1
|
Wen L, Shi L, Wan SS, Xu T, Zhang L, Zhou ZG. Changes in the balance of Th17/Treg cells and oxidative stress markers in patients with HIV‑associated pulmonary tuberculosis who develop IRIS. Exp Ther Med 2023; 25:271. [PMID: 37206552 PMCID: PMC10189753 DOI: 10.3892/etm.2023.11970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/23/2023] [Indexed: 05/21/2023] Open
Abstract
Tuberculosis (TB) is the most common opportunistic infection in patients with acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV) infection and is one of the primary causes of death from AIDS. The increased accessibility to highly active antiretroviral therapy (HAART) has significantly improved the clinical outcome of patients with HIV infection. However, following ART, rapid restoration of the immune system leads to immune reconstitution inflammatory syndrome (IRIS). Oxidative stress and innate immunity play a role in TB-associated IRIS (TB-IRIS). The present study investigated the changes that occur in oxidative stress markers and T helper (Th)17/regulatory T (Treg) cell balance and their significance in IRIS patients with HIV-associated pulmonary TB. A total of 316 patients with HIV-associated pulmonary TB were treated with HAART and followed up regularly for 12 weeks. Those who developed IRIS were included in the IRIS group (n=60), while the remaining patients were included in the non-IRIS group (n=256). The changes in plasma oxidative stress markers superoxide dismutase (SOD) and malondialdehyde (MDA) were detected with the ELISA, and the ratio of Th17 to Treg cells in whole blood were analyzed before and after treatment through the flow cytometric assay. Following treatment, MDA and Th17 cells levels were significantly increased while SOD and Treg cells levels were decreased in the IRIS group (P<0.05) compared with before treatment. In the non-IRIS group, a non-significant decrease was observed in SOD levels (P>0.05), while the MDA levels significantly decreased compared with before treatment (P<0.05) and the Th17 and Treg cells levels were both significantly increased (P<0.05). After treatment, compared with the non-IRIS group, the IRIS group showed a significant increase in MDA and Th17 cells and decrease in SOD and Treg cells levels (P<0.05). In addition, Th17 cells levels were positively correlated with MDA but negatively correlated with SOD levels. Treg levels were negatively correlated with MDA and positively correlated with SOD levels (P<0.05). The area under the curve values of serum MDA and SOD, Th17 and Treg levels predicting the occurrence of IRIS were 0.738, 0.883, 0.722 and 0.719, respectively (P<0.05). These results indicated that the above parameters have certain diagnostic value for the occurrence of IRIS. The occurrence of IRIS in patients with HIV-associated pulmonary TB may be associated with oxidative stress and Th17/Treg cell imbalance.
Collapse
Affiliation(s)
- Long Wen
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, The First Hospital of Changsha, Changsha, Hunan 410000, P.R. China
| | - Lei Shi
- Department of Nursing, The Fourth Hospital of Changsha, Changsha, Hunan 410000, P.R. China
| | - Shan-Shan Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, The First Hospital of Changsha, Changsha, Hunan 410000, P.R. China
| | - Tao Xu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, The First Hospital of Changsha, Changsha, Hunan 410000, P.R. China
| | - Lei Zhang
- Department of Respiratory Medicine, Yicheng People's Hospital of Shandong, Zaozhuang, Shandong 277300, P.R. China
- Correspondence to: Dr Zhi-Guo Zhou, Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, The First Hospital of Changsha, 311 Yingpan Road, Kaifu, Changsha, Hunan 410000, P.R. China
| | - Zhi-Guo Zhou
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, The First Hospital of Changsha, Changsha, Hunan 410000, P.R. China
- Correspondence to: Dr Zhi-Guo Zhou, Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, The First Hospital of Changsha, 311 Yingpan Road, Kaifu, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
2
|
Cumulative Antibiogram: A Rapid Method to Hinder Transmission of Resistant Bacteria to Oral Cavity of Newborn Babies. Antibiotics (Basel) 2023; 12:antibiotics12010080. [PMID: 36671281 PMCID: PMC9854765 DOI: 10.3390/antibiotics12010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND A rapid bacterial diagnostic is needed more and more in the treatment of patients, because of the emergence of antibiotic resistance. The cumulative antibiogram, an annual report that monitors antimicrobial resistance trends in health care facilities, may provide a profile of empirical therapy useful in diverse emergency situations, such as transmission of resistant bacteria to oral cavity of newborn babies. We aimed to draw a profile of antibiotic resistance encountered. METHODS We assessed the antibiotic resistance (ABR) profile in childbearing women and newborn babies in Ploiesti Obstetrics and Gynecology Hospital by the disk diffusion method characterizing the multidrug-resistant organisms after isolation and identification by phenotypic tests. Extended-spectrum β-lactamase (ESBL)-producing Enterobacterales (ESBL-E), Carbapenem-resistant Enterobacterales (CRE), vancomycin-resistant Enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin resistant Group B Streptococcus (VR-GBS) were detected. RESULTS The prevalence of antibiotic resistance was 11.32% (53/468), while the prevalence of the ESBL-E, MRSA, VRE and VR-GBS strains was 8.34% (39/468). Within the bacteria isolated from fifty-three childbearing women, the prevalence of ESBL-E, MRSA, VRE and VR-GBS was 22.64% (12/53), 32.08% (17/53), 11.32% (6/53) and 7.55% (4/53). In the whole studied group, the prevalence was 2.56% (12/468), 3.63% (17/468), 1.28% (6/468) and 0.86% (4/468). Resistant bacteria were detected at birth in the oral cavity of the newborn babies in all cases. Maternal and neonatal isolates shared similar characteristics. CONCLUSIONS Cumulative antibiogram is useful in case of empiric treatment needed in diverse emergencies, such as transmission of resistant bacteria to oral cavity of newborn babies.
Collapse
|
3
|
Jepsen K, Falk W, Brune F, Cosgarea R, Fimmers R, Bekeredjian-Ding I, Jepsen S. Prevalence and Antibiotic Susceptibility Trends of Selected Enterobacteriaceae, Enterococci, and Candida albicans in the Subgingival Microbiota of German Periodontitis Patients: A Retrospective Surveillance Study. Antibiotics (Basel) 2022; 11:antibiotics11030385. [PMID: 35326848 PMCID: PMC8944811 DOI: 10.3390/antibiotics11030385] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
The periodontal microbiota is ecologically diverse and may facilitate colonization by bacteria of enteric origin (Enterobacteriaceae, Enterococci) and co-infections with Candida albicans, possibly producing subgingival biofilms with high antimicrobial tolerance. This retrospective surveillance study followed periodontitis-associated superinfection profiles in a large patient sample. From 2008 to 2015, biofilm samples from deep periodontal pockets were collected from a total of 16,612 German adults diagnosed with periodontitis. The presence of selected Enterobacteriaceae, Enterococci, and Candida albicans was confirmed in overnight cultures. Antimicrobial susceptibility of these clinical isolates was tested by disk diffusion with antibiotics routinely used for treatment of oral infections, e.g., amoxicillin (AML), amoxicillin/clavulanic acid (AMC), doxycycline (DO), and ciprofloxacin (CIP). The mean annual prevalence of patients harboring Enterobacteriaceae in periodontal plaques was 11.5% in total and ranged from 2.5% for Enterobacter cloacae to 3.6% for Klebsiella oxytoca, 1.1% for Klebsiella pneumoniae, 2.8% for Serratia marcescens, and 1.5% for Serratia liquefaciens. In comparison, the mean detection rates for microbiota typically found in the oral cavity were higher, e.g., 5.6% for Enterococcus spp. and 21.8% for Candida albicans. Among the Enterobacteriaceae, species harboring intrinsic resistance to AML (Enterobacter spp., Klebsiella spp., Serratia spp.) were predominant. Non-susceptibility to AMC was observed for Serratia spp. and Enterobacter cloacae. By contrast, Enterococcus spp. only showed non-susceptibility to DO and CIP. Trends for increasing resistance were found to AML in Serratia liquefaciens and to DO in Enterococcus spp. Trend analysis showed decreasing resistance to AMC in Serratia liquefaciens and Klebsiella oxytoca; and to DO in Serratia marcescens, liquefaciens, and Enterobacter cloacae. This study confirms the low but consistent presence of Enterobacteriaceae and Enterococci among the subgingival microbiota recovered from periodontitis specimen. Although their pathogenetic role in periodontal lesions remains unclear, their presence in the oral cavity should be recognized as a potential reservoir for development and spread of antibiotic resistance in light of antibiotic usage in oral infections.
Collapse
Affiliation(s)
- Karin Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany; (F.B.); (R.C.); (S.J.)
- Correspondence: ; Tel.: +49-228-287-22480
| | - Wolfgang Falk
- Service Laboratory, Center for Oral & Dental Microbiology, 24103 Kiel, Germany;
| | - Friederike Brune
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany; (F.B.); (R.C.); (S.J.)
| | - Raluca Cosgarea
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany; (F.B.); (R.C.); (S.J.)
- Clinic for Periodontology and Peri-Implant Diseases, Philipps University Marburg, 35039 Marburg, Germany
- Clinic of Prosthodontics, Iuliu Hatieganu University Cluj-Napoca, 40006 Cluj-Napoca, Romania
| | - Rolf Fimmers
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, 53127 Bonn, Germany;
| | - Isabelle Bekeredjian-Ding
- Division of Microbiology, Paul-Ehrlich-Institut, 63225 Langen, Germany;
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, 53127 Bonn, Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Welschnonnenstrasse 17, 53111 Bonn, Germany; (F.B.); (R.C.); (S.J.)
| |
Collapse
|
4
|
Li Z, Lu G, Luo E, Wu B, Li Z, Guo J, Xia Z, Zheng C, Su Q, Zeng Y, Yee Chan W, Su X, Qiu X, Zheng X, Cai Q, Xu Y, Chen Y, Fan Y, Chen W, Yu Z, Chen X, Zheng C, Wang M, Sang Poon W, Luo X. Oral, Nasal, and Gut Microbiota in Parkinson's Disease. Neuroscience 2021; 480:65-78. [PMID: 34695538 DOI: 10.1016/j.neuroscience.2021.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is the second most frequently diagnosed neurodegenerative disease. The purpose of this study was to investigate the link between microbiota composition in important mucosal interfaces (oral, nasal, and intestinal) and PD. Sequencing was undertaken of the V4-V5 region of the 16S ribosomal RNA (rRNA) gene of the microbiome from the oral cavity, nasal cavity, and gut of 91 PD patients and 91 healthy controls. Significant differences were found in microbiota composition in the oral cavity and gut, but not the nasal cavity, between PD patients and healthy controls after adjusting for age, gender, and body mass index (BMI). More genera in the oral cavity were significantly positively correlated with clinical characteristics, such as the HAMA and HAMD rating scales. The taxa c_Clostridia, o_Clostridiales, and f_Ruminococcaceae in the gut microbiota were associated with weight and MMSE score. Furthermore, as a result of dysbiosis, there was an enrichment of ion channel-, oxidative phosphorylation-, and carbohydrate metabolism-related pathways in the oral cavity and glycolysis/gluconeogenesis- and propanoate metabolism-related pathways in the intestine. Changes in these pathways can influence metabolism and inflammation, thereby contributing to PD pathogenesis. In addition, several subnetworks containing differentially abundant microbiota in the oral cavity and gut samples from PD patients may regulate microbial composition and function in PD. Overall, our results indicate that oral and gut dysbiosis may affect PD progression and provide a basis for understanding the pathogenesis of PD and identifying potential therapeutic targets for the treatment of this disease.
Collapse
Affiliation(s)
- Zhuo Li
- Genetic Testing Lab, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Gang Lu
- The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Enli Luo
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510370, China
| | - Bin Wu
- Genetic Testing Lab, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Zhe Li
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510370, China
| | - Jianwen Guo
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510370, China
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People's Hospital, Liaocheng 252000, Shandong, China; Liaocheng Clinical School of Shandong First Medical University, Liaocheng 252000, Shandong, China
| | - Chunye Zheng
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510370, China
| | - Qiaozhen Su
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510370, China
| | - Yan Zeng
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510370, China
| | - Wai Yee Chan
- The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Xianwei Su
- The Chinese University of Hong Kong-Shandong University (CUHK-SDU) Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Xinmin Qiu
- Genetic Testing Lab, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xirun Zheng
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510665, China
| | - Qiaodi Cai
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yanjuan Xu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yingjun Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuzhen Fan
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510370, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Weiwei Chen
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510370, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zecheng Yu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510370, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinjie Chen
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510370, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Chunying Zheng
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510370, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Mingbang Wang
- Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Xiaodong Luo
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510370, China.
| |
Collapse
|
5
|
Espíndola LCP, Picão RC, Mançano SMCN, Martins do Souto R, Colombo APV. Prevalence and antimicrobial susceptibility of Gram-negative bacilli in subgingival biofilm associated with periodontal diseases. J Periodontol 2021; 93:69-79. [PMID: 33955542 DOI: 10.1002/jper.20-0829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND This cross-sectional study aimed to determine the prevalence and antimicrobial susceptibility of Gram-negative bacilli (GNB) isolated from subgingival biofilm of individuals with different periodontal conditions. METHODS Subgingival biofilm was obtained from 362 individuals with periodontal health (PH) (n = 83), gingivitis (n = 74), and periodontitis (n = 205), cultivated in broth and selective media. Isolated strains were identified by mass spectrometry. Antimicrobial susceptibility was determined by the Clinical and Laboratory Standards Institute disk diffusion guidelines. Production of extended-spectrum beta-lactamase (ESBL) and carbapenemases were evaluated by double disk synergy test and spectrophotometric detection of imipenem hydrolysis, respectively. ESBL and carbapenemase encoding genes were surveyed by Polymerase chain reaction (PCR). Differences among groups were examined by Chi-square, Kruskal-Wallis or Mann-Whitney tests. RESULTS GNB were isolated from 36.2% of all subgingival biofilm samples, with a significantly greater prevalence and species diversity (P < 0.001) in patients with periodontitis (45.9%) compared with individuals with PH (24.1%) and gingivitis (22.9%). Pseudomonas aeruginosa (27.5%), Enterobacter cloacae (16.8%), and Enterobacter asburiae (10.7%) were the most predominant species. Resistance/reduced sensitivity to at least 1 antimicrobial was detected in 60% of the strains, but only 4.6% were multidrug resistant. Serratia marcescens, E. cloacae, and Enterobacter kobei presented high rates of intrinsic resistance (>40%) to amoxicillin-clavulanate and first/second-generations of cephalosporins. One strain of Klebsiella pneumoniae isolated from periodontitis was resistant to imipenem, but no ESBL encoding genes or ESBL phenotype was detected. CONCLUSION High prevalence and diversity of GNB, with low susceptibility to β-lactams are observed in the subgingival microbiota associated with periodontitis.
Collapse
Affiliation(s)
- Laís Christina Pontes Espíndola
- School of Dentistry, Department of Clinics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Cristina Picão
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Renata Martins do Souto
- Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Vieira Colombo
- School of Dentistry, Department of Clinics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Microbiology, Department of Medical Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Presence of non-oral bacteria in the oral cavity. Arch Microbiol 2021; 203:2747-2760. [PMID: 33791834 PMCID: PMC8012020 DOI: 10.1007/s00203-021-02300-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/20/2020] [Accepted: 03/22/2021] [Indexed: 12/30/2022]
Abstract
A homeostatic balance exists between the resident microbiota in the oral cavity and the host. Perturbations of the oral microbiota under particular conditions can contribute to the growth of non-oral pathogens that are hard to kill because of their higher resistance to antimicrobials, raising the probability of treatment failure and reinfection. The presence of these bacteria in the oral cavity has been proven to be associated with several oral diseases such as periodontitis, caries, and gingivitis, and systemic diseases of importance in clinical medicine such as cystic fibrosis, HIV, and rheumatoid arthritis. However, it is still controversial whether these species are merely transient members or unique to the oral cavity. Mutualistic and antagonistic interactions between the oral microbiota and non-oral pathogens can also occur, though the mechanisms used by these bacteria are not clear. Therefore, this review presents an overview of the current knowledge about the presence of non-oral bacteria in the oral cavity, their relationship with systemic and oral diseases, and their interactions with oral bacteria.
Collapse
|
7
|
Innovation by Computer-Aided Design/Computer-Aided Manufacturing Technology: A Look at Infection Prevention in Dental Settings. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6092018. [PMID: 31467901 PMCID: PMC6699473 DOI: 10.1155/2019/6092018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/22/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022]
Abstract
Recent data indicates limited awareness and compliance on infection prevention procedures by dental offices and by dental laboratories. Guidelines for infection prevention in dentistry have been published by Centres for Disease Control and Prevention since 2003; the section “IX-Special consideration” includes a subsection concerning the prevention in dental laboratories, but it has not been modernised in later versions to fit the needs of traditional and computer-aided technology. Traditional techniques required disinfecting items (impression, chewing waxes, and appliances) with well-suited products, which are also chosen for limiting impression changes or appliance deterioration. Effective procedures are available with difficulties. Some of these contain irritant or non-eco-friendly disinfectants. The transport of impression, to dental laboratories, is often delayed with limited precautions for limiting cross-infection. Gypsum casts are frequently contaminated mainly by bacteria and their antibiotic-resistant strains and even stored for long periods during dental implant supported restoration and orthodontic therapy, becoming a hidden source of infection. Nowadays, computer-aided design/computer-aided manufacturing technology seems to be an interesting way to promote both business and safety, being more comfortable for patients and more accurate than traditional technology. A further advantage is easier infection prevention since, for the most part, mainly digital impression and casts are not a source of cross-infection and the transport of contaminated items is reduced and limited to try-in stages. Nevertheless, a peculiar feature is that a digital electronic file is of course unalterable, but may be ruined by a computer virus. Additionally, the reconditioning of scanner tips is determinant for the optical characteristics and long term use of the scanner, but information for its reconditioning from producers is often limited. This study focuses on some critical points including (a) insufficient guidelines, (b) choice of proper procedure for scanner reconditioning, and (c) data protection in relation to patient privacy.
Collapse
|
8
|
Arirachakaran P, Luangworakhun S, Charalampakis G, Dahlén G. Non-oral, aerobic, Gram-negative bacilli in the oral cavity of Thai HIV-positive patients on Highly-active anti-retrovirus therapy medication. ACTA ACUST UNITED AC 2019; 10:e12387. [PMID: 30701696 PMCID: PMC6590175 DOI: 10.1111/jicd.12387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/26/2018] [Indexed: 12/19/2022]
Abstract
In the present study, we identified and evaluated the antibiotic susceptibility of 96 independent, aerobic, Gram-negative bacillus isolates from 255 Thai HIV-positive adults who were on Highly-active anti-retrovirus therapy (HAART) medication. Another 46 isolates from HIV non-HAART individuals, vertically transmitted HIV-positive individuals, and non-HIV controls were included for comparison. A total of 103 strains were tested for antibiotic susceptibility using disc diffusion for screening and E-test for minimal inhibitory concentration determination, with special attention on extended-spectrum beta-lactamase (ESBL) isolates. Pseudomonas aeruginosa, Pseudomonas luteola, Burkholderia cepacia, Aeromonas hydrophila, Klebsiella, and Enterobacter species were the most common bacteria. All strains were resistant against penicillin, amoxicillin, clindamycin, and metronidazole. No ESBL isolates were found.
Collapse
Affiliation(s)
- Pratanporn Arirachakaran
- Department of Oral Medicine, Faculty of Dentistry, Chulalongkorn University and Dental Center, Bangkok Hospital, Bangkok, Thailand
| | - Sureeat Luangworakhun
- Oral Research Center, Faculty of Dentistry, Chulalongkorn University, Chulalongkorn, Thailand
| | - Georgios Charalampakis
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar Dahlén
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|