1
|
Lan Y, Cong Q, Yu Q, Liu L, Cui X, Li X, Wang Q, Yang S, Yu H, Kong Y. Genome Sequencing of Three Pathogenic Fungi Provides Insights into the Evolution and Pathogenic Mechanisms of the Cobweb Disease on Cultivated Mushrooms. Foods 2024; 13:2779. [PMID: 39272544 PMCID: PMC11394773 DOI: 10.3390/foods13172779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Fungal diseases not only reduce the yield of edible mushrooms but also pose potential threats to the preservation and quality of harvested mushrooms. Cobweb disease, caused primarily by fungal pathogens from the Hypocreaceae family, is one of the most significant diseases affecting edible mushrooms. Deciphering the genomes of these pathogens will help unravel the molecular basis of their evolution and identify genes responsible for pathogenicity. Here, we present high-quality genome sequences of three cobweb disease fungi: Hypomyces aurantius Cb-Fv, Cladobotryum mycophilum CB-Ab, and Cladobotryum protrusum CB-Mi, isolated from Flammulina velutipes, Agaricus bisporus, and Morchella importuna, respectively. The assembled genomes of H. aurantius, C. mycophilum, and C. protrusum are 33.19 Mb, 39.83 Mb, and 38.10 Mb, respectively. This is the first report of the genome of H. aurantius. Phylogenetic analysis revealed that cobweb disease pathogens are closely related and diverged approximately 17.51 million years ago. CAZymes (mainly chitinases, glucan endo-1,3-beta-glucosidases, and secondary metabolite synthases), proteases, KP3 killer proteins, lipases, and hydrophobins were found to be conserved and strongly associated with pathogenicity, virulence, and adaptation in the three cobweb pathogens. This study provides insights into the genome structure, genome organization, and pathogenicity of these three cobweb disease fungi, which will be a valuable resource for comparative genomics studies of cobweb pathogens and will help control this disease, thereby enhancing mushroom quality.
Collapse
Affiliation(s)
- Yufei Lan
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Qianqian Cong
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Qingwei Yu
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Lin Liu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao Cui
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Xiumei Li
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Qiao Wang
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| | - Shuting Yang
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yi Kong
- Institute of Edible Fungi, Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
| |
Collapse
|
2
|
Jiang C, Miao G, Li J, Zhang Z, Li J, Zhu S, Zhang J, Zhou X. Identification and Characterization of Two Novel Extracellular β-Glucanases from Chaetomium globosum against Fusarium sporotrichioides. Appl Biochem Biotechnol 2024; 196:3199-3215. [PMID: 37642922 DOI: 10.1007/s12010-023-04698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Chaetomium globosum can inhibit the growth of fusarium by means of their extracellular proteins. Two novel β-glucanases, designated Cgglu17A and Cgglu16B, were separated from the supernatant of C. globosum W7 and verified to have the ability to hydrolyze cell walls of Fusarium sporotrichioides MLS-19. Cgglu17A (397 amino acids) was classified as glycoside hydrolase family 17 while Cgglu16B belongs to the family16 (284 amino acids). Recombinant protein Cgglu17A was successfully expressed in Escherichia coli, and the enzymes were purified by affinity chromatography. Maximum activity of Cgglu17A appeared at the pH 5.5 and temperature 50 °C, but Cgglu16B shows the maximum activity at the pH 5.0 and temperature 50 °C. Most of heavy metal ions had inhibition effect on the two enzymes, but Cgglu17A and Cgglu16B were respectively activated by Ba2+ and Mn2+. Cgglu17A exhibited high substrate specificity, almost only catalyzing the cleavage of β-1,3-glycosidic bond, in various polysaccharose, to liberate glucose. However, Cgglu16B showed high catalytic activities to both β-1,3-glycosidic and β-1,3-1,4-glycosidic bonds. Cgglu17A was an exo-glucanase, but Cgglu16B was an endo-glucanase based on hydrolytic properties assay. Both of two enzymes showed potential antifungal activity, and the synergistic effect was observed in the germination experiment of pathogenic fungus. In conclusion, Cgglu17A (exo-1,3-β-glucanase) and Cgglu16B (endo-1,3(4)-β-glucanase) were confirmed to play a key role in the process of C. globosum controlling fusarium and have potential application value on industry and agriculture for the first time.
Collapse
Affiliation(s)
- Cheng Jiang
- School of Biological Engineering, Huainan Normal University, Huainan, People's Republic of China.
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, People's Republic of China.
- School of Biological Engineering & Institute of Digital Ecology and Health, Huainan Normal University, Huainan, People's Republic of China.
| | - Guopeng Miao
- School of Biological Engineering, Huainan Normal University, Huainan, People's Republic of China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, People's Republic of China
- School of Biological Engineering & Institute of Digital Ecology and Health, Huainan Normal University, Huainan, People's Republic of China
| | - Jialu Li
- School of Biological Engineering, Huainan Normal University, Huainan, People's Republic of China
- Lanzhou Institute of Biological Products, Lanzhou, People's Republic of China
| | - Ziyu Zhang
- School of Biological Engineering, Huainan Normal University, Huainan, People's Republic of China
| | - Jiamin Li
- School of Biological Engineering, Huainan Normal University, Huainan, People's Republic of China
| | - Shuyan Zhu
- School of Biological Engineering, Huainan Normal University, Huainan, People's Republic of China
| | - Jinhu Zhang
- School of Biological Engineering, Huainan Normal University, Huainan, People's Republic of China
| | - Xingyu Zhou
- School of Biological Engineering, Huainan Normal University, Huainan, People's Republic of China
| |
Collapse
|
3
|
Fang S, Shang X, He Q, Li W, Song X, Zhang B, Guo W. A cell wall-localized β-1,3-glucanase promotes fiber cell elongation and secondary cell wall deposition. PLANT PHYSIOLOGY 2023; 194:106-123. [PMID: 37427813 DOI: 10.1093/plphys/kiad407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
β-1,3-glucanase functions in plant physiological and developmental processes. However, how β-1,3-glucanase participates in cell wall development remains largely unknown. Here, we answered this question by examining the role of GhGLU18, a β-1,3-glucanase, in cotton (Gossypium hirsutum) fibers, in which the content of β-1,3-glucan changes dynamically from 10% of the cell wall mass at the onset of secondary wall deposition to <1% at maturation. GhGLU18 was specifically expressed in cotton fiber with higher expression in late fiber elongation and secondary cell wall (SCW) synthesis stages. GhGLU18 largely localized to the cell wall and was able to hydrolyze β-1,3-glucan in vitro. Overexpression of GhGLU18 promoted polysaccharide accumulation, cell wall reconstruction, and cellulose synthesis, which led to increased fiber length and strength with thicker cell walls and shorter pitch of the fiber helix. However, GhGLU18-suppressed cotton resulted in opposite phenotypes. Additionally, GhGLU18 was directly activated by GhFSN1 (fiber SCW-related NAC1), a NAC transcription factor reported previously as the master regulator in SCW formation during fiber development. Our results demonstrate that cell wall-localized GhGLU18 promotes fiber elongation and SCW thickening by degrading callose and enhancing polysaccharide metabolism and cell wall synthesis.
Collapse
Affiliation(s)
- Shuai Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingfei He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Li Q, Yin Z, Tan W, Sun X, Cao H, Wang D. The resistance of the jujube (Ziziphus jujuba) to the devastating insect pest Apolygus lucorum (Hemiptera, Insecta) involves the jasmonic acid signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105597. [PMID: 37945226 DOI: 10.1016/j.pestbp.2023.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 11/12/2023]
Abstract
Apolygus lucorum (Hemiptera, Insecta), cosmopolitan true bug, is a major pest of the Chinese jujube (Ziziphus jujuba). To propose control measures of A. lucorum, we investigated the molecular mechanisms of resistance in two varieties of jujube (wild jujube and winter jujube) with different sensitivities to this pest. We monitored changes of two species of jujube in the transcriptome, jasmonic acid (JA) and salicylic acid (SA) content, and the expression of genes involved in signaling pathways. The preference of A. lucorum for jujube with exogenous SA and methyl jasmonate (MeJA) were also examined. The results showed that wild jujube leaves infested by A. lucorum showed stronger resistance and non-selectivity to A. lucorum than winter jujube. By comparing data from the A. lucorum infested plants with the control, A total of 438 and 796 differentially expressed genes (DEGs) were found in winter and wild jujube leaves, respectively. GO analysis revealed that biological process termed "plant-pathogen interactions", "plant hormone transduction" and "phenylpropanoid biosynthesis". Most of DEGs enriched in JA pathways were upregulated, while most DEGs of SA pathways were downregulated. A. lucorum increased the JA content but decreased the SA content in jujube. Consistently, the JA and SA contents in winter jujube were lower than those in wild jujube leaves. The key genes ZjFAD3, ZjLOX, ZjAOS, ZjAOC3 and ZjAOC4 involved in JA synthesis of jujube leaves were significantly up-regulated after A. lucorum infestation, especially the expression and up-regulation ratio of ZjFAD3, ZjLOX and ZjAOS in wild jujube were significantly higher than those in winter jujube. MeJA-treated jujube showed an obvious repellent effect on A. lucorum. Based on these findings, we conclude that A. lucorum infestation of jujube induced the JA pathway and suppressed the SA pathway. In jujube leaves the ZjFAD3, ZjLOX and ZjAOS played important roles in increasing of JA content in jujube leaves. Thus, JA played an important role in repelling and resisting against A. lucorum in jujube.
Collapse
Affiliation(s)
- Qingliang Li
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China
| | - Zujun Yin
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wei Tan
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Xia Sun
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China
| | - Hui Cao
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China
| | - Deya Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China
| |
Collapse
|
5
|
Pankaew C, Supdensong K, Tothong C, Roytrakul S, Phaonakrop N, Kongbangkerd A, Limmongkon A. Combining elicitor treatment of chitosan, methyl jasmonate, and cyclodextrin to induce the generation of immune response bioactive peptides in peanut hairy root culture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111670. [PMID: 36914116 DOI: 10.1016/j.plantsci.2023.111670] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/15/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The endogenous peptides from peanut hairy root culture were induced upon elicitor treatment with chitosan (CHT), methyl jasmonate (MeJA), and cyclodextrin (CD): CHT+MeJA+CD. The peptides secreted into the liquid culture medium play an important role in plant signaling and stress responses. By performing gene ontology (GO) analysis, a number of plant proteins involved in biotic and abiotic defense responses were identified, such as endochitinase, defensin, antifungal protein, cationic peroxidase and Bowman-Birk type protease inhibitor A-II. The bioactivity of 14 peptides synthesized from secretome analysis was determined. Peptide BBP1-4, derived from the diverse region of Bowman-Birk type protease inhibitor, displayed high antioxidant activity and mimicked the property of chitinase and β-1,3-glucanase enzymes. The antimicrobial activity against S. aureus, S. typhimurium, and E. coli was evidenced with different peptide concentrations. Additionally, peptide BBP1-4 has the potential to be a useful candidate for an immune response property, as it was found to increase the expression of some pathogenesis-related (PR) proteins and stilbene biosynthesis genes in peanut hairy root tissues. The findings indicate that secreted peptides may play a role in plant responses to both abiotic and biotic stresses. These peptides, which possess bioactive properties, could be considered as potential candidates for use in the pharmaceutical, agricultural, and food industries.
Collapse
Affiliation(s)
- Chanyanut Pankaew
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Kanitha Supdensong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Chonnikan Tothong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sittiruk Roytrakul
- Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Narumon Phaonakrop
- Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Anupan Kongbangkerd
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Apinun Limmongkon
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
6
|
Chavanke SN, Penna S, Dalvi SG. β-Glucan and its nanocomposites in sustainable agriculture and environment: an overview of mechanisms and applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80062-80087. [PMID: 35641741 DOI: 10.1007/s11356-022-20938-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/15/2022] [Indexed: 05/23/2023]
Abstract
β-Glucan is an eco-friendly, biodegradable, and economical biopolymer with important roles for acquiring adaptations to mitigate climate change in crop plants. β-Glucan plays a crucial role in the activation of functional plant innate immune system by triggering the downward signaling cascade/s, resulting in the accumulation of different pathogenesis-related proteins (PR-proteins), reactive oxygen species (ROS), antioxidant defense enzymes, Ca2+-influx as well as activation of mitogen-activated protein kinase (MAPK) pathway. Recent experimental studies have shown that β-glucan recognition is mediated by co-receptor LysMPRR (lysin motif pattern recognition receptor)-CERK1 (chitin elicitor receptor kinase 1), LYK4, and LYK5 (LysM-containing receptor-like kinase), as well as different receptor systems in plants that could be plant species-specific and/or age and/or tissue-dependent. Transgenic overexpression of β-glucanase, chitinase, and/or in combination with other PR-proteins like cationic peroxidase, AP24,thaumatin-likeprotein 1 (TLP-1) has also been achieved for improving plant disease resistance in crop plants, but the transgenic methods have some ethical and environmental concerns. In this regard, elicitation of plant immunity using biopolymer like β-glucan and chitosan offers an economical, safe, and publicly acceptable method. The β-glucan and chitosan nanocomposites have proven to be useful for the activation of plant defense pathways and to enhance plant response/systemic acquired resistance (SAR) against broad types of plant pathogens and mitigating multiple stresses under the changing climate conditions.
Collapse
Affiliation(s)
- Somnath N Chavanke
- Tissue Culture Section, Agri. Sci. & Tech. Dept., Vasantdada Sugar Institute, Pune, India
| | | | - Sunil Govind Dalvi
- Tissue Culture Section, Agri. Sci. & Tech. Dept., Vasantdada Sugar Institute, Pune, India.
| |
Collapse
|
7
|
Fan Y, Lin S, Li T, Shi F, Shan G, Zeng F. The Plasmodesmata-Located β-1,3-Glucanase Enzyme PdBG4 Regulates Trichomes Growth in Arabidopsis thaliana. Cells 2022; 11:2856. [PMID: 36139431 PMCID: PMC9496821 DOI: 10.3390/cells11182856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Intercellular material transport and information transmission in plants are carried out through the plasmodesmata (PD). The amount of callose around the PD controls channel permeability. In plants, β-1,3-glucanase can degrade callose and affect plant growth and development. In this study, the gene producing PD-localized β-1,3-glucanase and regulating the leaf trichomes is identified and named PdBG4. Based on functional analysis through a series of genetic manipulation assays, we found that the high expression of PdBG4 was associated with strong PD permeability and short Arabidopsis thaliana leaf trichomes. Conversely, the low expression of PdBG4 correlated with weak PD permeability and long Arabidopsis thaliana leaf trichomes. This study revealed that the PdBG4 gene negatively modulates leaf trichome growth and development by regulating PD permeability.
Collapse
Affiliation(s)
| | | | | | | | | | - Fanchang Zeng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
8
|
Cao A, de la Fuente M, Gesteiro N, Santiago R, Malvar RA, Butrón A. Genomics and Pathways Involved in Maize Resistance to Fusarium Ear Rot and Kernel Contamination With Fumonisins. FRONTIERS IN PLANT SCIENCE 2022; 13:866478. [PMID: 35586219 PMCID: PMC9108495 DOI: 10.3389/fpls.2022.866478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Fusarium verticillioides is a causal agent of maize ear rot and produces fumonisins, which are mycotoxins that are toxic to animals and humans. In this study, quantitative trait loci (QTLs) and bulk-segregant RNA-seq approaches were used to uncover genomic regions and pathways involved in resistance to Fusarium ear rot (FER) and to fumonisin accumulation in maize kernels. Genomic regions at bins 4.07-4.1, 6-6.01, 6.04-6.05, and 8.05-8.08 were related to FER resistance and/or reduced fumonisin levels in kernels. A comparison of transcriptomes between resistant and susceptible inbred bulks 10 days after inoculation with F. verticillioides revealed 364 differentially expressed genes (DEGs). In the resistant inbred bulks, genes involved in sink metabolic processes such as fatty acid and starch biosynthesis were downregulated, as well as those involved in phytosulfokine signaling and many other genes involved in cell division; while genes involved in secondary metabolism and compounds/processes related to resistance were upregulated, especially those related to cell wall biosynthesis/rearrangement and flavonoid biosynthesis. These trends are indicative of a growth-defense trade-off. Among the DEGs, Zm00001d053603, Zm00001d035562, Zm00001d037810, Zm00001d037921, and Zm00001d010840 were polymorphic between resistant and susceptible bulks, were located in the confidence intervals of detected QTLs, and showed large differences in transcript levels between the resistant and susceptible bulks. Thus, they were identified as candidate genes involved in resistance to FER and/or reduced fumonisin accumulation.
Collapse
Affiliation(s)
- Ana Cao
- Misión Biológica de Galicia (CSIC), Pontevedra, Spain
| | | | | | - Rogelio Santiago
- Misión Biológica de Galicia (CSIC), Pontevedra, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Pontevedra, Spain
| | - Rosa Ana Malvar
- Misión Biológica de Galicia (CSIC), Pontevedra, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Pontevedra, Spain
| | - Ana Butrón
- Misión Biológica de Galicia (CSIC), Pontevedra, Spain
| |
Collapse
|
9
|
Characterization of the Chitinase Gene Family in Mulberry (Morus notabilis) and MnChi18 Involved in Resistance to Botrytis cinerea. Genes (Basel) 2021; 13:genes13010098. [PMID: 35052438 PMCID: PMC8774697 DOI: 10.3390/genes13010098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Chitinase is a hydrolase that uses chitin as a substrate. It plays an important role in plant resistance to fungal pathogens by degrading chitin. Here, we conducted bioinformatics analysis and transcriptome data analysis of the mulberry (Morus notabilis) chitinase gene family to determine its role in the resistance to Botrytis cinerea. A total of 26 chitinase genes were identified, belonging to the GH18 and GH19 families. Among them, six chitinase genes were differentially expressed under the infection of B. cinerea. MnChi18, which significantly responded to B. cinerea, was heterologously expressed in Arabidopsis (Arabidopsis thaliana). The resistance of MnChi18 transgenic Arabidopsis to B. cinerea was significantly enhanced, and after inoculation with B. cinerea, the activity of catalase (CAT) increased and the content of malondialdehyde (MDA) decreased. This shows that overexpression of MnChi18 can protect cells from damage. In addition, our study also indicated that MnChi18 may be involved in B. cinerea resistance through other resistance-related genes. This study provides an important basis for further understanding the function of mulberry chitinase.
Collapse
|
10
|
Wang Y, Li D, Dong C, Zhao Y, Zhang L, Yang F, Ye X, Huang Y, Li Z, Cui Z. Heterologous expression and characterization of a novel glycoside hydrolase family 55 β-1,3-glucanase, AcGluA, from Archangium sp. strain AC19. Appl Microbiol Biotechnol 2021; 105:6793-6803. [PMID: 34477943 DOI: 10.1007/s00253-021-11513-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022]
Abstract
Some microbial-associated molecular patterns (MAMPs), like glucan oligosaccharides, can be recognized by pattern recognition receptors (PRRs) of plant to elicit further immunity response. In this study, a novel glycoside hydrolase family 55 β-1,3-glucanase (AcGluA) from Archangium sp. strain AC19 was cloned and expressed in Escherichia coli. Among the reported β-1, 3-glucanases from the glycoside hydrolase 55 family, the purified AcGluA exhibited the highest activity on laminarin at pH 6.0 and 60 °C with 112.3 U/mg. Activity of AcGluA was stable in the range of pH 4.0-9.0 and at temperatures below 60 °C. The Km and Vmax of AcGluA for laminarin were 3.5 mg/ml and 263.5 μmol/(ml·min). AcGluA hydrolyzed laminarin into a series of oligosaccharides, suggesting it was an endo-β-1,3-glucanase. The high dose of oligosaccharides (1600 mg/l) had conspicuous biocontrol efficacy on the defense of rice seedlings to Magnaporthe oryzae, which provided a new idea for the development of green biopesticide.Key points• The AcGluA was determined bacteria-derived β-1,3-glucanases in the GH55 family.• The AcGluA showed the highest activity towards laminarin among reported GH55 family.• The hydrolysates of laminarin showed conspicuous biocontrol efficacy to M. oryzae.
Collapse
Affiliation(s)
- Yanxin Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Ding Li
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, People's Republic of China
| | - Chaonan Dong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Yuqiang Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
- Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, People's Republic of China
| | - Lei Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Fan Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China.
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
11
|
Oligosaccharides: Defense Inducers, Their Recognition in Plants, Commercial Uses and Perspectives. Molecules 2020; 25:molecules25245972. [PMID: 33339414 PMCID: PMC7766089 DOI: 10.3390/molecules25245972] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 01/18/2023] Open
Abstract
Plants have innate immune systems or defense mechanisms that respond to the attack of pathogenic microorganisms. Unlike mammals, they lack mobile defense cells, so defense processes depend on autonomous cellular events with a broad repertoire of recognition to detect pathogens, which compensates for the lack of an adaptive immune system. These defense mechanisms remain inactive or latent until they are activated after exposure or contact with inducing agents, or after the application of the inductor; they remain inactive only until they are affected by a pathogen or challenged by an elicitor from the same. Resistance induction represents a focus of interest, as it promotes the activation of plant defense mechanisms, reducing the use of chemical synthesis pesticides, an alternative that has even led to the generation of new commercial products with high efficiency, stability and lower environmental impact, which increase productivity by reducing not only losses but also increasing plant growth. Considering the above, the objective of this review is to address the issue of resistance induction with a focus on the potential of the use of oligosaccharides in agriculture, how they are recognized by plants, how they can be used for commercial products and perspectives.
Collapse
|
12
|
Chen DY, Chen QY, Wang DD, Mu YP, Wang MY, Huang JR, Mao YB. Differential Transcription and Alternative Splicing in Cotton Underly Specialized Defense Responses Against Pests. FRONTIERS IN PLANT SCIENCE 2020; 11:573131. [PMID: 33072149 PMCID: PMC7533563 DOI: 10.3389/fpls.2020.573131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
The green mirid bug (Apolygus lucorum) and the cotton bollworm (Helicoverpa armigera) are both preferred to live on cotton but cause different symptoms, suggesting specialized responses of cotton to the two insects. In this study, we investigated differential molecular mechanisms underlying cotton plant defenses against A. lucorum and H. armigera via transcriptomic analyses. At the transcription level, jasmonate (JA) signaling was dominated in defense against H. armigera whereas salicylic acid (SA) signaling was more significant in defense against A. lucorum. A set of pathogenesis-related (PR) genes and protease inhibitor genes were differentially induced by the two insects. Insect infestations also had an impact on alternative splicing (AS), which was altered more significantly by the H. armigera than A. lucorum. Interestingly, most differential AS (DAS) genes had no obvious change at the transcription level. GO analysis revealed that biological process termed "RNA splicing" and "cellular response to abiotic stimulus" were enriched only in DAS genes from the H. armigera infested samples. Furthermore, insect infestations induced the retained intron of GhJAZs transcripts, which produced a truncated protein lacking the intact Jas motif. Taken together, our data demonstrate that the specialized cotton response to different insects is regulated by gene transcription and AS as well.
Collapse
Affiliation(s)
- Dian-Yang Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qiu-Yi Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Dan-Dan Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yu-Pei Mu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Ji-Rong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
13
|
Soni P, Gangurde SS, Ortega-Beltran A, Kumar R, Parmar S, Sudini HK, Lei Y, Ni X, Huai D, Fountain JC, Njoroge S, Mahuku G, Radhakrishnan T, Zhuang W, Guo B, Liao B, Singam P, Pandey MK, Bandyopadhyay R, Varshney RK. Functional Biology and Molecular Mechanisms of Host-Pathogen Interactions for Aflatoxin Contamination in Groundnut ( Arachis hypogaea L.) and Maize ( Zea mays L.). Front Microbiol 2020; 11:227. [PMID: 32194520 PMCID: PMC7063101 DOI: 10.3389/fmicb.2020.00227] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/30/2020] [Indexed: 12/26/2022] Open
Abstract
Aflatoxins are secondary metabolites produced by soilborne saprophytic fungus Aspergillus flavus and closely related species that infect several agricultural commodities including groundnut and maize. The consumption of contaminated commodities adversely affects the health of humans and livestock. Aflatoxin contamination also causes significant economic and financial losses to producers. Research efforts and significant progress have been made in the past three decades to understand the genetic behavior, molecular mechanisms, as well as the detailed biology of host-pathogen interactions. A range of omics approaches have facilitated better understanding of the resistance mechanisms and identified pathways involved during host-pathogen interactions. Most of such studies were however undertaken in groundnut and maize. Current efforts are geared toward harnessing knowledge on host-pathogen interactions and crop resistant factors that control aflatoxin contamination. This study provides a summary of the recent progress made in enhancing the understanding of the functional biology and molecular mechanisms associated with host-pathogen interactions during aflatoxin contamination in groundnut and maize.
Collapse
Affiliation(s)
- Pooja Soni
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sunil S. Gangurde
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Rakesh Kumar
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sejal Parmar
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Hari K. Sudini
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Yong Lei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinzhi Ni
- Crop Genetics and Breeding Research Unit, United States Department of Agriculture – Agriculture Research Service, Tifton, GA, United States
| | - Dongxin Huai
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jake C. Fountain
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Samuel Njoroge
- International Crops Research Institute for the Semi-Arid Tropics, Lilongwe, Malawi
| | - George Mahuku
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | | | - Weijian Zhuang
- Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, United States Department of Agriculture – Agricultural Research Service, Tifton, GA, United States
| | - Boshou Liao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad, India
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| |
Collapse
|
14
|
Ojiambo PS, Battilani P, Cary JW, Blum BH, Carbone I. Cultural and Genetic Approaches to Manage Aflatoxin Contamination: Recent Insights Provide Opportunities for Improved Control. PHYTOPATHOLOGY 2018; 108:1024-1037. [PMID: 29869954 DOI: 10.1094/phyto-04-18-0134-rvw] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aspergillus flavus is a morphologically complex species that can produce the group of polyketide derived carcinogenic and mutagenic secondary metabolites, aflatoxins, as well as other secondary metabolites such as cyclopiazonic acid and aflatrem. Aflatoxin causes aflatoxicosis when aflatoxins are ingested through contaminated food and feed. In addition, aflatoxin contamination is a major problem, from both an economic and health aspect, in developing countries, especially Asia and Africa, where cereals and peanuts are important food crops. Earlier measures for control of A. flavus infection and consequent aflatoxin contamination centered on creating unfavorable environments for the pathogen and destroying contaminated products. While development of atoxigenic (nonaflatoxin producing) strains of A. flavus as viable commercial biocontrol agents has marked a unique advance for control of aflatoxin contamination, particularly in Africa, new insights into the biology and sexuality of A. flavus are now providing opportunities to design improved atoxigenic strains for sustainable biological control of aflatoxin. Further, progress in the use of molecular technologies such as incorporation of antifungal genes in the host and host-induced gene silencing, is providing knowledge that could be harnessed to develop germplasm that is resistant to infection by A. flavus and aflatoxin contamination. This review summarizes the substantial progress that has been made to understand the biology of A. flavus and mitigate aflatoxin contamination with emphasis on maize. Concepts developed to date can provide a basis for future research efforts on the sustainable management of aflatoxin contamination.
Collapse
Affiliation(s)
- Peter S Ojiambo
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Paola Battilani
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Jeffrey W Cary
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Burt H Blum
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Ignazio Carbone
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| |
Collapse
|
15
|
Mestre P, Arista G, Piron M, Rustenholz C, Ritzenthaler C, Merdinoglu D, Chich J. Identification of a Vitis vinifera endo-β-1,3-glucanase with antimicrobial activity against Plasmopara viticola. MOLECULAR PLANT PATHOLOGY 2017; 18:708-719. [PMID: 27216084 PMCID: PMC6638254 DOI: 10.1111/mpp.12431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Inducible plant defences against pathogens are stimulated by infections and comprise several classes of pathogenesis-related (PR) proteins. Endo-β-1,3-glucanases (EGases) belong to the PR-2 class and their expression is induced by many pathogenic fungi and oomycetes, suggesting that EGases play a role in the hydrolysis of pathogen cell walls. However, reports of a direct effect of EGases on cell walls of plant pathogens are scarce. Here, we characterized three EGases from Vitis vinifera whose expression is induced during infection by Plasmopara viticola, the causal agent of downy mildew. Recombinant proteins were expressed in Escherichia coli. The enzymatic characteristics of these three enzymes were measured in vitro and in planta. A functional assay performed in vitro on germinated P. viticola spores revealed a strong anti-P. viticola activity for EGase3, which strikingly was that with the lowest in vitro catalytic efficiency. To our knowledge, this work shows, for the first time, the direct effect against downy mildew of EGases of the PR-2 family from Vitis.
Collapse
Affiliation(s)
- Pere Mestre
- SVQV, INRA, Université de StrasbourgColmarF‐68000France
| | | | | | | | - Christophe Ritzenthaler
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg12 rue du Général ZimmerStrasbourg67084France
| | | | | |
Collapse
|
16
|
Expression and Characterization of a Novel Antifungal Exo-β-1,3-glucanase from Chaetomium cupreum. Appl Biochem Biotechnol 2016; 182:261-275. [DOI: 10.1007/s12010-016-2325-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
|
17
|
Chakraborty S, Nascimento R, Zaini PA, Gouran H, Rao BJ, Goulart LR, Dandekar AM. Sequence/structural analysis of xylem proteome emphasizes pathogenesis-related proteins, chitinases and β-1, 3-glucanases as key players in grapevine defense against Xylella fastidiosa. PeerJ 2016; 4:e2007. [PMID: 27257535 PMCID: PMC4888286 DOI: 10.7717/peerj.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/13/2016] [Indexed: 11/20/2022] Open
Abstract
Background. Xylella fastidiosa, the causative agent of various plant diseases including Pierce’s disease in the US, and Citrus Variegated Chlorosis in Brazil, remains a continual source of concern and economic losses, especially since almost all commercial varieties are sensitive to this Gammaproteobacteria. Differential expression of proteins in infected tissue is an established methodology to identify key elements involved in plant defense pathways. Methods. In the current work, we developed a methodology named CHURNER that emphasizes relevant protein functions from proteomic data, based on identification of proteins with similar structures that do not necessarily have sequence homology. Such clustering emphasizes protein functions which have multiple copies that are up/down-regulated, and highlights similar proteins which are differentially regulated. As a working example we present proteomic data enumerating differentially expressed proteins in xylem sap from grapevines that were infected with X. fastidiosa. Results. Analysis of this data by CHURNER highlighted pathogenesis related PR-1 proteins, reinforcing this as the foremost protein function in xylem sap involved in the grapevine defense response to X. fastidiosa. β-1, 3-glucanase, which has both anti-microbial and anti-fungal activities, is also up-regulated. Simultaneously, chitinases are found to be both up and down-regulated by CHURNER, and thus the net gain of this protein function loses its significance in the defense response. Discussion. We demonstrate how structural data can be incorporated in the pipeline of proteomic data analysis prior to making inferences on the importance of individual proteins to plant defense mechanisms. We expect CHURNER to be applicable to any proteomic data set.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Plant Sciences, University of California, Davis (UC Davis) , CA , United States of America
| | - Rafael Nascimento
- Department of Plant Sciences, University of California, Davis (UC Davis), CA, United States of America; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia Minas Gerais, Brazil
| | - Paulo A Zaini
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama , Uberlândia Minas Gerais , Brazil
| | - Hossein Gouran
- Department of Plant Sciences, University of California, Davis (UC Davis) , CA , United States of America
| | - Basuthkar J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research , Mumbai, Maharashtra , India
| | - Luiz R Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia Minas Gerais, Brazil; Department of Medical Microbiology and Immunology, University of California, Davis (UC Davis), CA, United States of America
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis (UC Davis) , CA , United States of America
| |
Collapse
|
18
|
Chakraborty S, Nascimento R, Zaini PA, Gouran H, Rao BJ, Goulart LR, Dandekar AM. Sequence/structural analysis of xylem proteome emphasizes pathogenesis-related proteins, chitinases and β-1, 3-glucanases as key players in grapevine defense against Xylella fastidiosa. PeerJ 2016. [PMID: 27257535 DOI: 10.7717/peerj2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Background. Xylella fastidiosa, the causative agent of various plant diseases including Pierce's disease in the US, and Citrus Variegated Chlorosis in Brazil, remains a continual source of concern and economic losses, especially since almost all commercial varieties are sensitive to this Gammaproteobacteria. Differential expression of proteins in infected tissue is an established methodology to identify key elements involved in plant defense pathways. Methods. In the current work, we developed a methodology named CHURNER that emphasizes relevant protein functions from proteomic data, based on identification of proteins with similar structures that do not necessarily have sequence homology. Such clustering emphasizes protein functions which have multiple copies that are up/down-regulated, and highlights similar proteins which are differentially regulated. As a working example we present proteomic data enumerating differentially expressed proteins in xylem sap from grapevines that were infected with X. fastidiosa. Results. Analysis of this data by CHURNER highlighted pathogenesis related PR-1 proteins, reinforcing this as the foremost protein function in xylem sap involved in the grapevine defense response to X. fastidiosa. β-1, 3-glucanase, which has both anti-microbial and anti-fungal activities, is also up-regulated. Simultaneously, chitinases are found to be both up and down-regulated by CHURNER, and thus the net gain of this protein function loses its significance in the defense response. Discussion. We demonstrate how structural data can be incorporated in the pipeline of proteomic data analysis prior to making inferences on the importance of individual proteins to plant defense mechanisms. We expect CHURNER to be applicable to any proteomic data set.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Plant Sciences, University of California, Davis (UC Davis) , CA , United States of America
| | - Rafael Nascimento
- Department of Plant Sciences, University of California, Davis (UC Davis), CA, United States of America; Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia Minas Gerais, Brazil
| | - Paulo A Zaini
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama , Uberlândia Minas Gerais , Brazil
| | - Hossein Gouran
- Department of Plant Sciences, University of California, Davis (UC Davis) , CA , United States of America
| | - Basuthkar J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research , Mumbai, Maharashtra , India
| | - Luiz R Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia Minas Gerais, Brazil; Department of Medical Microbiology and Immunology, University of California, Davis (UC Davis), CA, United States of America
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis (UC Davis) , CA , United States of America
| |
Collapse
|