1
|
Lovyagina E, Luneva O, Loktyushkin A, Semin B. Light increases resistance of thylakoid membranes to thermal inactivation. JOURNAL OF PLANT RESEARCH 2024; 137:1189-1200. [PMID: 39356383 DOI: 10.1007/s10265-024-01584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
In the region of slightly acidic pH (рН 5.7), the manganese cluster in oxygen-evolving complex of photosystem II (PSII) is more resistant to exogenous reductants. The effect of such pH on the heat inactivation efficiency of the electron transport chain (O2 evolution and 2,6-dichlorophenolindophenol reduction) in PSII membranes and thylakoid membranes was investigated. Under thylakoid membranes illumination accompanied by lumen acidification, their resistance to heat inactivation increases. In the presence of protonophores, the rate of heat inactivation increases, which seems to be associated not with the protonophore mechanism, but with structural and/or functional changes in membranes. In PSII membrane preparations, the efficiency of the oxygen evolution inhibition at pH 5.7 is also lower than at pH 6.5. The role of reactive oxygen species in thermal inactivation of photosynthetic membranes was investigated using a lipophilic cyclic hydroxylamine ESR spin probe.
Collapse
Affiliation(s)
- Elena Lovyagina
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Oksana Luneva
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Aleksey Loktyushkin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Boris Semin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
2
|
Tryfon P, Sperdouli I, Moustaka J, Adamakis IDS, Giannousi K, Dendrinou-Samara C, Moustakas M. Hormetic Response of Photosystem II Function Induced by Nontoxic Calcium Hydroxide Nanoparticles. Int J Mol Sci 2024; 25:8350. [PMID: 39125918 PMCID: PMC11312163 DOI: 10.3390/ijms25158350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
In recent years, inorganic nanoparticles, including calcium hydroxide nanoparticles [Ca Ca(OH)2 NPs], have attracted significant interest for their ability to impact plant photosynthesis and boost agricultural productivity. In this study, the effects of 15 and 30 mg L-1 oleylamine-coated calcium hydroxide nanoparticles [Ca(OH)2@OAm NPs] on photosystem II (PSII) photochemistry were investigated on tomato plants at their growth irradiance (GI) (580 μmol photons m-2 s-1) and at high irradiance (HI) (1000 μmol photons m-2 s-1). Ca(OH)2@OAm NPs synthesized via a microwave-assisted method revealed a crystallite size of 25 nm with 34% w/w of oleylamine coater, a hydrodynamic size of 145 nm, and a ζ-potential of 4 mV. Compared with the control plants (sprayed with distilled water), PSII efficiency in tomato plants sprayed with Ca(OH)2@OAm NPs declined as soon as 90 min after the spray, accompanied by a higher excess excitation energy at PSII. Nevertheless, after 72 h, the effective quantum yield of PSII electron transport (ΦPSII) in tomato plants sprayed with Ca(OH)2@OAm NPs enhanced due to both an increase in the fraction of open PSII reaction centers (qp) and to the enhancement in the excitation capture efficiency (Fv'/Fm') of these centers. However, the decrease at the same time in non-photochemical quenching (NPQ) resulted in an increased generation of reactive oxygen species (ROS). It can be concluded that Ca(OH)2@OAm NPs, by effectively regulating the non-photochemical quenching (NPQ) mechanism, enhanced the electron transport rate (ETR) and decreased the excess excitation energy in tomato leaves. The delay in the enhancement of PSII photochemistry by the calcium hydroxide NPs was less at the GI than at the HI. The enhancement of PSII function by calcium hydroxide NPs is suggested to be triggered by the NPQ mechanism that intensifies ROS generation, which is considered to be beneficial. Calcium hydroxide nanoparticles, in less than 72 h, activated a ROS regulatory network of light energy partitioning signaling that enhanced PSII function. Therefore, synthesized Ca(OH)2@OAm NPs could potentially be used as photosynthetic biostimulants to enhance crop yields, pending further testing on other plant species.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.T.); (K.G.); (C.D.-S.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, 57001 Thessaloniki, Greece
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | | | - Kleoniki Giannousi
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.T.); (K.G.); (C.D.-S.)
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.T.); (K.G.); (C.D.-S.)
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
3
|
Yan L, Liu S, Li R, Li Z, Piao J, Zhou R. Calcium enhanced the resistance against Phoma arachidicola by improving cell membrane stability and regulating reactive oxygen species metabolism in peanut. BMC PLANT BIOLOGY 2024; 24:501. [PMID: 38840062 PMCID: PMC11151617 DOI: 10.1186/s12870-024-05222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Peanut (Arachis hypogaea), a vital oil and food crop globally, is susceptible to web blotch which is a significant foliar disease caused by Phoma arachidicola Marasas Pauer&Boerema leading to substantial yield losses in peanut production. Calcium treatment has been found to enhance plant resistance against pathogens. RESULTS This study investigates the impact of exogenous calcium on peanut resistance to web blotch and explores its mechanisms. Greenhouse experiments revealed that exogenous calcium treatment effectively enhanced resistance to peanut web blotch. Specifically, amino acid calcium and sugar alcohol calcium solutions demonstrated the best induced resistance effects, achieving reduction rates of 61.54% and 60% in Baisha1016, and 53.94% and 50% in Luhua11, respectively. All exogenous calcium treatments reduced malondialdehyde (MDA) and relative electrical conductivity (REC) levels in peanut leaves, mitigating pathogen-induced cell membrane damage. Exogenous calcium supplementation led to elevated hydrogen peroxide (H2O2) content and superoxide anion (O2∙-) production in peanut leaves, facilitating the accumulation of reactive oxygen species (ROS) crucial for plant defense responses. Amino acid calcium and sugar alcohol calcium treatments significantly boosted activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in peanut leaves. Activation of these antioxidant enzymes effectively scavenged excess ROS, maintaining ROS balance and mitigating cellular damage. CONCLUSIONS In summary, exogenous calcium treatment triggered ROS production, which was subsequently eliminated by the activation of antioxidant enzymes, thereby reducing cell membrane damage and inducing defense responses against peanut web blotch.
Collapse
Affiliation(s)
- Lanshuo Yan
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Sichao Liu
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ruoxin Li
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zibo Li
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jingzi Piao
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China.
| | - Rujun Zhou
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Wang Q, Zhang Y, Cui L, Meng J, Yang S, Li X, Wan S. Different roles of Ca 2+ and chitohexose in peanut ( Arachis Hypogaea) photosynthetic responses to PAMP-immunity. PeerJ 2024; 12:e16841. [PMID: 38361767 PMCID: PMC10868521 DOI: 10.7717/peerj.16841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024] Open
Abstract
Background During active infections, plants prevent further spread of pathogenic microorganisms by inducing the rapid programmed death of cells around the infection point. This phenomenon is called the hypersensitive response and is a common feature of plant immune responses. Plants recognize conserved structures of pathogenic microorganisms, called pathogen-associated molecular patterns (PAMPs), e.g., flagellin 22 (flg22) and chitohexose, which bind to receptors on plant cells to induce various immune-response pathways. Although abiotic stresses are known to alter photosynthesis, the different effects of flg22 and chitohexose, which are involved into PAMP-induced signaling, on photosynthesis needs further study. Methods In the present study, we assessed the role of PAMPs in peanut (Arachis hypogaea) photosynthesis, particularly, the interaction between PAMPs and Ca2+ signal transduction pathway. Results Both flg22 and chitohexose significantly promoted the expression of the pathogenesis-related genes PR-4 and PR-10, as did Ca2+. We found that Ca2+ is involved in downregulating the photosystem II (PSII) reaction center activity induced by the flg22 immune response, but the role of chitohexose is not obvious. Additionally, Ca2+ significantly reduced the non-photochemical energy dissipation in the flg22- and chitohexose-induced immune response. Conclusion These results indicated that flg22 and chitohexose can trigger peanut immune pathways through the Ca2+ signaling pathway, but they differ in their regulation of the activity of the PSII reaction center.
Collapse
Affiliation(s)
- Quan Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, China
| | - Ye Zhang
- HuangShan University, College of Life and Environment Sciences, Huangshan, China
| | - Li Cui
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, China
| | - Jingjing Meng
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, China
| | - Sha Yang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, China
| | - Xinguo Li
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Ji’nan, China
| | - Shubo Wan
- Shandong Academy of Agricultural Sciences, Ji’nan, China
| |
Collapse
|
5
|
Tang K, Liu D, Liu N, Zeng N, Wang J, Li L, Luo Z. The physio-biochemical characterization reflected different calcium utilization efficiency between the sensitive and tolerant peanut accessions under calcium deficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1250064. [PMID: 37670856 PMCID: PMC10475576 DOI: 10.3389/fpls.2023.1250064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023]
Abstract
Peanut yield in southern China is usually limited by calcium deficiency in soil. Most previous studies have found that small-seed varieties showed higher tolerance than large-seed varieties (e.g. Virginia type) under calcium deficiency, however, our preliminary research found that sensitive varieties also existed in small-seed counterparts. Few studies have been conducted to characterize low-calcium tolerance among small-seed germplasms with genetic diversity, and the differences in physiological characteristics between sensitive and tolerant varieties has not been reported yet. Thus, in order to better understand such differences, the current study firstly collected and characterized a diversity germplasm panel consisting of 50 small-seed peanut genotypes via a 2-year field trial, followed by the physiological characterization in sensitive (HN032) and tolerant (HN035) peanut genotypes under calcium deficiency. As a result, the adverse effects brought by calcium deficiency on calcium uptake and distribution in HN032 was much larger than HN035. In details, calcium uptake in the aboveground part (leaves and stems) was reduced by 16.17% and 33.66%, while in the underground part (roots and pods), it was reduced by 13.69% and 68.09% under calcium deficiency for HN035 and HN032, respectively; The calcium distribution rate in the pods of HN035 was 2.74 times higher than HN032. The utilization efficiency of calcium in the pods of HN035 was 1.68 and 1.37 times than that of HN032 under calcium deficiency and sufficiency, respectively. In addition, under calcium deficiency conditions, the activities of antioxidant enzymes SOD, POD, and CAT, as well as the MDA content, were significantly increased in the leaves of HN032, peanut yield was significantly reduced by 22.75%. However, there were no significant changes in the activities of antioxidant enzymes, MDA content, and peanut yield in HN035. Therefore, higher calcium absorption and utilization efficiency may be the key factors maintaining peanut yield in calcium-deficient conditions for tolerant genotypes. This study lays a solid foundation for selecting low-calcium tolerant varieties in future peanut breeding.
Collapse
Affiliation(s)
- Kang Tang
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan, China
| | - Dengwang Liu
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan, China
- Arid Land Crop Research Institute, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Peanut Engineering & Technology Research Center, Changsha, Hunan, China
| | - Na Liu
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan, China
| | - Ningbo Zeng
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan, China
- Arid Land Crop Research Institute, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Peanut Engineering & Technology Research Center, Changsha, Hunan, China
| | - Jianguo Wang
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Lin Li
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan, China
- Arid Land Crop Research Institute, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Peanut Engineering & Technology Research Center, Changsha, Hunan, China
| | - Zinan Luo
- College of Agriculture, Hunan Agricultural University, Changsha, Hunan, China
- Arid Land Crop Research Institute, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Peanut Engineering & Technology Research Center, Changsha, Hunan, China
| |
Collapse
|
6
|
Guo H, Dong Q, Li S, Cha X, Sun L, Duan H, Li S, Jin Y, Zhang M. Effects of exogenous calcium on growth, chlorophyll fluorescence characteristics and antioxidant system of Fraxinus malacophylla seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107860. [PMID: 37385031 DOI: 10.1016/j.plaphy.2023.107860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
Karst ecosystems are becoming increasingly problematic, and high calcium is one of the main characteristics of soils in rocky desertification areas. Chlorophyll fluorescence is one of the most important indicators of the extent to which plants are affected by their environment. There are few reports on the effects of changes in exogenous calcium levels on the chlorophyll fluorescence properties of Fraxinus malacophylla seedlings. In the present study, we investigated the growth, chlorophyll fluorescence properties and antioxidant system of Fraxinus malacophylla seedlings in response to exogenous calcium (as the concentrations of 0, 25, 50, 75 mmol L-1). The results showed that Ca2+ concentration (25-50 mmol L-1) treatment mainly promoted the growth, biomass accumulation, root activity, and chlorophyll synthesis and effect on chlorophyll fluorescence in Fraxinus malacophylla; the developed root system became a strong linking hub for calcium adaptation. In addition, the activities of the antioxidant enzymes peroxidase (POD) and catalase (CAT) are upregulated and play an important role in preventing excessive oxidative damage. OJIP test parameters changed significantly with the addition of exogenous calcium, and parameters related to each photosystem II (PSII) reaction centre, such as ABS/RC and DIo/RC, increased significantly in the OJIP test, with enhanced function of the PSII electron donor lateral oxygen evolution complex. In conclusion, the addition of exogenous calcium (25-50 mmol L-1) had an important protective effect on the photosynthetic mechanism of Fraxinus malacophylla, promoting photosynthesis, better growth and better adaptability.
Collapse
Affiliation(s)
- Huanxian Guo
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China; Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Qiong Dong
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China; Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan, 650224, China.
| | - Shimin Li
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China; Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Xiaofei Cha
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China; Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Lijuan Sun
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China; Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Huachao Duan
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China; Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Shuping Li
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China; Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Youfan Jin
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China; Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Mei Zhang
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China; Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, Yunnan, 650224, China
| |
Collapse
|
7
|
Xu Y, Ding H, Zhang G, Li Z, Guo Q, Feng H, Qin F, Dai L, Zhang Z. Green manure increases peanut production by shaping the rhizosphere bacterial community and regulating soil metabolites under continuous peanut production systems. BMC PLANT BIOLOGY 2023; 23:69. [PMID: 36726076 PMCID: PMC9890850 DOI: 10.1186/s12870-023-04079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Green manure (GM) is a crop commonly grown during fallow periods, which has been applied in agriculture as a strategy to regulate nutrient cycling, improve organic matter, and enhance soil microbial biodiversity, but to date, few studies have examined the effects of GM treatments on rhizosphere soil bacterial community and soil metabolites from continuous cropping peanut field. RESULTS In this study, we found that the abundances of several functionally significant bacterial groups containing Actinobacteria, Acidobacteria, and genus Sphingomonas, which are associated with nitrogen cycling, were dramatically increased in GM-applied soils. Consistent with the bacterial community results, metabolomics analysis revealed a strong perturbation of nitrogen- or carbon-related metabolisms in GM-applied soils. The substantially up-regulated beneficial metabolites including sucrose, adenine, lysophosphatidylcholine (LPC), malic acid, and betaines in GM-applied soils may contribute to overcome continuous cropping obstacle. In contrast to peanut continuous cropping, planting winter wheat and oilseed rape in winter fallow period under continuous spring peanut production systems evidently improved the soil quality, concomitantly with raised peanut pod yield by 32.93% and 25.20%, in the 2020 season, respectively. CONCLUSIONS GMs application is an effective strategy to overcome continuous cropping obstacle under continuous peanut production systems by improving nutrient cycling, soil metabolites, and rhizobacterial properties.
Collapse
Affiliation(s)
- Yang Xu
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Hong Ding
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Guanchu Zhang
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Zelun Li
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Qing Guo
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Hao Feng
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Feifei Qin
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Liangxiang Dai
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China.
| | - Zhimeng Zhang
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China.
| |
Collapse
|
8
|
Qiu G, Han Z, Wang Q, Wang T, Sun Z, Yu Y, Han X, Yu H. Toxicity effects of nanoplastics on soybean (Glycine max L.): Mechanisms and transcriptomic analysis. CHEMOSPHERE 2023; 313:137571. [PMID: 36535503 DOI: 10.1016/j.chemosphere.2022.137571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Microplastic (MP) pollution has become a major concern in recent years. In agricultural production, MPs can not only affect the growth of crops but also affect yield. Compared with micron-sized MPs, nanoplastics (NPs) may be more harmful to plants. However, the effects of NPs on plant growth and development have attracted relatively little attention. As such, research has currently plateaued at the level of morphology and physiology, and the molecular mechanisms are still unclear. In this study, soybeans (Glycine max L.) were treated with polystyrene nanoplastics (PS-NPs) to observe phenotypic changes and measure the effects of PS-NPs on diverse aspects of soybeans. Compared to the control group, the soybean stem and root lengths were inhibited by 11.78% and 12.58%, respectively. The reactive oxygen species content and the antioxidant enzyme activities changed significantly (p < 0.05). The accumulation of manganese (Mn) and magnesium (Mg) in the roots revealed that root transmembrane transport was affected by PS-NPs stress. The content of salicylic acid 2-O-β-glucoside was inhibited whereas the accumulation of l-tryptophan, the precursor of auxin synthesis, was significantly increased (p < 0.05) in leaves. Transcriptomic analysis showed that PS-NPs could affect soybean DNA repair, membrane protein transport, and hormone synthesis and response. This study revealed the toxicity of NPs to soybeans and that NPs affected a variety of biological processes through transcriptome and hormone metabolome analysis, which provides a theoretical basis to further study the molecular mechanism of the effects on plants.
Collapse
Affiliation(s)
- Guankai Qiu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Zhongmin Han
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Quanying Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Tianye Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Zhenghao Sun
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xuerong Han
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
9
|
Roles of Calcium Signaling in Gene Expression and Photosynthetic Acclimatization of Solanum lycopersicum Micro-Tom (MT) after Mechanical Damage. Int J Mol Sci 2022; 23:ijms232113571. [PMID: 36362362 PMCID: PMC9655782 DOI: 10.3390/ijms232113571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
A momentary increase in cytoplasmic Ca2+ generates an oscillation responsible for the activation of proteins, such as calmodulin and kinases, which interact with reactive oxygen species (ROS) for the transmission of a stress signal. This study investigated the influence of variations in calcium concentrations on plant defense signaling and photosynthetic acclimatization after mechanical damage. Solanum lycopersicum Micro-Tom was grown with 0, 2 and 4 mM Ca2+, with and without mechanical damage. The expression of stress genes was evaluated, along with levels of antioxidant enzymes, hydrogen peroxide, lipid peroxidation, histochemistry, photosynthesis and dry mass of organs. The ROS production generated by mechanical damage was further enhanced by calcium-free conditions due to the inactivation of the oxygen evolution complex, contributing to an increase in reactive species. The results indicated that ROS affected mechanical damage signaling because calcium-free plants exhibited high levels of H2O2 and enhanced expression of kinase and RBOH1 genes, necessary conditions for an efficient response to stress. We conclude that the plants without calcium supply recognized mechanical damage but did not survive. The highest expression of the RBOH1 gene and the accumulation of H2O2 in these plants signaled cell death. Plants grown in the presence of calcium showed higher expression of SlCaM2 and control of H2O2 concentration, thus overcoming the stress caused by mechanical damage, with photosynthetic acclimatization and without damage to dry mass production.
Collapse
|
10
|
Lian H, Qin C, Zhao Q, Begum N, Zhang S. Exogenous calcium promotes growth of adzuki bean (Vigna angularis Willd.) seedlings under nitrogen limitation through the regulation of nitrogen metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:90-100. [PMID: 36108356 DOI: 10.1016/j.plaphy.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Plants exhibit lower nitrogen use efficiency (NUE) under N-limitation conditions. Although the function of calcium (Ca) has been widely studied in plants, it remains to be explored whether regulation of nitrate uptake and reduction is needed. A hydroponics experiment on adzuki beans (Vigna angularis Willd.) was used as a test material to determine the interactions between Ca and three levels of nitrogen supply. The height of the plant, the leaf area per plant, the biomass of the plant, the morphology of the roots, the hydraulic conductivity of the roots, the level of gas exchange, and the level of N metabolism of the adzuki beans were evaluated. Furthermore, RT-qPCR was conducted to explore the expression of genes related to nitrate transporter responses to Ca under N-limitation stress conditions. The rate of accumulation of N in plant tissue increased with the application of Ca. However, plant biomass, photosynthetic parameters, and root activity peaked for Ca2+ supply under N-marginal conditions. Further investigation revealed that the activities of nitrate reductase and glutamine synthetase were relatively high. The transcription of the nitrate transporter (VaNRT1.1; VaNRT2.5) was up-regulated in the roots of the Ca-treated plants. Both N-marginal conditions and N deficiency inhibit N absorption and utilization. The favorable effects of Ca on seedling growth and N metabolism under N-marginal conditions were more significant than those under N-deficiency conditions. The supply of Ca2+ is optimal, as it increases NUE by enhancing photosynthesis, N-metabolizing enzyme activities, and NO3 uptake and transport under N-marginal conditions.
Collapse
Affiliation(s)
- Huida Lian
- Department of Life Sciences, University of Changzhi, Changzhi, 046000, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Cheng Qin
- Department of Life Sciences, University of Changzhi, Changzhi, 046000, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Qingsong Zhao
- Department of Life Sciences, University of Changzhi, Changzhi, 046000, China
| | - Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Suiqi Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China.
| |
Collapse
|
11
|
Li H, Huang S, Ren C, Weng X, Zhang S, Liu L, Pei J. Optimal exogenous calcium alleviates the damage of Snow-melting agent to Salix matsudana seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:928092. [PMID: 36247589 PMCID: PMC9554415 DOI: 10.3389/fpls.2022.928092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
As the main component of snowmelt agents, NaCl is widely used in northern winters and significantly impacts the expected growth of garden plants in north China. Salix matsudana is also faced with salt stress caused by snowmelt, which seriously affects its development as the main tree species in the northern landscape. However, how exogenous calcium alleviates salt stress in Salix matsudana is not yet clear. In this study, the indicators of growth indices, photosynthetic characteristics and stress resistance were measured by hydroponic assays in combination with three NaCl conditions (0, 50 and 200 mmol·L-1) and five calcium concentrations (0, 2.5, 5, 10 and 20 mmol·L-1). The study's results indicated that the application of exogenous calcium remarkably promoted the growth of Salix matsudana seedlings under NaCl stress. When the exogenous calcium concentration was 10 mmol·L-1, the plant height and basal diameter of Salix matsudana seedlings increased significantly, and the biomass of all parts reached the maximum (P< 0.05). Exogenous calcium can substantially improve the photosynthesis of Salix matsudana seedlings under salt stress. The photosynthetic parameters, photosynthetic pigment content and photosynthetic product synthesis of Salix matsudana seedlings were significantly increased at an exogenous calcium concentration of 10 mmol·L-1, and the photosynthetic level of Salix matsudana seedlings reached the highest value. The chlorophyll fluorescence parameters (F v /F m, F v /F 0) of Salix matsudana seedlings were significantly decreased under different concentrations of NaCl stress. The maximum photochemical efficiency (F v /F m) and potential photochemical efficiency (F v /F 0) of Salix matsudana seedlings peaked when the exogenous calcium concentration was 10 mmol·L-1, which was significantly higher than that of the other treatments (P< 0.05). The water use efficiency of Salix matsudana was affected considerably by NaCl stress. The WUE and iWUE peak values of Salix matsudana were significantly higher than those of other calcium concentrations at 10 mmol·L-1 (P< 0.05). Exogenous calcium can increase the activities of CAT, SOD and POD enzymes in Salix matsudana seedlings under different NaCl concentrations. Under NaCl stress, adding exogenous calcium promoted the survival rate and growth of Salix matsudana seedlings. In conclusion, the optimum exogenous calcium concentration for Salix matsudana seedlings was 10 mmol·L-1. High or low concentrations of exogenous calcium did not achieve the best results in alleviating salt stress in Salix matsudana.
Collapse
Affiliation(s)
- Hui Li
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Changtu, China
| | - Shenglan Huang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Changtu, China
| | - Chengshuai Ren
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Changtu, China
| | - Xiaohang Weng
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Changtu, China
| | - Songzhu Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Changtu, China
| | - Liying Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Changtu, China
| | - Jiubo Pei
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
12
|
Calcium in Photosynthetic Restoration and Growth of Annona emarginata after Mechanical Damage. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Calcium, an essential element with structural function in the cell wall and plasma membrane, in addition to being a secondary messenger, is responsible for the regulation of physiological processes in plant development and responses to biotic and abiotic stresses. This study investigated the effects of calcium variation on photosynthetic performance, growth, and enzymatic antioxidant defense system in A. emarginata subjected to mechanical damage. The experimental design was in 6 × 5 factorial randomized blocks. A. emarginata plants were submitted to the six treatments: plants grown in solution with 0 mM Ca2+ without mechanical damage, 0 mM Ca2+ with mechanical damage, 2 mM Ca2+ without mechanical damage, 2 mM Ca2+ with mechanical damage, 4 mM Ca2+ without mechanical damage, and 4 mM Ca2+ with mechanical damage, as well as five evaluation periods at 0, 15, 30, 60, and 90 days after mechanical damage. The fluorescence of chlorophyll a, gas exchange, total dry mass, quantitative growth, and lipid peroxidation was studied. It is concluded that the A. emarginata plants showed better performance in restoration after mechanical damage in the presence of Ca2+ and was more sensitive in the absence of the mineral. Cultivation of the species with 2 mM Ca2+ in complete nutrient solution was sufficient to guarantee the efficiency of the enzymatic antioxidant defense system, and photosynthetic restoration of plants subjected to mechanical damage.
Collapse
|
13
|
Meng DY, Yang S, Xing JY, Ma NN, Wang BZ, Qiu FT, Guo F, Meng J, Zhang JL, Wan SB, Li XG. Peanut (Arachis hypogaea L.) S-adenosylmethionine decarboxylase confers transgenic tobacco with elevated tolerance to salt stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:341-350. [PMID: 32808478 DOI: 10.1111/plb.13173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Polyamines play an important role in stress response. In the pathway of polyamines synthesis, S-adenosylmethionine decarboxylase (SAMDC) is one of the key enzymes. In this study, a full length cDNA of SAMDC (AhSAMDC) was isolated from peanut (Arachis hypogaea L.). Phylogenetic analysis revealed high sequence similarity between AhSAMDC and SAMDC from other plants. In peanut seedlings exposed to sodium chloride (NaCl), the transcript level of AhSAMDC in roots was the highest at 24 h that decreased sharply at 72 and 96 h after 150 mM NaCl treatment. However, the expression of AhSAMDC in peanut leaves was significantly inhibited, and the transcript levels in leaves were not different compared with control These results implied the tissue-specific and time-specific expression of AhSAMDC. The physiological effects and functional mechanism of AhSAMDC were further evaluated by overexpressing AhSAMDC in tobaccos. The transgenic tobacco lines exhibited higher germination rate and longer root length under salt stress. Reduced membrane damage, higher antioxidant enzyme activity, and higher proline content were also observed in the transgenic tobacco seedlings. What's more, AhSAMDC also led to higher contents of spermidine and spermine, which can help to scavenge reactive oxygen species. Together, this study suggests that AhSAMDC enhances plant resistance to salt stress by improving polyamine content and alleviating membrane damage.
Collapse
Affiliation(s)
- D-Y Meng
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, China
| | - S Yang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, China
| | - J-Y Xing
- College of Life Science, Linyi University, Linyi, China
| | - N-N Ma
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Shandong, China
| | - B-Z Wang
- College of Life Science, Linyi University, Linyi, China
| | - F-T Qiu
- College of Life Science, Linyi University, Linyi, China
| | - F Guo
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, China
| | - J Meng
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, China
| | - J-L Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, China
| | - S-B Wan
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Ji'nan, China
| | - X-G Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, China
| |
Collapse
|
14
|
Parthenium hysterophorus steps up Ca-regulatory pathway in defence against highlight intensities. Sci Rep 2020; 10:8934. [PMID: 32488180 PMCID: PMC7265497 DOI: 10.1038/s41598-020-65721-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/04/2020] [Indexed: 12/21/2022] Open
Abstract
Parthenium hysterophorus exhibits tolerance to a great extent against abiotic stresses including high light intensities. In this study, P. hysterophorus was subjected to three different light intensities viz. control (CL, 250 µmol photons m-2 s-1), moderately high (ML, 500 µmol photons m-2 s-1) and high (HL, 1000 µmol photons m-2 s-1) for assessment of biochemical and physiological responses at 3 and 5 days after treatment (DAT). Proteomic responses were also observed at 5 DAT. Level of oxidative stress marker, abundance of H2O2 and O2- was highest in leaves exposed to HL followed by ML treatment. Biomass accumulation, photosynthetic parameters, chloroplast and mitochondrial integrity were also affected by both ML and HL treatments. Differential protein expression data showed modulation of thirty-eight proteins in ML and HL intensities. P. hysterophorus exhibited good ability to survive in ML then HL treatment as demonstrated by enhancement of the antioxidant system and photosynthesis. Furthermore, P. hysterophorus mobilized some key proteins related to calcium signaling, which in turn coordinate physiological homeostasis under stress. Proline and total soluble sugar content were high under stress; however, results of simulated experiment of our study indicate such accumulation of osmolytes may inhibit photon-availability to chloroplast. These results clarify our understanding of the mechanisms underlying the light stress tolerance of P. hysterophorus.
Collapse
|
15
|
Zeng J, Li X, Wang X, Zhang K, Wang Y, Kang H, Chen G, Lan T, Zhang Z, Yuan S, Wang C, Zhou Y. Cadmium and lead mixtures are less toxic to the Chinese medicinal plant Ligusticum chuanxiong Hort. Than either metal alone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110342. [PMID: 32109585 DOI: 10.1016/j.ecoenv.2020.110342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Agricultural production of Ligusticum chuanxiong Hort. is often affected by heavy metal pollution in soil, especially mixtures of cadmium (Cd) and lead (Pb). We assessed metal-induced phytotoxicity in L. chuanxiong by exposing the plants to soil treated with Cd, Pb, or Cd/Pb mixtures. A combined Cd/Pb treatment alleviated the inhibition in plant growth, photosynthesis, and secondary metabolite generation seen in single-metal exposures in three of the four combinations. Most combined Cd/Pb treatments resulted in preferential uptake of magnesium, copper, and nitrogen in underground plant parts and accumulation of phosphorus and calcium in aboveground plant parts, thereby leading to improvements in photosynthetic potential. Compared with single-metal exposures, combined Cd/Pb treatment significantly decreased the contents of Cd by 16.67%-40.12% and Pb by 10.68%-21.70% in the plant, respectively. At the subcellular level, the Pb presence increased the Cd percentage associated with cell wall from 64.79% to 67.93% in rhizomes and from 32.76% to 45.32% in leaves, while Cd reduced Pb contents by 9.36%-46.39% in the subcellular fractions. A combined Cd/Pb treatment decreased the contents of water- and ethanol-extractable metal forms and increased the contents of acetic acid- and hydrochloric acid-extractable forms. The lower toxic effects of the Cd/Pb mixture in L. chuanxiong were associated with photosynthetic potential, subcellular distribution, the chemical forms of Cd and Pb, and synthesis of secondary metabolites. These findings are useful for plant production strategies in soils contaminated by heavy metals.
Collapse
Affiliation(s)
- Jian Zeng
- College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Institute of Natural Resources and Geographic Information Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaoyuan Li
- College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangxiang Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kehao Zhang
- College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangdeng Chen
- College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Institute of Natural Resources and Geographic Information Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Lan
- College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Institute of Natural Resources and Geographic Information Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongwei Zhang
- College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Institute of Natural Resources and Geographic Information Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shu Yuan
- College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Institute of Natural Resources and Geographic Information Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changquan Wang
- College of Resource Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
16
|
Cui L, Guo F, Zhang J, Yang S, Meng J, Geng Y, Li X, Wan S. Synergy of arbuscular mycorrhizal symbiosis and exogenous Ca 2+ benefits peanut (Arachis hypogaea L.) growth through the shared hormone and flavonoid pathway. Sci Rep 2019; 9:16281. [PMID: 31700111 PMCID: PMC6838158 DOI: 10.1038/s41598-019-52630-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 10/14/2019] [Indexed: 12/23/2022] Open
Abstract
Peanut yield is severely affected by exchangeable calcium ion (Ca2+) deficiency in the soil. Arbuscular mycorrhizal (AM) symbiosis increases the absorption of Ca2+ for host plants. Here, we analyzed the physiological and transcriptional changes in the roots of Arachis hypogaea L. colonized by Funneliformis mosseae under Ca2+-deficient and -sufficient conditions. The results showed that exogenous Ca2+ application increased arbuscular mycorrhizal fungi (AMF) colonization, plant dry weight, and Ca content of AM plants. Simultaneously, transcriptome analysis showed that Ca2+ application further induced 74.5% of differentially expressed gene transcripts in roots of AM peanut seedlings. These genes are involved in AM symbiosis development, hormone biosynthesis and signal transduction, and carotenoid and flavonoid biosynthesis. The transcripts of AM-specific marker genes in AM plants with Ca2+ deprivation were further up-regulated by Ca2+ application. Gibberellic acid (GA3) and flavonoid contents were higher in roots of AM- and Ca2+-treated plants, but salicylic acid (SA) and carotenoid contents specifically increased in roots of the AM plants. Thus, these results suggest that the synergy of AM symbiosis and Ca2+ improves plant growth due to the shared GA- and flavonoid-mediated pathway, whereas SA and carotenoid biosynthesis in peanut roots are specific to AM symbiosis.
Collapse
Affiliation(s)
- Li Cui
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Scientific Observing and Experimental Station of Crop Cultivation in East China, Ministry of Agriculture, Jinan, 250100, China
| | - Feng Guo
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Scientific Observing and Experimental Station of Crop Cultivation in East China, Ministry of Agriculture, Jinan, 250100, China
| | - Jialei Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Scientific Observing and Experimental Station of Crop Cultivation in East China, Ministry of Agriculture, Jinan, 250100, China
| | - Sha Yang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Scientific Observing and Experimental Station of Crop Cultivation in East China, Ministry of Agriculture, Jinan, 250100, China
| | - JingJing Meng
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Scientific Observing and Experimental Station of Crop Cultivation in East China, Ministry of Agriculture, Jinan, 250100, China
| | - Yun Geng
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Scientific Observing and Experimental Station of Crop Cultivation in East China, Ministry of Agriculture, Jinan, 250100, China
| | - Xinguo Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
- Scientific Observing and Experimental Station of Crop Cultivation in East China, Ministry of Agriculture, Jinan, 250100, China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Shubo Wan
- Scientific Observing and Experimental Station of Crop Cultivation in East China, Ministry of Agriculture, Jinan, 250100, China.
- Shandong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement and Ecological Physiology of Shandong Province, Jinan, 250100, China.
| |
Collapse
|
17
|
Tiwari A, Singh P, Riyazat Khadim S, Singh AK, Singh U, Singh P, Asthana RK. Role of Ca 2+ as protectant under heat stress by regulation of photosynthesis and membrane saturation in Anabaena PCC 7120. PROTOPLASMA 2019; 256:681-691. [PMID: 30456698 DOI: 10.1007/s00709-018-1328-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/12/2018] [Indexed: 05/08/2023]
Abstract
The present study was aimed at understanding the effects of heat stress on selected physiological and biochemical parameters of a model cyanobacterium, Anabaena PCC 7120 in addition to amelioration strategy using exogenous Ca2+. A comparison of the cells exposed to heat stress (0-24 h) in the presence or absence of Ca2+ clearly showed reduction in colony-forming ability and increase in reactive oxygen species (ROS) leading to loss in the viability of cells of Ca2+-deficient cultures. There was higher level of saturation in membrane lipids of the cells supplemented with Ca2+ along with higher accumulation of proline. Similarly, higher quantum yield (7.8-fold) in Ca2+-supplemented cultures indicated role of Ca2+ in regulation of photosynthesis. Relative electron transport rate (rETR) decreased in both the sets with the difference in the rate of decrease (slow) in Ca2+-supplemented cultures. The Ca2+-supplemented sets also maintained high levels of open reaction centers of PS II in comparison to Ca2+-deprived cells. Increase in transcripts of both subunits ((rbcL and rbcS) of RubisCO from Ca2+-supplemented Anabaena cultures pointed out the role of Ca2+ in sustenance of photosynthesis of cells via CO2 fixation, thus, playing an important role in maintaining metabolic status of the heat-stressed cyanobacterium.
Collapse
Affiliation(s)
- Anupam Tiwari
- Lovely Professional University, Phagwara, Jalandhar, India
| | - Prabhakar Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sk Riyazat Khadim
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ankit Kumar Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Urmilesh Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ravi Kumar Asthana
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
18
|
The Significance of Calcium in Photosynthesis. Int J Mol Sci 2019; 20:ijms20061353. [PMID: 30889814 PMCID: PMC6471148 DOI: 10.3390/ijms20061353] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/23/2019] [Accepted: 03/01/2019] [Indexed: 01/12/2023] Open
Abstract
As a secondary messenger, calcium participates in various physiological and biochemical reactions in plants. Photosynthesis is the most extensive biosynthesis process on Earth. To date, researchers have found that some chloroplast proteins have Ca2+-binding sites, and the structure and function of some of these proteins have been discussed in detail. Although the roles of Ca2+ signal transduction related to photosynthesis have been discussed, the relationship between calcium and photosynthesis is seldom systematically summarized. In this review, we provide an overview of current knowledge of calcium’s role in photosynthesis.
Collapse
|
19
|
Moustakas M, Bayçu G, Gevrek N, Moustaka J, Csatári I, Rognes SE. Spatiotemporal heterogeneity of photosystem II function during acclimation to zinc exposure and mineral nutrition changes in the hyperaccumulator Noccaea caerulescens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6613-6624. [PMID: 30623337 DOI: 10.1007/s11356-019-04126-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/02/2019] [Indexed: 05/20/2023]
Abstract
We investigated changes in mineral nutrient uptake and translocation and photosystem II (PSII) functionality, in the hyperaccumulator Noccaea caerulescens after exposure to 800 μM Zn in hydroponic culture. Exposure to Zn inhibited the uptake of K, Mn, Cu, Ca, and Mg, while the uptake of Fe and Zn enhanced. Yet, Ca and Mg aboveground tissue concentrations remain unchanged while Cu increased significantly. In the present study, we provide new data on the mechanism of N. caerulescens acclimation to Zn exposure by elucidating the process of photosynthetic acclimation. A spatial heterogeneity in PSII functionality in N. caerulescens leaves exposed to Zn for 3 days was detected, while a threshold time of 4 days was needed for the activation of Zn detoxification mechanism(s) to decrease Zn toxicity and for the stomatal closure to decrease Zn supply at the severely affected leaf area. After 10-day exposure to Zn, the allocation of absorbed light energy in PSII under low light did not differ compared to control ones, while under high light, the quantum yield of non-regulated energy loss in PSII (ΦNO) was lower than the control, due to an efficient photoprotective mechanism. The chlorophyll fluorescence images of non-photochemical quenching (NPQ) and photochemical quenching (qp) clearly showed spatial and temporal heterogeneity in N. caerulescens exposure to Zn and provided further information on the particular leaf area that was most sensitive to heavy metal stress. We propose the use of chlorophyll fluorescence imaging, and in particular the redox state of the plastoquinone (PQ) pool that was found to display the highest spatiotemporal heterogeneity, as a sensitive bio-indicator to measure the environmental pressure by heavy metals on plants.
Collapse
Affiliation(s)
- Michael Moustakas
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey.
- Department of Botany, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Gülriz Bayçu
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Nurbir Gevrek
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - István Csatári
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Sven Erik Rognes
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| |
Collapse
|
20
|
Lenzoni G, Knight MR. Increases in Absolute Temperature Stimulate Free Calcium Concentration Elevations in the Chloroplast. PLANT & CELL PHYSIOLOGY 2019; 60:538-548. [PMID: 30517735 DOI: 10.1093/pcp/pcy227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/21/2018] [Indexed: 05/18/2023]
Abstract
Plants need to sense increases in temperature to be able to adapt their physiology and development to survive; however, the mechanisms of heat perception are currently relatively poorly understood. Here we demonstrate that in response to elevated temperature, the free calcium concentration of the stroma of chloroplasts increases. This response is specific to the chloroplast, as no corresponding increase in calcium is seen in the cytosol. The chloroplast calcium response is dose dependent above a threshold. The magnitude of this calcium response is dependent upon absolute temperature, not the rate of heating. This response is dynamic: repeated stimulation leads to rapid attenuation of the response, which can be overcome by sensitization at a higher temperature. More long-term acclimation to different temperatures resets the basal sensitivity of the system, such that plants acclimated to lower temperatures are more sensitive than those acclimated to higher temperatures. The heat-induced chloroplast calcium response was partially dependent upon the calcium-sensing receptor CAS which has been shown previously to regulate other chloroplast calcium signaling responses. Taken together, our data demonstrate the ability of chloroplasts to sense absolute high temperature and produce commensurately quantitative stromal calcium response, the magnitude of which is a function of both current temperature and stress history.
Collapse
Affiliation(s)
- Gioia Lenzoni
- Department of Biosciences, Durham University, South Road, Durham, UK
| | - Marc R Knight
- Department of Biosciences, Durham University, South Road, Durham, UK
| |
Collapse
|
21
|
Hu L, Bi A, Hu Z, Amombo E, Li H, Fu J. Antioxidant Metabolism, Photosystem II, and Fatty Acid Composition of Two Tall Fescue Genotypes With Different Heat Tolerance Under High Temperature Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:1242. [PMID: 30186304 PMCID: PMC6113381 DOI: 10.3389/fpls.2018.01242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/06/2018] [Indexed: 05/25/2023]
Abstract
Tall fescue (Festuca arundinacea Schreb.) is a typical and widely used cool-season turf grass. High temperature is a key factor that limits its utility. The objectives of this study were to investigate the behaviors of fatty acid composition and its gene expression patterns in heat-resistant genotype "TF71" and heat-sensitive genotype "TF133" exposed to heat stress (40/35°C, 14/10 h), and to broaden our comprehension about the relationship between heat tolerance and fatty acid function. The result showed that heat stress increased the malondialdehyde (MDA) content and relative electrolyte leakage (EL), but decreased the level of chlorophyll and the activity of superoxide dismutase (SOD) and peroxidase (POD) when compared to the controls, to a greater extent in "TF133." This result proved that "TF71" had superior high-temperature resistance. Furthermore, comparing the changes in the composition of fatty acid and the expression of the genes involved in its synthesis between the two different genotypes under heat stress, we found that heat stress increased the degree of unsaturation, UFA/SFA, and double bond index (DBI) in "TF71." Moreover, quantitative RT-PCR revealed that heat stress altered the expression of the genes involved in fatty acid synthesis, including ACAC, FabD, FabF, FabH, FabI, and FatA. According to these findings, we can speculate that increasing the unsaturation degree of fatty acid or controlling the equilibrium ratio of UFA/SFA might be closely associated with the improving of the heat resistance in tall fescue.
Collapse
Affiliation(s)
- Lianlian Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aoyue Bi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhengrong Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiying Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, China
- The Institute for Advanced Study in Coastal Ecology, Ludong University, Yantai, China
| |
Collapse
|
22
|
Yang S, Li L, Zhang J, Geng Y, Guo F, Wang J, Meng J, Sui N, Wan S, Li X. Transcriptome and Differential Expression Profiling Analysis of the Mechanism of Ca 2+ Regulation in Peanut ( Arachis hypogaea) Pod Development. FRONTIERS IN PLANT SCIENCE 2017; 8:1609. [PMID: 29033956 PMCID: PMC5625282 DOI: 10.3389/fpls.2017.01609] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/04/2017] [Indexed: 05/23/2023]
Abstract
Calcium not only serves as a necessary nutrient for plant growth but also acts as a ubiquitous central hub in a large number of signaling pathways. Free Ca2+ deficiency in the soil may cause early embryo abortion, which eventually led to abnormal development of peanut pod during the harvest season. To understand the mechanisms of Ca2+ regulation in pod development, transcriptome analysis of peanut gynophores and pods was performed by comparing the treatments between free Ca2+ sufficiency and free Ca2+ deficiency using Illumina HiSeq™ 2000. 9,903,082,800 nt bases are generated totally. After assembly, the average length of 102,819 unigenes is 999 nt, N50 is 1,782 nt. RNA-seq based gene expression profilings showed a large number of genes at the transcriptional level changed significantly between the aerial pegs and underground swelling pods under free Ca2+ sufficienct or deficiency treatments, respectively. Genes encoding key members of Ca2+ signaling transduction pathway, enzymes for hormone metabolism, cell division and growth, transcriptional factor as well as embryo development were highlighted. This information provides useful information for our further study. The results of digital gene expression (DGE) indicated that exogenous calcium might contribute to the development of peanut pod through its signal transduction pathway, meanwhile, promote the normal transition of the gynophores to the reproductive development.
Collapse
Affiliation(s)
- Sha Yang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lin Li
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Jialei Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yun Geng
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Feng Guo
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianguo Wang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Jingjing Meng
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Na Sui
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Shubo Wan
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xinguo Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
23
|
Bayçu G, Gevrek-Kürüm N, Moustaka J, Csatári I, Rognes SE, Moustakas M. Cadmium-zinc accumulation and photosystem II responses of Noccaea caerulescens to Cd and Zn exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:2840-2850. [PMID: 27838905 DOI: 10.1007/s11356-016-8048-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 11/03/2016] [Indexed: 05/03/2023]
Abstract
A population of the metallophyte Noccaea (Thlaspi) caerulescens originating from a Zn-enriched area at Røros Copper Mine (Norway) was studied. N. caerulescens tolerance to accumulate Cd and Zn was evaluated in hydroponic experiments by chlorophyll fluorescence imaging analysis. In the field-collected N. caerulescens mother plants, Zn shoot concentrations were above Zn hyperaccumulation threshold while, in hydroponic experiments under 40-μM Cd exposure, shoot Cd concentrations were clearly above Cd hyperaccumulation threshold. Cadmium ions and, to a less extent, Zn were mainly retained in the roots. Exposure to Cd enhanced Zn translocation to the shoot, while decreased significant total Ca2+ uptake, suggesting that Cd uptake occurs through Ca2+ transporters. Nevertheless, it increased Ca2+ translocation to the leaf, possibly for photoprotection of photosystem II (PSII). Exposure to 800 μM Zn or 40 μM Cd resulted in increased Fe3+ uptake suggesting that in N. caerulescens, Cd uptake does not take place through the pathway of Fe3+ uptake and that conditions that lead to Cd and Zn accumulation in plants may also favor Fe accumulation. Despite the significant high toxicity levels of Zn and Cd in leaves, under Zn and Cd exposure, respectively, the allocation of absorbed light energy at PSII did not differ compared to controls. The results showed that N. caerulescens keep Cd and Zn concentrations in the mesophyll cells in non-toxic forms for PSII and that the increased Ca and Fe accumulation in leaves alleviates the toxicity effects. Chlorophyll fluorescence imaging revealed that PSII of N. caerulescens resisted better the phytotoxic effects of 20 times higher Zn than Cd exposure concentration. Overall, it is concluded that the use of chlorophyll fluorescence imaging constitutes a promising basis for investigating heavy metal tolerance of plants.
Collapse
Affiliation(s)
- Gülriz Bayçu
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Nurbir Gevrek-Kürüm
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
- Department of Biology, University of Crete, Voutes University Campus, 700 13, Heraklion, Crete, Greece
| | - István Csatári
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey
| | - Sven Erik Rognes
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Michael Moustakas
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Turkey.
- Department of Botany, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| |
Collapse
|
24
|
Erinle KO, Jiang Z, Ma B, Li J, Chen Y, Ur-Rehman K, Shahla A, Zhang Y. Exogenous calcium induces tolerance to atrazine stress in Pennisetum seedlings and promotes photosynthetic activity, antioxidant enzymes and psbA gene transcripts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:403-12. [PMID: 27391035 DOI: 10.1016/j.ecoenv.2016.06.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 05/25/2023]
Abstract
Calcium (Ca) has been reported to lessen oxidative damages in plants by upregulating the activities of antioxidant enzymes. However, atrazine mediated reactive oxygen species (ROS) reduction by Ca is limited. This study therefore investigated the effect of exogenously applied Ca on ROS, antioxidants activity and gene transcripts, the D1 protein (psbA gene), and chlorophyll contents in Pennisetum seedlings pre-treated with atrazine. Atrazine toxicity increased ROS production and enzyme activities (ascorbate peroxidase APX, peroxidase POD, Superoxide dismutase SOD, glutathione-S-transferase GST); but decreased antioxidants (APX, POD, and Cu/Zn SOD) and psbA gene transcripts. Atrazine also decreased the chlorophyll contents, but increased chlorophyll (a/b) ratio. Contrarily, Ca application to atrazine pre-treated seedlings lowered the harmful effects of atrazine by reducing ROS levels, but enhancing the accumulation of total chlorophyll contents. Ca-protected seedlings in the presence of atrazine manifested reduced APX and POD activity, whereas SOD and GST activity was further increased with Ca application. Antioxidant gene transcripts that were down-regulated by atrazine toxicity were up-regulated with the application of Ca. Calcium application also resulted in up-regulation of the D1 protein. In conclusion, ability of calcium to reverse atrazine-induced oxidative damage and calcium regulatory role on GST in Pennisetum was presented.
Collapse
Affiliation(s)
- Kehinde Olajide Erinle
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Bingbing Ma
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jinmei Li
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yukun Chen
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Khalil Ur-Rehman
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Andleeb Shahla
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
25
|
Tiwari A, Singh P, Asthana RK. Role of calcium in the mitigation of heat stress in the cyanobacterium Anabaena PCC 7120. JOURNAL OF PLANT PHYSIOLOGY 2016; 199:67-75. [PMID: 27302007 DOI: 10.1016/j.jplph.2016.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 05/09/2016] [Accepted: 05/18/2016] [Indexed: 05/08/2023]
Abstract
The effects of exogenously added CaCl2 (0.25mM) on photopigments, photosynthetic O2-evolution, antioxidative enzyme activity, membrane damage, expression of two heat shock genes (groEL and groES) and apoptotic features in Anabaena 7120 under heat stress (45°C) for up to 24h were investigated. Heat stress lowered the level of photopigments; however, Ca2+--supplemented cultures showed a low level reduction in Chl a but induced accumulation of carotenoids and phycocyanin under heat stress. Photosynthetic O2-evolving capacity was maintained at a higher level in cells from Ca2+-supplemented medium. Among the antioxidative enzymes, superoxide dismutase activity was unaffected by the presence or absence of Ca2+ in contrast to increases in catalase, ascorbate peroxidase and glutathione reductase activities in cells grown in Ca2+-supplemented medium. Lower levels of lipid peroxidation were recorded in Anabaena cells grown in Ca2+-supplemented medium in comparison to cells from Ca2+--deprived medium. Target cells grown in Ca2+-deprived medium developed apoptotic features in the early stages of heat shock, while Ca2+ application seemed to interfere with apoptosis because only a few cells showed such features after 24 h of heat exposure, indicating a role for Ca2+ in maintaining cell viability under heat stress. There was also continuous up regulation of two important heat shock genes (groEL and groES) in Ca2+-supplemented cultures, exposed to heat shock, again indicating a role for Ca2+ in stress management.
Collapse
Affiliation(s)
- Anupam Tiwari
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Priyanka Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Ravi Kumar Asthana
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|