1
|
Heinze J, Werger L, Ogden M, Heinken T, Hoefgen R, Weber E. Short wind pulses consistently change the morphology of roots, but not of shoots, across young plants of different growth forms. STRESS BIOLOGY 2023; 3:43. [PMID: 37812262 PMCID: PMC10562299 DOI: 10.1007/s44154-023-00123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Wind is an environmental stimulus that stresses plants of all growth forms at all life-stages by influencing the development, architecture, and morphology of roots and shoots. However, comparative studies are scarce and no study directly investigated whether shoot and root morphological traits of trees, grasses and forbs differ in their response to short wind pulses of different wind intensity. In this study, we found that across species, wind stress by short wind pulses of increasing intensity consistently changed root morphology, but did not affect shoot morphological traits, except plant height in four species. Wind effects in roots were generally weak in tree species but consistent across growth forms. Furthermore, plant height of species was correlated with changes in specific root length and average diameter.Our results indicate that short-pulse wind treatments affect root morphology more than shoot morphology across growth forms. They further suggest that wind stress possibly promotes root anchorage in young plants and that these effects might depend on plant height.
Collapse
Affiliation(s)
- Johannes Heinze
- Institute of Biochemistry and Biology, Biodiversity Research and Systematic Botany, University of Potsdam, Maulbeerallee 1, Potsdam, 14469, Germany.
- Heinz Sielmann Foundation, Dyrotzer Ring 4, Wustermark (OT Elstal), 14641, Germany.
| | - Luise Werger
- Institute of Biochemistry and Biology, Biodiversity Research and Systematic Botany, University of Potsdam, Maulbeerallee 1, Potsdam, 14469, Germany
| | - Michael Ogden
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Thilo Heinken
- Institute of Biochemistry and Biology, General Botany, University of Potsdam, Maulbeerallee 3, Potsdam, 14469, Germany
| | - Rainer Hoefgen
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Ewald Weber
- Institute of Biochemistry and Biology, Biodiversity Research and Systematic Botany, University of Potsdam, Maulbeerallee 1, Potsdam, 14469, Germany
| |
Collapse
|
2
|
Root Foraging Strategy Improves the Adaptability of Tea Plants (Camellia sinensis L.) to Soil Potassium Heterogeneity. Int J Mol Sci 2022; 23:ijms23158585. [PMID: 35955715 PMCID: PMC9369073 DOI: 10.3390/ijms23158585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 01/27/2023] Open
Abstract
Root foraging enables plants to obtain more soil nutrients in a constantly changing nutrient environment. Little is known about the adaptation mechanism of adventitious roots of plants dominated by asexual reproduction (such as tea plants) to soil potassium heterogeneity. We investigated root foraging strategies for K by two tea plants (low-K tolerant genotype “1511” and low-K intolerant genotype “1601”) using a multi-layer split-root system. Root exudates, root architecture and transcriptional responses to K heterogeneity were analyzed by HPLC, WinRHIZO and RNA-seq. With the higher leaf K concentrations and K biological utilization indexes, “1511” acclimated to K heterogeneity better than “1601”. For “1511”, maximum total root length and fine root length proportion appeared on the K-enriched side; the solubilization of soil K reached the maximum on the low-K side, which was consistent with the amount of organic acids released through root exudation. The cellulose decomposition genes that were abundant on the K-enriched side may have promoted root proliferation for “1511”. This did not happen in “1601”. The low-K tolerant tea genotype “1511” was better at acclimating to K heterogeneity, which was due to a smart root foraging strategy: more roots (especially fine roots) were developed in the K-enriched side; more organic acids were secreted in the low-K side to activate soil K and the root proliferation in the K-enriched side might be due to cellulose decomposition. The present research provides a practical basis for a better understanding of the adaptation strategies of clonal woody plants to soil nutrient availability.
Collapse
|
3
|
Lardon R, Wijnker E, Keurentjes J, Geelen D. The genetic framework of shoot regeneration in Arabidopsis comprises master regulators and conditional fine-tuning factors. Commun Biol 2020; 3:549. [PMID: 33009513 PMCID: PMC7532540 DOI: 10.1038/s42003-020-01274-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Clonal propagation and genetic engineering of plants requires regeneration, but many species are recalcitrant and there is large variability in explant responses. Here, we perform a genome-wide association study using 190 natural Arabidopsis accessions to dissect the genetics of shoot regeneration from root explants and several related in vitro traits. Strong variation is found in the recorded phenotypes and association mapping pinpoints a myriad of quantitative trait genes, including prior candidates and potential novel regeneration determinants. As most of these genes are trait- and protocol-specific, we propose a model wherein shoot regeneration is governed by many conditional fine-tuning factors and a few universal master regulators such as WUSCHEL, whose transcript levels correlate with natural variation in regenerated shoot numbers. Potentially novel genes in this last category are AT3G09925, SUP, EDA40 and DOF4.4. We urge future research in the field to consider multiple conditions and genetic backgrounds.
Collapse
Affiliation(s)
- Robin Lardon
- Department of Plants and Crops, Horticell Lab, Ghent University, 9000, Ghent, Belgium
| | - Erik Wijnker
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Joost Keurentjes
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Danny Geelen
- Department of Plants and Crops, Horticell Lab, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
4
|
Werger L, Bergmann J, Weber E, Heinze J. Wind intensity affects fine root morphological traits with consequences for plant-soil feedback effects. AOB PLANTS 2020; 12:plaa050. [PMID: 33133480 PMCID: PMC7583724 DOI: 10.1093/aobpla/plaa050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Wind influences the development, architecture and morphology of plant roots and may modify subsequent interactions between plants and soil (plant-soil feedbacks-PSFs). However, information on wind effects on fine root morphology is scarce and the extent to which wind changes plant-soil interactions remains unclear. Therefore, we investigated the effects of two wind intensity levels by manipulating surrounding vegetation height in a grassland PSF field experiment. We grew four common plant species (two grasses and two non-leguminous forbs) with soil biota either previously conditioned by these or other species and tested the effect of wind on root:shoot ratio, fine root morphological traits as well as the outcome for PSFs. Wind intensity did not affect biomass allocation (i.e. root:shoot ratio) in any species. However, fine-root morphology of all species changed under high wind intensity. High wind intensity increased specific root length and surface area and decreased root tissue density, especially in the two grasses. Similarly, the direction of PSFs changed under high wind intensity in all four species, but differences in biomass production on the different soils between high and low wind intensity were marginal and most pronounced when comparing grasses with forbs. Because soils did not differ in plant-available nor total nutrient content, the results suggest that wind-induced changes in root morphology have the potential to influence plant-soil interactions. Linking wind-induced changes in fine-root morphology to effects on PSF improves our understanding of plant-soil interactions under changing environmental conditions.
Collapse
Affiliation(s)
- Luise Werger
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Joana Bergmann
- Institute of Biology, Dahlem Center of Plant Science (DCPS), Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Ewald Weber
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Johannes Heinze
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
5
|
Natural Variation in Plant Pluripotency and Regeneration. PLANTS 2020; 9:plants9101261. [PMID: 32987766 PMCID: PMC7598583 DOI: 10.3390/plants9101261] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
Plant regeneration is essential for survival upon wounding and is, hence, considered to be a strong natural selective trait. The capacity of plant tissues to regenerate in vitro, however, varies substantially between and within species and depends on the applied incubation conditions. Insight into the genetic factors underlying this variation may help to improve numerous biotechnological applications that exploit in vitro regeneration. Here, we review the state of the art on the molecular framework of de novo shoot organogenesis from root explants in Arabidopsis, which is a complex process controlled by multiple quantitative trait loci of various effect sizes. Two types of factors are distinguished that contribute to natural regenerative variation: master regulators that are conserved in all experimental systems (e.g., WUSCHEL and related homeobox genes) and conditional regulators whose relative role depends on the explant and the incubation settings. We further elaborate on epigenetic variation and protocol variables that likely contribute to differential explant responsivity within species and conclude that in vitro shoot organogenesis occurs at the intersection between (epi) genetics, endogenous hormone levels, and environmental influences.
Collapse
|
6
|
Stem cell ageing of the root apical meristem of Arabidopsis thaliana. Mech Ageing Dev 2020; 190:111313. [PMID: 32721407 DOI: 10.1016/j.mad.2020.111313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 11/21/2022]
Abstract
Plants form new organs from pluripotent stem cells throughout their lives and under changing environmental conditions. In the Arabidopsis root meristem, a pool of stem cells surrounding a stem cell organizer, named Quiescent Center (QC), gives rise to the specific root tissues. Among them, the columella stem cell niche that gives rise to the gravity-sensing columella cells has been used as a model system to study stem cell regulation at the young seedling stage. However, little is known about the changes of the stem cell niche during later development. Here, we report that the columella stem cell niche undergoes pronounced histological and molecular reorganization as the plant progresses towards the adult stage. Commonly-used reporters for cellular states undergo re-patterning after an initial juvenile meristem phase. Furthermore, the responsiveness to the plant hormone abscisic acid, an integrator of stress response, strongly decreases. Many ageing effects are reminiscent of the loss-of-function phenotype of the central stem cell regulator WOX5 and can be explained by gradually decreasing WOX5 expression levels during ageing. Our results show that the architecture and central regulatory components of the root stem cell niche are already highly dynamic within the first weeks of development.
Collapse
|
7
|
Xi D, Chen X, Wang Y, Zhong R, He J, Shen J, Ming F. Arabidopsis ANAC092 regulates auxin-mediated root development by binding to the ARF8 and PIN4 promoters. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1015-1031. [PMID: 30415491 DOI: 10.1111/jipb.12735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Auxin is an important plant hormone that is essential for growth and development due to its effects on organogenesis, morphogenesis, tropisms, and apical dominance. The functional diversity of auxin highlights the importance of its biosynthesis, transport, and associated responses. In this study, we show that a NAC transcription factor, ANAC092 (also named AtNAC2 and ORESARA1), known to positively regulate leaf senescence and contribute to abiotic stress responses, also affects primary root development. Plants overexpressing ANAC092 had altered root meristem lengths and shorter primary roots compared with the wild-type control. Additionally, expression of the proANAC092::GUS was strongly induced by indole-3-acetic acid. Quantitative real-time RT-PCR (qRT-PCR) analysis revealed that the YUCCA2, PIN, and ARF expression levels were downregulated in ANAC092-overexpressing plants. Moreover, yeast one-hybrid and chromatin immunoprecipitation assays confirmed that ANAC092 binds to the promoters of AUXIN RESPONSE FACTOR 8 (ARF8) and PIN-FORMED 4 (PIN4). Furthermore, a dual-luciferase assay indicated that ANAC092 decreases ARF8 and PIN4 promoter activities. We also applied a CRISPR/Cas9 system to mutate ANAC092. The roots of three of the analyzed mutants were longer than normal. Collectively, our findings indicate that ANAC092 negatively affects root development by controlling the auxin pathway.
Collapse
Affiliation(s)
- Dandan Xi
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xu Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yuxia Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ruiling Zhong
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jianmei He
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jiabin Shen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Feng Ming
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Quantitative trait loci analysis of hormone levels in Arabidopsis roots. PLoS One 2019; 14:e0219008. [PMID: 31251768 PMCID: PMC6599112 DOI: 10.1371/journal.pone.0219008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/14/2019] [Indexed: 11/30/2022] Open
Abstract
Quantitative trait loci (QTL) analyses for five groups of hormones, including cytokinins in Arabidopsis roots were performed using recombinant inbred lines (Ler×Cvi). Significant QTLs were detected for cytokinins, jasmonic acid and salicylic acid. Separate analysis of two sub-populations, viz., vegetative and flowering plants revealed that many of the QTLs were development-specific. Using near-isogenic lines, several significant QTLs were confirmed; three co-localized QTL regions were responsible for determining several cytokinin metabolites. Using a knock-out plant, a functional role of zeatin N-glucosyltransferase gene (UGT76C2) underlying a large-effect QTL for levels of tZ-N-glucosides and tZRMP was evaluated in the metabolism of cytokinins. Pleotropic effects of this gene were found for cytokinin levels in both roots and leaves, but significant changes of morphological traits were observed only in roots. Hormone QTL analysis reveals development-specific and organ-dependent aspects of the regulation of plant hormone content and metabolism.
Collapse
|
9
|
Ruan L, Xin X, Zhang J, Zhao B, Cheng H, Zhang C, Ma D, Chen L. Potential Root Foraging Strategy of Wheat ( Triticum aestivum L.) for Potassium Heterogeneity. FRONTIERS IN PLANT SCIENCE 2018; 9:1755. [PMID: 30538717 PMCID: PMC6277704 DOI: 10.3389/fpls.2018.01755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Potassium (K) distribution is horizontally heterogeneous under the conservation agriculture approach of no-till with strip fertilization. The root foraging strategy of wheat for K heterogeneity is poorly understood. In this study, WinRHIZO, microarray, Non-invasive Micro-test Technology (NMT) and a split-root system were performed to investigate root morphology, gene expression profiling and fluxes of K+ and O2 under K heterogeneity and homogeneity conditions. The split-root system was performed as follows: C. LK (both compartments had low K), C. NK (both compartments had normal K), Sp. LK (one compartment had low K) and Sp. NK (the other compartment had normal K). The ratio of total root length and root tips in Sp. NK was significantly higher than that in C. NK, while no significant differences were found between Sp. LK and C. LK. Differential expression genes in C. LK vs. C. NK had opposite responses in Sp. LK vs. C. LK and similar responses in Sp. NK vs. C. NK. Low-K responsive genes, such as peroxidases, mitochondrion, transcription factor activity, calcium ion binding, glutathione transferase and cellular respiration genes were found to be up-regulated in Sp. NK. However, methyltransferase activity, protein amino acid phosphorylation, potassium ion transport, and protein kinase activity genes were found to be down-regulated in Sp. LK. The up-regulated gene with function in respiration tended to increase K+ uptake through improving O2 influx on the root surface in Sp. NK, while the down-regulated genes with functions of K+ and O2 transport tended to reduce K+ uptake on the root surface in Sp. LK. To summarize, wheat roots tended to perform active-foraging strategies in Sp. NK and dormant-foraging strategies in Sp. LK through the following patterns: (1) root development in Sp. NK but not in Sp. LK; (2) low-K responsive genes, such as peroxidases, mitochondrion, transcription factor activity, calcium ion binding and respiration, were up-regulated in Sp. NK but not in Sp. LK; and (3) root K+ and O2 influxes increased in Sp. NK but not in Sp. LK. Our findings may better explain the optimal root foraging strategy for wheat grown with heterogeneous K distribution in the root zone.
Collapse
Affiliation(s)
- Li Ruan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xiuli Xin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Bingzi Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Hao Cheng
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Congzhi Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Donghao Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Lin Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
10
|
Scheunemann M, Brady SM, Nikoloski Z. Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models. Sci Rep 2018; 8:7919. [PMID: 29784955 PMCID: PMC5962614 DOI: 10.1038/s41598-018-26232-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/08/2018] [Indexed: 11/13/2022] Open
Abstract
Plant organs consist of multiple cell types that do not operate in isolation, but communicate with each other to maintain proper functions. Here, we extract models specific to three developmental stages of eight root cell types or tissue layers in Arabidopsis thaliana based on a state-of-the-art constraint-based modeling approach with all publicly available transcriptomics and metabolomics data from this system to date. We integrate these models into a multi-cell root model which we investigate with respect to network structure, distribution of fluxes, and concordance to transcriptomics and proteomics data. From a methodological point, we show that the coupling of tissue-specific models in a multi-tissue model yields a higher specificity of the interconnected models with respect to network structure and flux distributions. We use the extracted models to predict and investigate the flux of the growth hormone indole-3-actetate and its antagonist, trans-Zeatin, through the root. While some of predictions are in line with experimental evidence, constraints other than those coming from the metabolic level may be necessary to replicate the flow of indole-3-actetate from other simulation studies. Therefore, our work provides the means for data-driven multi-tissue metabolic model extraction of other Arabidopsis organs in the constraint-based modeling framework.
Collapse
Affiliation(s)
- Michael Scheunemann
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, CA, 95616, USA
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany. .,Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany.
| |
Collapse
|