1
|
Fan X, Lei Y, Wang L, Wu X, Li D. Advancing CRISPR base editing technology through innovative strategies and ideas. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2699-5. [PMID: 39231901 DOI: 10.1007/s11427-024-2699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
The innovation of CRISPR/Cas gene editing technology has developed rapidly in recent years. It is widely used in the fields of disease animal model construction, biological breeding, disease diagnosis and screening, gene therapy, cell localization, cell lineage tracking, synthetic biology, information storage, etc. However, developing idealized editors in various fields is still a goal for future development. This article focuses on the development and innovation of non-DSB editors BE and PE in the platform-based CRISPR system. It first explains the application of ideas for improvement such as "substitution", "combination", "adaptation", and "adjustment" in BE and PE development and then catalogues the ingenious inversions and leaps of thought reflected in the innovations made to CRISPR technology. It will then elaborate on the efforts currently being made to develop small editors to solve the problem of AAV overload and summarize the current application status of editors for in vivo gene modification using AAV as a delivery system. Finally, it summarizes the inspiration brought by CRISPR/Cas innovation and assesses future prospects for development of an idealized editor.
Collapse
Affiliation(s)
- Xiongwei Fan
- The Center for Heart Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yang Lei
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Liren Wang
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Xiushan Wu
- The Center for Heart Development, College of Life Science, Hunan Normal University, Changsha, 410081, China.
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, 510100, China.
| | - Dali Li
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
2
|
Li B, Sun C, Li J, Gao C. Targeted genome-modification tools and their advanced applications in crop breeding. Nat Rev Genet 2024; 25:603-622. [PMID: 38658741 DOI: 10.1038/s41576-024-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/26/2024]
Abstract
Crop improvement by genome editing involves the targeted alteration of genes to improve plant traits, such as stress tolerance, disease resistance or nutritional content. Techniques for the targeted modification of genomes have evolved from generating random mutations to precise base substitutions, followed by insertions, substitutions and deletions of small DNA fragments, and are finally starting to achieve precision manipulation of large DNA segments. Recent developments in base editing, prime editing and other CRISPR-associated systems have laid a solid technological foundation to enable plant basic research and precise molecular breeding. In this Review, we systematically outline the technological principles underlying precise and targeted genome-modification methods. We also review methods for the delivery of genome-editing reagents in plants and outline emerging crop-breeding strategies based on targeted genome modification. Finally, we consider potential future developments in precise genome-editing technologies, delivery methods and crop-breeding approaches, as well as regulatory policies for genome-editing products.
Collapse
Affiliation(s)
- Boshu Li
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Sun
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayang Li
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Qin W, Liang F, Lin SJ, Petree C, Huang K, Zhang Y, Li L, Varshney P, Mourrain P, Liu Y, Varshney GK. ABE-ultramax for high-efficiency biallelic adenine base editing in zebrafish. Nat Commun 2024; 15:5613. [PMID: 38965236 PMCID: PMC11224239 DOI: 10.1038/s41467-024-49943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Advancements in CRISPR technology, particularly the development of base editors, revolutionize genetic variant research. When combined with model organisms like zebrafish, base editors significantly accelerate and refine in vivo analysis of genetic variations. However, base editors are restricted by protospacer adjacent motif (PAM) sequences and specific editing windows, hindering their applicability to a broad spectrum of genetic variants. Additionally, base editors can introduce unintended mutations and often exhibit reduced efficiency in living organisms compared to cultured cell lines. Here, we engineer a suite of adenine base editors (ABEs) called ABE-Ultramax (Umax), demonstrating high editing efficiency and low rates of insertions and deletions (indels) in zebrafish. The ABE-Umax suite of editors includes ABEs with shifted, narrowed, or broadened editing windows, reduced bystander mutation frequency, and highly flexible PAM sequence requirements. These advancements have the potential to address previous challenges in disease modeling and advance gene therapy applications.
Collapse
Affiliation(s)
- Wei Qin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Fang Liang
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Yu Zhang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lin Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, 510631, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Pratishtha Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, 510631, Guangzhou, China.
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China.
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Li W, Li X, Wang C, Huo G, Zhang X, Yu J, Yu X, Li J, Zhang C, Zhao J, Li Y, Li J. Expanding the targeting scope of CRISPR/Cas9-mediated genome editing by Cas9 variants in Brassica. ABIOTECH 2024; 5:202-208. [PMID: 38974859 PMCID: PMC11224048 DOI: 10.1007/s42994-024-00155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/10/2024] [Indexed: 07/09/2024]
Abstract
CRISPR/Cas9, presently the most widely used genome editing technology, has provided great potential for functional studies and plant breeding. However, the strict requirement for a protospacer adjacent motif (PAM) has hindered the application of the CRISPR/Cas9 system because the number of targetable genomic sites is limited. Recently, the engineered variants Cas9-NG, SpG, and SpRY, which recognize non-canonical PAMs, have been successfully tested in plants (mainly in rice, a monocot). In this study, we evaluated the targeted mutagenesis capabilities of these Cas9 variants in two important Brassica vegetables, Chinese cabbage (Brassica rapa spp. pekinensis) and cabbage (Brassica oleracea var. capitata). Both Cas9-NG and SpG induced efficient mutagenesis at NGN PAMs, while SpG outperformed Cas9-NG at NGC and NGT PAMs. SpRY achieved efficient editing at almost all PAMs (NRN > NYN), albeit with some self-targeting activity at transfer (T)-DNA sequences. And SpRY-induced mutants were detected in cabbage plants in a PAM-less fashion. Moreover, an adenine base editor was developed using SpRY and TadA8e deaminase that induced A-to-G conversions within target sites using non-canonical PAMs. Together, the toolboxes developed here induced successful genome editing in Chinese cabbage and cabbage. Our work further expands the targeting scope of genome editing and paves the way for future basic research and genetic improvement in Brassica. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00155-7.
Collapse
Affiliation(s)
- Wenjing Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071001 China
| | - Xuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071001 China
| | - Chunyang Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
| | - Guanzhong Huo
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071001 China
| | - Xinru Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071001 China
| | - Jintai Yu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
- College of Modern Science and Technology, Hebei Agricultural University, Baoding, 071001 China
| | - Xiaoxiao Yu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071001 China
| | - Jing Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
| | - Chao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Yan Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Jun Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071001 China
| |
Collapse
|
5
|
Li Y, Li S, Li C, Zhang C, Yan L, Li J, He Y, Guo Y, Xia L. Fusion of a rice endogenous N-methylpurine DNA glycosylase to a plant adenine base transition editor ABE8e enables A-to-K base editing in rice plants. ABIOTECH 2024; 5:127-139. [PMID: 38974865 PMCID: PMC11224198 DOI: 10.1007/s42994-024-00138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/11/2024] [Indexed: 07/09/2024]
Abstract
Engineering of a new type of plant base editor for simultaneous adenine transition and transversion within the editing window will greatly expand the scope and potential of base editing in directed evolution and crop improvement. Here, we isolated a rice endogenous hypoxanthine excision protein, N-methylpurine DNA glycosylase (OsMPG), and engineered two plant A-to-K (K = G or T) base editors, rAKBE01 and rAKBE02, for simultaneous adenine transition and transversion base editing in rice by fusing OsMPG or its mutant mOsMPG to a plant adenine transition base editor, ABE8e. We further coupled either OsMPG or mOsMPG with a transactivation factor VP64 to generate rAKBE03 and rAKBE04, respectively. Testing these four rAKBEs, at five endogenous loci in rice protoplasts, indicated that rAKBE03 and rAKBE04 enabled higher levels of A-to-G base transitions when compared to ABE8e and ABE8e-VP64. Furthermore, whereas rAKBE01 only enabled A-to-C/T editing at one endogenous locus, in comparison with rAKBE02 and rAKBE03, rAKBE04 could significantly improve the A-to-C/T base transversion efficiencies by up to 6.57- and 1.75-fold in the rice protoplasts, respectively. Moreover, although no stable lines with A-to-C transversion were induced by rAKBE01 and rAKBE04, rAKBE04 could enable simultaneous A-to-G and A-to-T transition and transversion base editing, at all the five target loci, with the efficiencies of A-to-G transition and A-to-T transversion editing ranging from 70.97 to 92.31% and 1.67 to 4.84% in rice stable lines, respectively. Together, these rAKBEs enable different portfolios of editing products and, thus, now expands the potential of base editing in diverse application scenario for crop improvement. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00138-8.
Collapse
Affiliation(s)
- Yucai Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, 572024 China
| | - Shaoya Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, 572024 China
| | - Chenfei Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| | - Chen Zhang
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| | - Lei Yan
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| | - Jingying Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, 572024 China
| | - Yubing He
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, 572024 China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Lanqin Xia
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, 572024 China
| |
Collapse
|
6
|
Zhang D, Boch J. Development of TALE-adenine base editors in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1067-1077. [PMID: 37997697 PMCID: PMC11022790 DOI: 10.1111/pbi.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Base editors enable precise nucleotide changes at targeted genomic loci without requiring double-stranded DNA breaks or repair templates. TALE-adenine base editors (TALE-ABEs) are genome editing tools, composed of a DNA-binding domain from transcription activator-like effectors (TALEs), an engineered adenosine deaminase (TadA8e), and a cytosine deaminase domain (DddA), that allow A•T-to-G•C editing in human mitochondrial DNA. However, the editing ability of TALE-ABEs in plants apart from chloroplast DNA has not been described, so far, and the functional role how DddA enhances TadA8e is still unclear. We tested a series of TALE-ABEs with different deaminase fusion architectures in Nicotiana benthamiana and rice. The results indicate that the double-stranded DNA-specific cytosine deaminase DddA can boost the activities of single-stranded DNA-specific deaminases (TadA8e or APOBEC3A) on double-stranded DNA. We analysed A•T-to-G•C editing efficiencies in a β-glucuronidase reporter system and showed precise adenine editing in genomic regions with high product purity in rice protoplasts. Furthermore, we have successfully regenerated rice plants with A•T-to-G•C mutations in the chloroplast genome using TALE-ABE. Consequently, TALE-adenine base editors provide alternatives for crop improvement and gene therapy by editing nuclear or organellar genomes.
Collapse
Affiliation(s)
- Dingbo Zhang
- Institute of Plant GeneticsLeibniz Universität HannoverHannoverGermany
| | - Jens Boch
- Institute of Plant GeneticsLeibniz Universität HannoverHannoverGermany
| |
Collapse
|
7
|
Wei X, Zhu Y, Xie W, Ren W, Zhang Y, Zhang H, Dai S, Huang CF. H2O2 negatively regulates aluminum resistance via oxidation and degradation of the transcription factor STOP1. THE PLANT CELL 2024; 36:688-708. [PMID: 37936326 PMCID: PMC10896299 DOI: 10.1093/plcell/koad281] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Aluminum (Al) stress triggers the accumulation of hydrogen peroxide (H2O2) in roots. However, whether H2O2 plays a regulatory role in aluminum resistance remains unclear. In this study, we show that H2O2 plays a crucial role in regulation of Al resistance, which is modulated by the mitochondrion-localized pentatricopeptide repeat protein REGULATION OF ALMT1 EXPRESSION 6 (RAE6). Mutation in RAE6 impairs the activity of complex I of the mitochondrial electron transport chain, resulting in the accumulation of H2O2 and increased sensitivity to Al. Our results suggest that higher H2O2 concentrations promote the oxidation of SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1), an essential transcription factor that promotes Al resistance, thereby promoting its degradation by enhancing the interaction between STOP1 and the F-box protein RAE1. Conversely, decreasing H2O2 levels or blocking the oxidation of STOP1 leads to greater STOP1 stability and increased Al resistance. Moreover, we show that the thioredoxin TRX1 interacts with STOP1 to catalyze its chemical reduction. Thus, our results highlight the importance of H2O2 in Al resistance and regulation of STOP1 stability in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Xiang Wei
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yifang Zhu
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenxiang Xie
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Weiwei Ren
- Development Center of Plant Germplasm Resources and Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yang Zhang
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hui Zhang
- Development Center of Plant Germplasm Resources and Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources and Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chao-Feng Huang
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Li X, Xie J, Dong C, Zheng Z, Shen R, Cao X, Chen X, Wang M, Zhu JK, Tian Y. Efficient and heritable A-to-K base editing in rice and tomato. HORTICULTURE RESEARCH 2024; 11:uhad250. [PMID: 38269296 PMCID: PMC10807703 DOI: 10.1093/hr/uhad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/15/2023] [Indexed: 01/26/2024]
Abstract
Cytosine and adenosine base editors (CBE and ABE) have been widely used in plants, greatly accelerating gene function research and crop breeding. Current base editors can achieve efficient A-to-G and C-to-T/G/A editing. However, efficient and heritable A-to-Y (A-to-T/C) editing remains to be developed in plants. In this study, a series of A-to-K base editor (AKBE) systems were constructed for monocot and dicot plants. Furthermore, nSpCas9 was replaced with the PAM-less Cas9 variant (nSpRY) to expand the target range of the AKBEs. Analysis of 228 T0 rice plants and 121 T0 tomato plants edited using AKBEs at 18 endogenous loci revealed that, in addition to highly efficient A-to-G substitution (41.0% on average), the plant AKBEs can achieve A-to-T conversion with efficiencies of up to 25.9 and 10.5% in rice and tomato, respectively. Moreover, the rice-optimized AKBE generates A-to-C conversion in rice, with an average efficiency of 1.8%, revealing the significant value of plant-optimized AKBE in creating genetic diversity. Although most of the A-to-T and A-to-C edits were chimeric, desired editing types could be transmitted to the T1 offspring, similar to the edits generated by the traditional ABE8e. Besides, using AKBEs to target tyrosine (Y, TAT) or cysteine (C, TGT) achieved the introduction of an early stop codon (TAG/TAA/TGA) of target genes, demonstrating its potential use in gene disruption.
Collapse
Affiliation(s)
- Xinbo Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan 572024, China
| | - Jiyong Xie
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Dong
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan 572024, China
| | - Zai Zheng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan 572024, China
| | - Rundong Shen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan 572024, China
| | - Xuesong Cao
- Institute of Advanced Biotechnology, and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoyan Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Mugui Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Jian-Kang Zhu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Institute of Advanced Biotechnology, and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yifu Tian
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan 572024, China
| |
Collapse
|
9
|
Bhuyan SJ, Kumar M, Ramrao Devde P, Rai AC, Mishra AK, Singh PK, Siddique KHM. Progress in gene editing tools, implications and success in plants: a review. Front Genome Ed 2023; 5:1272678. [PMID: 38144710 PMCID: PMC10744593 DOI: 10.3389/fgeed.2023.1272678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Genetic modifications are made through diverse mutagenesis techniques for crop improvement programs. Among these mutagenesis tools, the traditional methods involve chemical and radiation-induced mutagenesis, resulting in off-target and unintended mutations in the genome. However, recent advances have introduced site-directed nucleases (SDNs) for gene editing, significantly reducing off-target changes in the genome compared to induced mutagenesis and naturally occurring mutations in breeding populations. SDNs have revolutionized genetic engineering, enabling precise gene editing in recent decades. One widely used method, homology-directed repair (HDR), has been effective for accurate base substitution and gene alterations in some plant species. However, its application has been limited due to the inefficiency of HDR in plant cells and the prevalence of the error-prone repair pathway known as non-homologous end joining (NHEJ). The discovery of CRISPR-Cas has been a game-changer in this field. This system induces mutations by creating double-strand breaks (DSBs) in the genome and repairing them through associated repair pathways like NHEJ. As a result, the CRISPR-Cas system has been extensively used to transform plants for gene function analysis and to enhance desirable traits. Researchers have made significant progress in genetic engineering in recent years, particularly in understanding the CRISPR-Cas mechanism. This has led to various CRISPR-Cas variants, including CRISPR-Cas13, CRISPR interference, CRISPR activation, base editors, primes editors, and CRASPASE, a new CRISPR-Cas system for genetic engineering that cleaves proteins. Moreover, gene editing technologies like the prime editor and base editor approaches offer excellent opportunities for plant genome engineering. These cutting-edge tools have opened up new avenues for rapidly manipulating plant genomes. This review article provides a comprehensive overview of the current state of plant genetic engineering, focusing on recently developed tools for gene alteration and their potential applications in plant research.
Collapse
Affiliation(s)
- Suman Jyoti Bhuyan
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Pandurang Ramrao Devde
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Avinash Chandra Rai
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | | | - Prashant Kumar Singh
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | | |
Collapse
|
10
|
Tan J, Shen M, Chai N, Liu Q, Liu YG, Zhu Q. Genome editing for plant synthetic metabolic engineering and developmental regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154141. [PMID: 38016350 DOI: 10.1016/j.jplph.2023.154141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Plant metabolism and development are a reflection of the orderly expression of genetic information intertwined with the environment interactions. Genome editing is the cornerstone for scientists to modify endogenous genes or introduce exogenous functional genes and metabolic pathways, holding immense potential applications in molecular breeding and biosynthesis. Over the course of nearly a decade of development, genome editing has advanced significantly beyond the simple cutting of double-stranded DNA, now enabling precise base and fragment replacements, regulation of gene expression and translation, as well as epigenetic modifications. However, the utilization of genome editing in plant synthetic metabolic engineering and developmental regulation remains exploratory. Here, we provide an introduction and a comprehensive overview of the editing attributes associated with various CRISPR/Cas tools, along with diverse strategies for the meticulous control of plant metabolic pathways and developments. Furthermore, we discuss the limitations of current approaches and future prospects for genome editing-driven plant breeding.
Collapse
Affiliation(s)
- Jiantao Tan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| | - Mengyuan Shen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Nan Chai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qi Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Lin J, Yin X, Zeng Y, Hong X, Zhang S, Cui B, Zhu Q, Liang Z, Xue Z, Yang D. Progress and prospect: Biosynthesis of plant natural products based on plant chassis. Biotechnol Adv 2023; 69:108266. [PMID: 37778531 DOI: 10.1016/j.biotechadv.2023.108266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Plant-derived natural products are a specific class of active substances with numerous applications in the medical, energy, and industrial fields. Many of these substances are in high demand and have become the fundamental materials for various purposes. Recently, the use of synthetic biology to produce plant-derived natural products has become a significant trend. Plant chassis, in particular, offer unique advantages over microbial chassis in terms of cell structure, product affinity, safety, and storage. The development of the plant hairy root tissue culture system has accelerated the commercialization and industrialization of synthetic biology in the production of plant-derived natural products. This paper will present recent progress in the synthesis of various plant natural products using plant chassis, organized by the types of different structures. Additionally, we will summarize the four primary types of plant chassis used for synthesizing natural products from plant sources and review the enabling technologies that have contributed to the development of synthetic biology in recent years. Finally, we will present the role of isolated and combined use of different optimization strategies in breaking the upper limit of natural product production in plant chassis. This review aims to provide practical references for synthetic biologists and highlight the great commercial potential of plant chassis biosynthesis, such as hairy roots.
Collapse
Affiliation(s)
- Junjie Lin
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xue Yin
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin 150040, China
| | - Youran Zeng
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinyu Hong
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuncang Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Beimi Cui
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Qinlong Zhu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin 150040, China..
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, China.
| |
Collapse
|
12
|
Zhang C, Zhong X, Li S, Yan L, Li J, He Y, Lin Y, Zhang Y, Xia L. Artificial evolution of OsEPSPS through an improved dual cytosine and adenine base editor generated a novel allele conferring rice glyphosate tolerance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2194-2203. [PMID: 37402157 DOI: 10.1111/jipb.13543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023]
Abstract
Exploiting novel endogenous glyphosate-tolerant alleles is highly desirable and has promising potential for weed control in rice breeding. Here, through fusions of different effective cytosine and adenine deaminases with nCas9-NG, we engineered an effective surrogate two-component composite base editing system, STCBE-2, with improved C-to-T and A-to-G base editing efficiency and expanded the editing window. Furthermore, we targeted a rice endogenous OsEPSPS gene for artificial evolution through STCBE-2-mediated near-saturated mutagenesis. After hygromycin and glyphosate selection, we identified a novel OsEPSPS allele with an Asp-213-Asn (D213N) mutation (OsEPSPS-D213N) in the predicted glyphosate-binding domain, which conferred rice plants reliable glyphosate tolerance and had not been reported or applied in rice breeding. Collectively, we developed a novel dual base editor which will be valuable for artificial evolution of important genes in crops. And the novel glyphosate-tolerant rice germplasm generated in this study will benefit weeds management in rice paddy fields.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Xue Zhong
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- CAAS/Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), Sanya, 572024, China
| | - Shaoya Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- CAAS/Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), Sanya, 572024, China
- Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agricultural and Rural Affairs, Sanya, 572024, China
| | - Lei Yan
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jingying Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- CAAS/Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), Sanya, 572024, China
- Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agricultural and Rural Affairs, Sanya, 572024, China
| | - Yubing He
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- CAAS/Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), Sanya, 572024, China
- Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agricultural and Rural Affairs, Sanya, 572024, China
| | - Yong Lin
- Beijing Dabeinong Technology Group Co., Ltd, Beijing, 10080, China
| | - Yangjun Zhang
- Beijing Dabeinong Technology Group Co., Ltd, Beijing, 10080, China
| | - Lanqin Xia
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- CAAS/Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), Sanya, 572024, China
- Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agricultural and Rural Affairs, Sanya, 572024, China
| |
Collapse
|
13
|
Sretenovic S, Green Y, Wu Y, Cheng Y, Zhang T, Van Eck J, Qi Y. Genome- and transcriptome-wide off-target analyses of a high-efficiency adenine base editor in tomato. PLANT PHYSIOLOGY 2023; 193:291-303. [PMID: 37315207 DOI: 10.1093/plphys/kiad347] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
Adenine base editors (ABEs) are valuable, precise genome editing tools in plants. In recent years, the highly promising ADENINE BASE EDITOR8e (ABE8e) was reported for efficient A-to-G editing. However, compared to monocots, comprehensive off-target analyses for ABE8e are lacking in dicots. To determine the occurrence of off-target effects in tomato (Solanum lycopersicum), we assessed ABE8e and a high-fidelity version, ABE8e-HF, at 2 independent target sites in protoplasts, as well as stable T0 lines. Since ABE8e demonstrated higher on-target efficiency than ABE8e-HF in tomato protoplasts, we focused on ABE8e for off-target analyses in T0 lines. We conducted whole-genome sequencing (WGS) of wild-type (WT) tomato plants, green fluorescent protein (GFP)-expressing T0 lines, ABE8e-no-gRNA control T0 lines, and edited T0 lines. No guide RNA (gRNA)-dependent off-target edits were detected. Our data showed an average of approximately 1,200 to 1,500 single-nucleotide variations (SNVs) in either GFP control plants or base-edited plants. Also, no specific enrichment of A-to-G mutations were found in base-edited plants. We also conducted RNA sequencing (RNA-seq) of the same 6 base-edited and 3 GFP control T0 plants. On average, approximately 150 RNA-level SNVs were discovered per plant for either base-edited or GFP controls. Furthermore, we did not find enrichment of a TA motif on mutated adenine in the genomes and transcriptomes in base-edited tomato plants, as opposed to the recent discovery in rice (Oryza sativa). Hence, we could not find evidence for genome- and transcriptome-wide off-target effects by ABE8e in tomato.
Collapse
Affiliation(s)
- Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Yumi Green
- The Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yanhao Cheng
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Joyce Van Eck
- The Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY 14853, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| |
Collapse
|
14
|
Skrekas C, Limeta A, Siewers V, David F. Targeted In Vivo Mutagenesis in Yeast Using CRISPR/Cas9 and Hyperactive Cytidine and Adenine Deaminases. ACS Synth Biol 2023; 12:2278-2289. [PMID: 37486333 PMCID: PMC10443040 DOI: 10.1021/acssynbio.2c00690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 07/25/2023]
Abstract
Directed evolution is a preferred strategy to improve the function of proteins such as enzymes that act as bottlenecks in metabolic pathways. Common directed evolution approaches rely on error-prone PCR-based libraries where the number of possible variants is usually limited by cellular transformation efficiencies. Targeted in vivo mutagenesis can advance directed evolution approaches and help to overcome limitations in library generation. In the current study, we aimed to develop a high-efficiency time-controllable targeted mutagenesis toolkit in the yeast Saccharomyces cerevisiae by employing the CRISPR/Cas9 technology. To that end, we fused the dCas9 protein with hyperactive variants of adenine and cytidine deaminases aiming to create an inducible CRISPR-based mutagenesis tool targeting a specific DNA sequence in vivo with extended editing windows and high mutagenesis efficiency. We also investigated the effect of guide RNA multiplexing on the mutagenesis efficiency both phenotypically and on the DNA level.
Collapse
Affiliation(s)
- Christos Skrekas
- Department
of Life Sciences, Chalmers University of
Technology, Gothenburg SE-41296, Sweden
| | - Angelo Limeta
- Department
of Life Sciences, Chalmers University of
Technology, Gothenburg SE-41296, Sweden
| | - Verena Siewers
- Department
of Life Sciences, Chalmers University of
Technology, Gothenburg SE-41296, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Florian David
- Department
of Life Sciences, Chalmers University of
Technology, Gothenburg SE-41296, Sweden
| |
Collapse
|
15
|
Han Y, Jiang SZ, Zhong X, Chen X, Ma CK, Yang YM, Mao YC, Zhou SD, Zhou L, Zhang YF, Huang XH, Zhang H, Li LG, Zhu J, Yang ZN. Low temperature compensates for defective tapetum initiation to restore the fertility of the novel TGMS line ostms15. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37205779 PMCID: PMC10363753 DOI: 10.1111/pbi.14066] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
In rice breeding, thermosensitive genic male sterility (TGMS) lines based on the tms5 locus have been extensively employed. Here, we reported a novel rice TGMS line ostms15 (Oryza sativa ssp. japonica ZH11) which show male sterility under high temperature and fertility under low temperature. Field evaluation from 2018 to 2021 revealed that its sterility under high temperature is more stable than that of tms5 (ZH11), even with occasional low temperature periods, indicating its considerable value for rice breeding. OsTMS15 encodes an LRR-RLK protein MULTIPLE SPOROCYTE1 (MSP1) which was reported to interact with its ligand to initiate tapetum development for pollen formation. In ostms15, a point mutation from GTA (Val) to GAA (Glu) in its TIR motif of the LRR region led to the TGMS phenotype. Cellular observation and gene expression analysis showed that the tapetum is still present in ostms15, while its function was substantially impaired under high temperature. However, its tapetum function was restored under low temperature. The interaction between mOsTMS15 and its ligand was reduced while this interaction was partially restored under low temperature. Slow development was reported to be a general mechanism of P/TGMS fertility restoration. We propose that the recovered protein interaction together with slow development under low temperature compensates for the defective tapetum initiation, which further restores ostms15 fertility. We used base editing to create a number of TGMS lines with different base substitutions based on the OsTMS15 locus. This work may also facilitate the mechanistic investigation and breeding of other crops.
Collapse
Affiliation(s)
- Yu Han
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Sheng-Zhe Jiang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiang Zhong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xing Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chang-Kai Ma
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yan-Ming Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yi-Chen Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Si-Da Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Lei Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yan-Fei Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xue-Hui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hui Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Lai-Geng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
16
|
Adeyinka OS, Tabassum B, Koloko BL, Ogungbe IV. Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis. PLANTA 2023; 257:78. [PMID: 36913066 DOI: 10.1007/s00425-023-04110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The enhancement of CRISPR-Cas gene editing with robust nuclease activity promotes genetic modification of desirable agronomic traits, such as resistance to pathogens, drought tolerance, nutritional value, and yield-related traits in crops. The genetic diversity of food crops has reduced tremendously over the past twelve millennia due to plant domestication. This reduction presents significant challenges for the future especially considering the risks posed by global climate change to food production. While crops with improved phenotypes have been generated through crossbreeding, mutation breeding, and transgenic breeding over the years, improving phenotypic traits through precise genetic diversification has been challenging. The challenges are broadly associated with the randomness of genetic recombination and conventional mutagenesis. This review highlights how emerging gene-editing technologies reduce the burden and time necessary for developing desired traits in plants. Our focus is to provide readers with an overview of the advances in CRISPR-Cas-based genome editing for crop improvement. The use of CRISPR-Cas systems in generating genetic diversity to enhance the quality and nutritional value of staple food crops is discussed. We also outlined recent applications of CRISPR-Cas in developing pest-resistant crops and removing unwanted traits, such as allergenicity from crops. Genome editing tools continue to evolve and present unprecedented opportunities to enhance crop germplasm via precise mutations at the desired loci of the plant genome.
Collapse
Affiliation(s)
- Olawale Samuel Adeyinka
- Department of Chemistry, Physics and Atmospheric Sciences Jackson State University, Jackson, MS, 39217, USA.
| | - Bushra Tabassum
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics and Atmospheric Sciences Jackson State University, Jackson, MS, 39217, USA
| |
Collapse
|
17
|
Application of Nicotinamide to Culture Medium Improves the Efficiency of Genome Editing in Hexaploid Wheat. Int J Mol Sci 2023; 24:ijms24054416. [PMID: 36901844 PMCID: PMC10002385 DOI: 10.3390/ijms24054416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
Histone acetylation is the earliest and most well-characterized of post-translation modifications. It is mediated by histone acetyltransferases (HAT) and histone deacetylases (HDAC). Histone acetylation could change the chromatin structure and status and further regulate gene transcription. In this study, nicotinamide, a histone deacetylase inhibitor (HDACi), was used to enhance the efficiency of gene editing in wheat. Transgenic immature and mature wheat embryos harboring a non-mutated GUS gene, the Cas9 and a GUS-targeting sgRNA were treated with nicotinamide in two concentrations (2.5 and 5 mM) for 2, 7, and 14 days in comparison with a no-treatment control. The nicotinamide treatment resulted in GUS mutations in up to 36% of regenerated plants, whereas no mutants were obtained from the non-treated embryos. The highest efficiency was achieved when treated with 2.5 mM nicotinamide for 14 days. To further validate the impact of nicotinamide treatment on the effectiveness of genome editing, the endogenous TaWaxy gene, which is responsible for amylose synthesis, was tested. Utilizing the aforementioned nicotinamide concentration to treat embryos containing the molecular components for editing the TaWaxy gene, the editing efficiency could be increased to 30.3% and 13.3%, respectively, for immature and mature embryos in comparison to the 0% efficiency observed in the control group. In addition, nicotinamide treatment during transformation progress could also improve the efficiency of genome editing approximately threefold in a base editing experiment. Nicotinamide, as a novel approach, may be employed to improve the editing efficacy of low-efficiency genome editing tools such as base editing and prime editing (PE) systems in wheat.
Collapse
|
18
|
Li G, Sretenovic S, Coleman G, Qi Y. Base Editing in Poplar Through an Agrobacterium-Mediated Transformation Method. Methods Mol Biol 2023; 2653:53-71. [PMID: 36995619 DOI: 10.1007/978-1-0716-3131-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
CRISPR-Cas9 systems have revolutionized genome editing in plants and facilitated gene knockout and functional genomic studies in woody plants, like poplar. However, in tree species, previous studies have only focused on targeting indel mutations through CRISPR-based nonhomologous end joining (NHEJ) pathway. Cytosine base editors (CBEs) and adenine base editors (ABEs) enable C-to-T and A-to-G base changes, respectively. These base editors can introduce premature stop codons and amino acid changes, alter RNA splicing sites, and edit cis-regulatory elements of promoters. Base editing systems have only been recently established in trees. In this chapter, we describe a detailed, robust, and thoroughly tested protocol for preparing T-DNA vectors with two highly efficient CBEs, PmCDA1-BE3 and A3A/Y130F-BE3, and the highly efficient ABE8e as well as delivering the T-DNA through an improved protocol for Agrobacterium-mediated transformation in poplar. This chapter will provide promising application potential for precise base editing in poplar and other trees.
Collapse
Affiliation(s)
- Gen Li
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Gary Coleman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
19
|
Wu Y, Ren Q, Zhong Z, Liu G, Han Y, Bao Y, Liu L, Xiang S, Liu S, Tang X, Zhou J, Zheng X, Sretenovic S, Zhang T, Qi Y, Zhang Y. Genome-wide analyses of PAM-relaxed Cas9 genome editors reveal substantial off-target effects by ABE8e in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1670-1682. [PMID: 35524459 PMCID: PMC9398351 DOI: 10.1111/pbi.13838] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/28/2022] [Indexed: 05/04/2023]
Abstract
PAM-relaxed Cas9 nucleases, cytosine base editors and adenine base editors are promising tools for precise genome editing in plants. However, their genome-wide off-target effects are largely unexplored. Here, we conduct whole-genome sequencing (WGS) analyses of transgenic plants edited by xCas9, Cas9-NGv1, Cas9-NG, SpRY, nCas9-NG-PmCDA1, nSpRY-PmCDA1 and nSpRY-ABE8e in rice. Our results reveal that Cas9 nuclease and base editors, when coupled with the same guide RNA (gRNA), prefer distinct gRNA-dependent off-target sites. De novo generated gRNAs by SpRY editors lead to additional, but insubstantial, off-target mutations. Strikingly, ABE8e results in ~500 genome-wide A-to-G off-target mutations at TA motif sites per transgenic plant. ABE8e's preference for the TA motif is also observed at the target sites. Finally, we investigate the timeline and mechanism of somaclonal variation due to tissue culture, which chiefly contributes to the background mutations. This study provides a comprehensive understanding on the scale and mechanisms of off-target and background mutations occurring during PAM-relaxed genome editing in plants.
Collapse
Affiliation(s)
- Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Qiurong Ren
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zhaohui Zhong
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yangshuo Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yu Bao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Li Liu
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Shuyue Xiang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Shuo Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Xu Tang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jianping Zhou
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xuelian Zheng
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Simon Sretenovic
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yiping Qi
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMarylandUSA
| | - Yong Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and PhysiologyAgricultural College of Yangzhou UniversityYangzhouChina
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
20
|
Zeng D, Zheng Z, Liu Y, Liu T, Li T, Liu J, Luo Q, Xue Y, Li S, Chai N, Yu S, Xie X, Liu YG, Zhu Q. Exploring C-to-G and A-to-Y Base Editing in Rice by Using New Vector Tools. Int J Mol Sci 2022; 23:ijms23147990. [PMID: 35887335 PMCID: PMC9318980 DOI: 10.3390/ijms23147990] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
CRISPR/Cas9-based cytosine base editors (CBEs) and adenine base editors (ABEs) can efficiently mediate C-to-T/G-to-A and A-to-G/T-to-C substitutions, respectively; however, achieving base transversions (C-to-G/C-to-A and A-to-T/A-to-C) is challenging and has been rarely studied in plants. Here, we constructed new plant C-to-G base editors (CGBEs) and new A-to-Y (T/C) base editors and explored their base editing characteristics in rice. First, we fused the highly active cytidine deaminase evoFENRY and the PAM-relaxed Cas9-nickase variant Cas9n-NG with rice and human uracil DNA N-glycosylase (rUNG and hUNG), respectively, to construct CGBE-rUNG and CGBE-hUNG vector tools. The analysis of five NG-PAM target sites showed that these CGBEs achieved C-to-G conversions with monoallelic editing efficiencies of up to 27.3% in T0 rice, with major byproducts being insertion/deletion mutations. Moreover, for the A-to-Y (C or T) editing test, we fused the highly active adenosine deaminase TadA8e and the Cas9-nickase variant SpGn (with NG-PAM) with Escherichia coli endonuclease V (EndoV) and human alkyladenine DNA glycosylase (hAAG), respectively, to generate ABE8e-EndoV and ABE8e-hAAG vectors. An assessment of five NG-PAM target sites showed that these two vectors could efficiently produce A-to-G substitutions in a narrow editing window; however, no A-to-Y editing was detected. Interestingly, the ABE8e-EndoV also generated precise small fragment deletions in the editing window from the 5′-deaminated A base to the SpGn cleavage site, suggesting its potential value in producing predictable small-fragment deletion mutations. Overall, we objectively evaluated the editing performance of CGBEs in rice, explored the possibility of A-to-Y editing, and developed a new ABE8e-EndoV tool, thus providing a valuable reference for improving and enriching base editing tools in plants.
Collapse
Affiliation(s)
- Dongchang Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhiye Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Yuxin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Tie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Jianhong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Qiyu Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Yang Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Shengting Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Nan Chai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Suize Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (D.Z.); (Z.Z.); (Y.L.); (T.L.); (T.L.); (J.L.); (Q.L.); (Y.X.); (S.L.); (N.C.); (S.Y.); (X.X.); (Y.-G.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
21
|
Zhang RX, Li BB, Yang ZG, Huang JQ, Sun WH, Bhanbhro N, Liu WT, Chen KM. Dissecting Plant Gene Functions Using CRISPR Toolsets for Crop Improvement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7343-7359. [PMID: 35695482 DOI: 10.1021/acs.jafc.2c01754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The CRISPR-based gene editing technology has become more and more powerful in genome manipulation for agricultural breeding, with numerous improved toolsets springing up. In recent years, many CRISPR toolsets for gene editing, such as base editors (BEs), CRISPR interference (CRISPRi), CRISPR activation (CRISPRa), and plant epigenetic editors (PEEs), have been developed to clarify gene function and full-level gene regulation. Here, we comprehensively summarize the application and capacity of the different CRISPR toolsets in the study of plant gene expression regulation, highlighting their potential application in gene regulatory networks' analysis. The general problems in CRISPR application and the optimal solutions in the existing schemes for high-throughput gene function analysis are also discussed. The CRISPR toolsets targeting gene manipulation discussed here provide new solutions for further genetic improvement and molecular breeding of crops.
Collapse
Affiliation(s)
- Rui-Xiang Zhang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zheng-Guang Yang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia-Qi Huang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Wei-Hang Sun
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nadeem Bhanbhro
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
22
|
Tan J, Zeng D, Zhao Y, Wang Y, Liu T, Li S, Xue Y, Luo Y, Xie X, Chen L, Liu Y, Zhu Q. PhieABEs: a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:934-943. [PMID: 34984801 PMCID: PMC9055815 DOI: 10.1111/pbi.13774] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Adenine base editors (ABEs), which are generally engineered adenosine deaminases and Cas variants, introduce site-specific A-to-G mutations for agronomic trait improvement. However, notably varying editing efficiencies, restrictive requirements for protospacer-adjacent motifs (PAMs) and a narrow editing window greatly limit their application. Here, we developed a robust high-efficiency ABE (PhieABE) toolbox for plants by fusing an evolved, highly active form of the adenosine deaminase TadA8e and a single-stranded DNA-binding domain (DBD), based on PAM-less/free Streptococcus pyogenes Cas9 (SpCas9) nickase variants that recognize the PAM NGN (for SpCas9n-NG and SpGn) or NNN (for SpRYn). By targeting 29 representative targets in rice and assessing the results, we demonstrate that PhieABEs have significantly improved base-editing activity, expanded target range and broader editing windows compared to the ABE7.10 and general ABE8e systems. Among these PhieABEs, hyper ABE8e-DBD-SpRYn (hyABE8e-SpRY) showed nearly 100% editing efficiency at some tested sites, with a high proportion of homozygous base substitutions in the editing windows and no single guide RNA (sgRNA)-dependent off-target changes. The original sgRNA was more compatible with PhieABEs than the evolved sgRNA. In conclusion, the DBD fusion effectively promotes base-editing efficiency, and this novel PhieABE toolbox should have wide applications in plant functional genomics and crop improvement.
Collapse
Affiliation(s)
- Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Dongchang Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yanchang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yaxi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Shuangchun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yang Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yuyu Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yao‐Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
23
|
Wei C, Liu H, Wang W, Luo P, Chen Q, Li R, Wang C, Botella JR, Zhang H. Expanding the Editing Window of Cytidine Base Editors With the Rad51 DNA-Binding Domain in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:865848. [PMID: 35548314 PMCID: PMC9083192 DOI: 10.3389/fpls.2022.865848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/18/2022] [Indexed: 06/15/2023]
Abstract
Recently developed base editors provide a powerful tool for plant research and crop improvement. Although a number of different deaminases and Cas proteins have been used to improve base editors the editing efficiency, and editing window are still not optimal. Fusion of a non-sequence-specific single-stranded DNA-binding domain (DBD) from the human Rad51 protein between Cas9 nickase and the deaminase has been reported to dramatically increase the editing efficiency and expand the editing window of base editors in the mammalian cell lines and mouse embryos. We report the use of this strategy in rice, by fusing a rice codon-optimized human Rad51 DBD to the cytidine base editors AncBE4max, AncBE4max-NG, and evoFERNY. Our results show that the addition of Rad51 DBD did not increase editing efficiency in the major editing window but the editing range was expanded in all the three systems. Replacing the human Rad51 DBD with the rice Rad51 DBD homolog also expanded the editing window effectively.
Collapse
Affiliation(s)
- Chunjie Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hao Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenwen Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Pengyu Luo
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qiuling Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Rou Li
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Chong Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - José Ramón Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Hui Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
24
|
Hua K, Han P, Zhu JK. Improvement of base editors and prime editors advances precision genome engineering in plants. PLANT PHYSIOLOGY 2022; 188:1795-1810. [PMID: 34962995 PMCID: PMC8968349 DOI: 10.1093/plphys/kiab591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 05/11/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein (Cas)-mediated gene disruption has revolutionized biomedical research as well as plant and animal breeding. However, most disease-causing mutations and agronomically important genetic variations are single base polymorphisms (single-nucleotide polymorphisms) that require precision genome editing tools for correction of the sequences. Although homology-directed repair of double-stranded breaks (DSBs) can introduce precise changes, such repairs are inefficient in differentiated animal and plant cells. Base editing and prime editing are two recently developed genome engineering approaches that can efficiently introduce precise edits into target sites without requirement of DSB formation or donor DNA templates. They have been applied in several plant species with promising results. Here, we review the extensive literature on improving the efficiency, target scope, and specificity of base editors and prime editors in plants. We also highlight recent progress on base editing in plant organellar genomes and discuss how these precision genome editing tools are advancing basic plant research and crop breeding.
Collapse
Affiliation(s)
- Kai Hua
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Peijin Han
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| |
Collapse
|
25
|
Huang X, Wang Y, Wang N. Base Editors for Citrus Gene Editing. Front Genome Ed 2022; 4:852867. [PMID: 35296063 PMCID: PMC8919994 DOI: 10.3389/fgeed.2022.852867] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
Base editors, such as adenine base editors (ABE) and cytosine base editors (CBE), provide alternatives for precise genome editing without generating double-strand breaks (DSBs), thus avoiding the risk of genome instability and unpredictable outcomes caused by DNA repair. Precise gene editing mediated by base editors in citrus has not been reported. Here, we have successfully adapted the ABE to edit the TATA box in the promoter region of the canker susceptibility gene LOB1 from TATA to CACA in grapefruit (Citrus paradise) and sweet orange (Citrus sinensis). TATA-edited plants are resistant to the canker pathogen Xanthomonas citri subsp. citri (Xcc). In addition, CBE was successfully used to edit the acetolactate synthase (ALS) gene in citrus. ALS-edited plants were resistant to the herbicide chlorsulfuron. Two ALS-edited plants did not show green fluorescence although the starting construct for transformation contains a GFP expression cassette. The Cas9 gene was undetectable in the herbicide-resistant citrus plants. This indicates that the ALS edited plants are transgene-free, representing the first transgene-free gene-edited citrus using the CRISPR technology. In summary, we have successfully adapted the base editors for precise citrus gene editing. The CBE base editor has been used to generate transgene-free citrus via transient expression.
Collapse
|
26
|
Xu R, Kong F, Qin R, Li J, Liu X, Wei P. Development of an efficient plant dual cytosine and adenine editor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1600-1605. [PMID: 34191398 DOI: 10.1111/jipb.13146] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
An enhanced CDA-like (eCDAL) was established from Japanese lamprey CDA1-like 4 to achieve a high editing frequency in a broad region as a C-terminal cytosine base editors (CT-CBE). Then, a novel plant dual-base editor version 1(pDuBE1) was developed by integrating TadA-8e into eCDAL. The editing efficiency of pDuBE1 could reach to 87.6%, with frequencies of concurrent A-to-G and C-to-T conversions as high as 49.7% in stably transformed plant cells. Our results showed that pDuBE1 could mediate robust dual editing in plant genome, providing a powerful manipulation tool for precise crop breeding and screening platforms for in planta direct evolution.
Collapse
Affiliation(s)
- Rongfang Xu
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Fanna Kong
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Ruiying Qin
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Juan Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Xiaoshuang Liu
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Pengcheng Wei
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
27
|
Xia L, Wang K, Zhu JK. The power and versatility of genome editing tools in crop improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1591-1594. [PMID: 34379361 DOI: 10.1111/jipb.13160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Lanqin Xia
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Kejian Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
28
|
Molla KA, Sretenovic S, Bansal KC, Qi Y. Precise plant genome editing using base editors and prime editors. NATURE PLANTS 2021; 7:1166-1187. [PMID: 34518669 DOI: 10.1038/s41477-021-00991-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/26/2021] [Indexed: 05/06/2023]
Abstract
The development of CRISPR-Cas systems has sparked a genome editing revolution in plant genetics and breeding. These sequence-specific RNA-guided nucleases can induce DNA double-stranded breaks, resulting in mutations by imprecise non-homologous end joining (NHEJ) repair or precise DNA sequence replacement by homology-directed repair (HDR). However, HDR is highly inefficient in many plant species, which has greatly limited precise genome editing in plants. To fill the vital gap in precision editing, base editing and prime editing technologies have recently been developed and demonstrated in numerous plant species. These technologies, which are mainly based on Cas9 nickases, can introduce precise changes into the target genome at a single-base resolution. This Review provides a timely overview of the current status of base editors and prime editors in plants, covering both technological developments and biological applications.
Collapse
Affiliation(s)
- Kutubuddin A Molla
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India.
| | - Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Kailash C Bansal
- The Alliance of Bioversity International and the International Centre for Tropical Agriculture, Asia-India, New Delhi, India
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|