UK
| | - M F Almeida
- Centro de Genética Médica, Centro Hospitalar Universitário do Porto (CHP), Porto, Portugal.,Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences, University of Porto-UMIB/ICBAS/UP, Porto, Portugal.,Centro de Referência na área de Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário do Porto - CHP, Porto, Portugal
| | - D Garcia-Arenas
- Congenital and Metabolic Disease Unit, Gastroenterology, Hepatology and Pediatric Nutrition Unit, Sant Joan de Déu Hospital, Barcelona, Spain
| | - N Arslan
- Division of Pediatric Metabolism and Nutrition, Dokuz Eylul University Faculty of Medicine, Izmır, Turkey
| | - M Assoun
- Hôpital Necker enfants Malades, Centre de référence des maladies héréditaires du métabolisme, Paris, France
| | - Y Atik Altınok
- Pediatric Metabolism Department, Ege University Medical Faculty, Izmir, Turkey
| | - D Barrio-Carreras
- Servicio de Pediatria, Unidad de Enfermedades Mitocondriales-Metabolicas Hereditarias, Hospital 12 de Octubre, Madrid, Spain
| | - A Belanger Quintana
- Servicio de Pediatria, Hospital Ramon y Cajal Madrid, Unidad de Enfermedades Metabolicas, Spain
| | - S M Bernabei
- Division of Artificial Nutrition, Children's Hospital Bambino Gesù, Rome, Italy
| | | | - F Boyle
- National Centre for Inherited Metabolic Disorders, Temple Street Children's University Hospital, Italy
| | - G Bruni
- Meyer Children's hospital, Florence, Italy
| | | | | | - R Carvalho
- Hospital Divino Espírito Santo, Ponta Delgada, Portugal
| | - A Chrobot
- Children Voievodship Hospital, Bydgoszcz, Poland
| | - K Chyż
- Institute of Mother and Child, Warsaw, Poland
| | - B Cochrane
- Royal Hospital for Children, Glasgow, UK
| | - C Correia
- CHLC- Hospital Dona Estefânia, Lisboa, Portugal
| | | | - A Daly
- Birmingham Women's and Children's Hospital, Birmingham, UK
| | - S De Leo
- Department of Human Neuroscience, Sapienza University of Rome - Policlinico Umberto I of Rome, Italy
| | | | - A De Meyer
- Center of Metabolic Diseases, University Hospital, Antwerp, Belgium
| | - A De Theux
- IPG (Institut de Pathologie et de Genetique), Charleroi, Belgium
| | - B Didycz
- University Children's Hospital, Cracow, Poland
| | | | - K Dokoupil
- Dr. von Hauner Children's Hospital of the University of Munich, Germany
| | - J Drabik
- University Clinical Center in Gdansk, Poland
| | - C Dunlop
- Royal Hospital for Children Edinburgh, UK
| | | | - K Eftring
- Queen Silivia's Children's Hospital Gothenburg, Sweden
| | - J Ekengren
- Queen Silivia's Children's Hospital Gothenburg, Sweden
| | - I Errekalde
- Hospital Universitario de Cruces, Vizcaya, Spain
| | - S Evans
- Birmingham Women's and Children's Hospital, Birmingham, UK
| | - A Foucart
- Cliniques universitaires Saint-Luc, Belgium
| | - L Fokkema
- UMC Utrecht Wilhelmina Children's Hospital, Netherlands
| | - L François
- centre de référence des maladies héréditaires du métabolisme, Hôpital Universitaire Robert-Debré, Paris, France
| | - M French
- University Hospitals of Leicester NHS Trust, UK
| | - E Forssell
- Karolinska University Hospital, Stockholm, Sweden
| | | | | | - H Gökmen Özel
- İhsan Doğramacı Children's Hospital, Hacettepe University, Turkey
| | - A Grimsley
- Royal Belfast Hospital for Sick Children, Northern Ireland, UK
| | - G Gugelmo
- Department of Pediatrics, Inherited Metabolic Diseases Unit, University Hospital of Verona, Italy
| | - E Gyüre
- Albert Szent-Györgyi Clinical Centre, Hungary
| | - C Heller
- Kinder- und Jugendklinik Erlangen, Germany
| | - R Hensler
- Klinikum Stuttgart Olgahospital, Germany
| | - I Jardim
- Centro Hospitalar Lisboa Norte - H. Sta Maria - Unidade de Doenças Metabólicas, Portugal
| | - C Joost
- University Children's Hospital, University Medical Center Hamburg Eppendorf, Germany
| | - M Jörg-Streller
- Universitätsklinik Innsbruck department für Kinder- und Jugendheilkunde, Austria
| | | | - A Jung
- Charite, Virchow Klinikum Berlin, Germany
| | - M Kanthe
- Skane University Hospital, Sweden
| | - N Koç
- Child's Health and Diseases Hematology Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - I L Kok
- UMC Utrecht Wilhelmina Children's Hospital, Netherlands
| | - T Kozanoğlu
- İstanbul University İstanbul Faculty of Medicine, Turkey
| | - B Kumru
- Cengiz Gökçek Maternity and Children's Hospital, Gaziantep, Turkey
| | - F Lang
- University Hospital Mainz, Villa metabolica, Germany
| | - K Lang
- Ninewells Hospital, Dundee, Scotland, UK
| | | | - A Liguori
- Division of Artificial Nutrition, Children's Hospital Bambino Gesù, Rome, Italy
| | - R Lilje
- Oslo University Hospital, Norway
| | - O Ļubina
- Children's Clinical University Hospital, Riga, Latvia
| | | | - D Mayr
- Universitätsklinik für Jugend und Kinderheilkunde, Müllner Hauptstr, Salzburg, Austria
| | - C Meneses
- Hospital de Santo Espírito da Ilha Terceira, EPER, Portugal
| | - C Newby
- Bristol Royal Hospital for Children, UK
| | - U Meyer
- Clinic for Paediatric Kidney-, Liver and Metabolic Diseases, Medical School Hannover, Germany
| | - S Mexia
- Centro Hospitalar Lisboa Norte - H. Sta Maria - Unidade de Doenças Metabólicas, Portugal
| | - C Nicol
- Royal Victoria Infirmary, Newcastle, UK
| | - U Och
- Metabolic Department, University Hospital Muenster, Center for Pediatrics, Germany
| | - S M Olivas
- Congenital and Metabolic Disease Unit, Gastroenterology, Hepatology and Pediatric Nutrition Unit, Sant Joan de Déu Hospital, Barcelona, Spain
| | - C Pedrón-Giner
- Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | - K Plutowska-Hoffmann
- The Independent Public Clinical Hospital, Medical University of Silesia in Katowice John Paul II Upper Silesian Child Health Centre, Poland
| | - J Purves
- Royal Hospital for Children Edinburgh, UK
| | - A Re Dionigi
- Department of Pediatrics, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Italy
| | - K Reinson
- Tartu University Hospital, United Laboratories, Department of Genetics, Italy
| | - M Robert
- Hôpital Universitaire des Enfants, Reine Fabiola, Bruxelles, Belgium
| | | | - J C Rocha
- Centro de Genética Médica, Centro Hospitalar Universitário do Porto (CHP), Porto, Portugal.,Centro de Referência na área de Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário do Porto - CHP, Porto, Portugal.,Centre for Health Technology and Services Research (CINTESIS), Portugal
| | - C Rohde
- Hospital for Children and Adolescents, Department of Women and Child Health, University Hospitals, University of Leipzig, Germany
| | - S Rosenbaum-Fabian
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - A Rossi
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, Department of Woman's and Child's Health, University Hospital of Padua, Italy
| | - M Ruiz
- Hospital Universitario Nuestra Señora de Candelaria, Tenerife, Spain
| | - J Saligova
- Children's Faculty Hospital, Kosice, Slovakia
| | - A Gutiérrez-Sánchez
- Congenital and Metabolic Disease Unit, Gastroenterology, Hepatology and Pediatric Nutrition Unit, Sant Joan de Déu Hospital, Barcelona, Spain
| | - A Schlune
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Duesseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - K Schulpis
- Agia Sophia Childrens' Hospital, Athens, Greece
| | | | - A Skarpalezou
- Institute of Child Health, "A. Sophia" Children's Hospital, Athens
| | - R Skeath
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - A Slabbert
- Evelina Children's Hospital, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - K Straczek
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age Pomeranian Medica University, Poland
| | - M Giżewska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age Pomeranian Medica University, Poland
| | - A Terry
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - R Thom
- Royal Belfast Hospital for Sick Children, Northern Ireland, UK
| | - A Tooke
- Nottingham Children's Hospital, UK
| | - J Tuokkola
- Clinical Nutrition Unit, Internal Medicine and Rehabilitation and Pediatric Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - E van Dam
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Dietetics, Groningen, the Netherlands
| | | | | | | | | | - A M J van Wegberg
- Department of Gastroenterology and Hepatology - Dietetics, Radboud University Medical Centre, Nijmegen, Netherlands
| | - K van Wyk
- Manchester University NHS Foundation Trust, UK
| | | | - V Velez García
- Unit of Nutrition and Metabolopathies, Hospital La Fe, Valencia, Spain
| | | | - T Winkler
- Klinik für Kinder- und Jugendmedizin, Carl-Thiem-Klinikum gGmbH Cottbus, Germany
| | - J Żółkowska
- Institute of Mother and Child, Warsaw, Poland
| | - J Zuvadelli
- Department of Pediatrics, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Italy
| | - A MacDonald
- Birmingham Women's and Children's Hospital, Birmingham, UK
| |
Collapse
|
14
|
Rocha JC, MacDonald A. Treatment options and dietary supplements for patients with phenylketonuria. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1536541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Júlio César Rocha
- Centro de Genética Médica, Centro Hospitalar do Porto - CHP, Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal
- Center for Health Technology and Services Research (CINTESIS), Porto, Portugal
| | | |
Collapse
|