1
|
Zhu M, Zhong T, Xu L, Guo C, Zhang X, Liu Y, Zhang Y, Li Y, Xie Z, Liu T, Jiang F, Fan X, Balint-Kurti P, Xu M. The ZmCPK39-ZmDi19-ZmPR10 immune module regulates quantitative resistance to multiple foliar diseases in maize. Nat Genet 2024:10.1038/s41588-024-01968-4. [PMID: 39496881 DOI: 10.1038/s41588-024-01968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/01/2024] [Indexed: 11/06/2024]
Abstract
Gray leaf spot, northern leaf blight and southern leaf blight are three of the most destructive foliar diseases affecting maize (Zea mays L.). Here we identified a gene, ZmCPK39, that encodes a calcium-dependent protein kinase and negatively regulates quantitative resistance to these three diseases. The ZmCPK39 allele in the resistant line displayed significantly lower pathogen-induced gene expression than that in the susceptible line. A marked decrease in ZmCPK39 abundance mitigated the phosphorylation and degradation of the transcription factor ZmDi19. This led to elevated expression of ZmPR10, a gene known to encode an antimicrobial protein, thereby enhancing maize resistance to foliar diseases. Moreover, the F1 hybrid with reduced ZmCPK39 expression favored disease resistance, thereby increasing yield. Hence, the discovery of the ZmCPK39-ZmDi19-ZmPR10 immune module provides insight into the mechanisms underlying broad-spectrum quantitative disease resistance and also offers a new avenue for the genetic control of maize foliar diseases.
Collapse
Affiliation(s)
- Mang Zhu
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
| | - Tao Zhong
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
| | - Ling Xu
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China
- College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Chenyu Guo
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
| | - Xiaohui Zhang
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
| | - Yulin Liu
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
| | - Yan Zhang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, P. R. China
| | - Yancong Li
- Baoshan Institute of Agricultural Science, Baoshan, P. R. China
| | - Zhijian Xie
- Baoshan Institute of Agricultural Science, Baoshan, P. R. China
| | - Tingting Liu
- Baoshan Institute of Agricultural Science, Baoshan, P. R. China
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, P. R. China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, P. R. China
| | - Peter Balint-Kurti
- USDA-ARS Plant Science Research Unit, Raleigh NC and Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China.
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China.
| |
Collapse
|
2
|
Fu J, Zhang C, Yu Q, Xian B, Lin D, Zhang M, Zhong X, Liu Y, Li M, He H, Yang W, Chen S, He Y, Li Q. Systematic analysis and functional verification of citrus ascorbate peroxidases reveal that CsAPX01 and CsAPX02 negatively regulate citrus bacterial canker through the hydrogen peroxide regulation. Int J Biol Macromol 2024; 280:135717. [PMID: 39293630 DOI: 10.1016/j.ijbiomac.2024.135717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Ascorbate peroxidases (APXs) are antioxidant enzymes that play vital roles in redox homeostasis in plants. Citrus is susceptible to infection by Xanthomonas citri subsp. citri (Xcc), resulting in citrus bacterial canker (CBC). The present study used bioinformatic and expression analyses to investigate the APX family in Citrus sinensis. Bioinformatic research revealed the chromosomal locations, phylogeny, gene structure, promoter elements, functional domains, conserved motifs, and most likely physicochemical properties of the sequences. Six APXs clustered in three groups were identified, with each protein containing a single peroxidase domain. The promoter regions contained a variety of transcription factor-binding and hormone-response components. Xcc infection induced different CsAPX01 and CsAPX02 expressions in the CBC-susceptible Wanjincheng and CBC-resistant Kumquat varieties. Subcellular localization and transient expression showed that CsAPX01 and CsAPX02 were expressed in the cytoplasm and nucleus and had hydrogen peroxide (H2O2)-scavenging activity. Virus-induced gene silencing (VIGS) of CsAPX01 and CsAPX02 resulted in strong resistance to CBC and H2O2 bursts without effects on the plant phenotype. The current study focused on investigating and characterizing the citrus APX family. It was found that CsAPX01 and CsAPX02 exacerbated CBC by altering the balance of H2O2. These findings emphasize the importance of APXs in enhancing plant resistance to pathogens.
Collapse
Affiliation(s)
- Jia Fu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Chenxi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Qiyuan Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Baohang Xian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Duo Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Miao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Xin Zhong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Yiqi Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Man Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Houzheng He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Wanming Yang
- Chongqing Customs District P.R. China, Yubei, Chongqing 401147, China
| | - Shanchun Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Yongrui He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China.
| | - Qiang Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China.
| |
Collapse
|
3
|
Nisa WU, Sandhu S, Nair SK, Kaur H, Kumar A, Rashid Z, Saykhedkar G, Vikal Y. Insights into maydis leaf blight resistance in maize: a comprehensive genome-wide association study in sub-tropics of India. BMC Genomics 2024; 25:760. [PMID: 39103778 DOI: 10.1186/s12864-024-10655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND In the face of contemporary climatic vulnerabilities and escalating global temperatures, the prevalence of maydis leaf blight (MLB) poses a potential threat to maize production. This study endeavours to discern marker-trait associations and elucidate the candidate genes that underlie resistance to MLB in maize by employing a diverse panel comprising 336 lines. The panel was screening for MLB across four environments, employing standard artificial inoculation techniques. Genome-wide association studies (GWAS) and haplotype analysis were conducted utilizing a total of 128,490 SNPs obtained from genotyping-by-sequencing (GBS). RESULTS GWAS identified 26 highly significant SNPs associated with MLB resistance, among the markers examined. Seven of these SNPs, reported in novel chromosomal bins (9.06, 5.01, 9.01, 7.04, 4.06, 1.04, and 6.05) were associated with genes: bzip23, NAGS1, CDPK7, aspartic proteinase NEP-2, VQ4, and Wun1, which were characterized for their roles in diminishing fungal activity, fortifying defence mechanisms against necrotrophic pathogens, modulating phyto-hormone signalling, and orchestrating oxidative burst responses. Gene mining approach identified 22 potential candidate genes associated with SNPs due to their functional relevance to resistance against necrotrophic pathogens. Notably, bin 8.06, which hosts five SNPs, showed a connection to defense-regulating genes against MLB, indicating the potential formation of a functional gene cluster that triggers a cascade of reactions against MLB. In silico studies revealed gene expression levels exceeding ten fragments per kilobase million (FPKM) for most genes and demonstrated coexpression among all candidate genes in the coexpression network. Haplotype regression analysis revealed the association of 13 common significant haplotypes at Bonferroni ≤ 0.05. The phenotypic variance explained by these significant haplotypes ranged from low to moderate, suggesting a breeding strategy that combines multiple resistance alleles to enhance resistance to MLB. Additionally, one particular haplotype block (Hap_8.3) was found to consist of two SNPs (S8_152715134, S8_152460815) identified in GWAS with 9.45% variation explained (PVE). CONCLUSION The identified SNPs/ haplotypes associated with the trait of interest contribute to the enrichment of allelic diversity and hold direct applicability in Genomics Assisted Breeding for enhancing MLB resistance in maize.
Collapse
Affiliation(s)
- Wajhat- Un- Nisa
- Dept. of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Surinder Sandhu
- Dept. of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India.
| | | | - Harleen Kaur
- Dept. of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Ashok Kumar
- Regional Research Station, Punjab Agricultural University, Gurdaspur, Ludhiana, India
| | - Zerka Rashid
- International Maize and Wheat Improvement Centre (CIMMYT), Hyderabad, India
| | - Gajanan Saykhedkar
- International Maize and Wheat Improvement Centre (CIMMYT), Hyderabad, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
4
|
Cao Y, Zhang Q, Liu Y, Yan T, Ding L, Yang Y, Meng Y, Shan W. The RXLR effector PpE18 of Phytophthora parasitica is a virulence factor and suppresses peroxisome membrane-associated ascorbate peroxidase NbAPX3-1-mediated plant immunity. THE NEW PHYTOLOGIST 2024; 243:1472-1489. [PMID: 38877698 DOI: 10.1111/nph.19902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Phytophthora parasitica causes diseases on a broad range of host plants. It secretes numerous effectors to suppress plant immunity. However, only a few virulence effectors in P. parasitica have been characterized. Here, we highlight that PpE18, a conserved RXLR effector in P. parasitica, was a virulence factor and suppresses Nicotiana benthamiana immunity. Utilizing luciferase complementation, co-immunoprecipitation, and GST pull-down assays, we determined that PpE18 targeted NbAPX3-1, a peroxisome membrane-associated ascorbate peroxidase with reactive oxygen species (ROS)-scavenging activity and positively regulates plant immunity in N. benthamiana. We show that the ROS-scavenging activity of NbAPX3-1 was critical for its immune function and was hindered by the binding of PpE18. The interaction between PpE18 and NbAPX3-1 resulted in an elevation of ROS levels in the peroxisome. Moreover, we discovered that the ankyrin repeat-containing protein NbANKr2 acted as a positive immune regulator, interacting with both NbAPX3-1 and PpE18. NbANKr2 was required for NbAPX3-1-mediated disease resistance. PpE18 competitively interfered with the interaction between NbAPX3-1 and NbANKr2, thereby weakening plant resistance. Our results reveal an effective counter-defense mechanism by which P. parasitica employed effector PpE18 to suppress host cellular defense, by suppressing biochemical activity and disturbing immune function of NbAPX3-1 during infection.
Collapse
Affiliation(s)
- Yimeng Cao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiang Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tiantian Yan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liwen Ding
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuling Meng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weixing Shan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
5
|
Bi Y, Jiang F, Yin X, Shaw RK, Guo R, Wang J, Fan X. Identification of candidate gene associated with maize northern leaf blight resistance in a multi-parent population. PLANT CELL REPORTS 2024; 43:189. [PMID: 38960996 PMCID: PMC11222180 DOI: 10.1007/s00299-024-03269-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
KEY MESSAGE QTL mapping combined with genome-wide association studies, revealed a potential candidate gene for resistance to northern leaf blight in the tropical CATETO-related maize line YML226, providing a basis for marker-assisted selection of maize varieties Northern leaf blight (NLB) is a foliar disease that can cause severe yield losses in maize. Identifying and utilizing NLB-resistant genes is the most effective way to prevent and control this disease. In this study, five important inbred lines of maize were used as parental lines to construct a multi-parent population for the identification of NLB-resistant loci. QTL mapping and GWAS analysis revealed that QTL qtl_YML226_1, which had the largest phenotypic variance explanation (PVE) of 9.28%, and SNP 5-49,193,921 were co-located in the CATETO-related line YML226. This locus was associated with the candidate gene Zm00001d014471, which encodes a pentatricopeptide repeat (PPR) protein. In the coding region of Zm00001d014471, YML226 had more specific SNPs than the other parental lines. qRT-PCR showed that the relative expressions of Zm00001d014471 in inoculated and uninoculated leaves of YML226 were significantly higher, indicating that the expression of the candidate gene was correlated with NLB resistance. The analysis showed that the higher expression level in YML226 might be caused by SNP mutations. This study identified NLB resistance candidate loci and genes in the tropical maize inbred line YML226 derived from the CATETO germplasm, thereby providing a theoretical basis for using modern marker-assisted breeding techniques to select genetic resources resistant to NLB.
Collapse
Affiliation(s)
- Yaqi Bi
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xingfu Yin
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ranjan K Shaw
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ruijia Guo
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jing Wang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China.
| |
Collapse
|
6
|
Augustine L, Varghese L, Kappachery S, Ramaswami VM, Surendrababu SP, Sakuntala M, Thomas G. Comparative analyses reveal a phenylalanine ammonia lyase dependent and salicylic acid mediated host resistance in Zingiber zerumbet against the necrotrophic soft rot pathogen Pythium myriotylum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111972. [PMID: 38176527 DOI: 10.1016/j.plantsci.2023.111972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Little is known about the molecular basis of host defense in resistant wild species Zingiber zerumbet (L.) Smith against the soil-borne, necrotrophic oomycete pathogen Pythium myriotylum Drechsler, which causes the devastating soft rot disease in the spice crop ginger (Zingiber officinale Roscoe). We investigated the pattern of host defense between Z. zerumbet and ginger in response to P. myriotylum inoculation. Analysis of gene expression microarray data revealed enrichment of phenylpropanoid biosynthetic genes, particularly lignin biosynthesis genes, in pathogen-inoculated Z. zerumbet compared to ginger. RT-qPCR analysis showed the robust activation of phenylpropanoid biosynthesis genes in Z. zerumbet, including the core genes PAL, C4H, 4CL, and the monolignol biosynthesis and polymerization genes such as CCR, CAD, C3H, CCoAOMT, F5H, COMT, and LAC. Additionally, Z. zerumbet exhibited the accumulation of the phenolic acids including p-coumaric acid, sinapic acid, and ferulic acid that are characteristic of the cell walls of commelinoid monocots like Zingiberaceae and are involved in cell wall strengthening by cross linking with lignin. Z. zerumbet also had higher total lignin and total phenolics content compared to pathogen-inoculated ginger. Phloroglucinol staining revealed the enhanced fortification of cell walls in Z. zerumbet, specifically in xylem vessels and surrounding cells. The trypan blue staining indicated inhibition of pathogen growth in Z. zerumbet at the first leaf whorl, while ginger showed complete colonization of the pith within 36 h post inoculation (hpi). Accumulation of salicylic acid (SA) and induction of SA regulator NPR1 and the signaling marker PR1 were observed in Z. zerumbet. Silencing of PAL in Z. zerumbet through VIGS suppressed downstream genes, leading to reduced phenylpropanoid accumulation and SA level, resulting in the susceptibility of plants to P. myriotylum. These findings highlight the essential role of PAL-dependent mechanisms in resistance against P. myriotylum in Z. zerumbet. Moreover, our results suggest an unconventional role for SA in mediating host resistance against a necrotroph. Targeting the phenylpropanoid pathway could be a promising strategy for the effective management of P. myriotylum in ginger.
Collapse
Affiliation(s)
- Lesly Augustine
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram 695034, India
| | - Lini Varghese
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram 695034, India
| | - Sajeesh Kappachery
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram 695034, India
| | - Vinitha Meenakshy Ramaswami
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Swathy Puthanvila Surendrababu
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram 695034, India.
| | - Manjula Sakuntala
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - George Thomas
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India.
| |
Collapse
|
7
|
Rodríguez-Ruiz M, Houmani H, Muñoz-Vargas MA, Palma JM, Corpas FJ. Detection of Ascorbate Peroxidase (APX) Activity in Plant Tissues: Using Non-denaturing PAGE and Spectrophotometric Assay. Methods Mol Biol 2024; 2798:223-234. [PMID: 38587747 DOI: 10.1007/978-1-0716-3826-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
At the cellular level, the generation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), due to different abiotic or biotic stress, causes oxidative stress that induces an imbalance in the metabolism. Among the different H2O2-scavenging enzymatic antioxidants, ascorbate peroxidase (APX) is a heme-peroxidase that plays an important role in the ascorbate-glutathione pathway using ascorbate to reduce H2O2 to water. Using non-denaturing polyacrylamide gel electrophoresis (PAGE) in combination with a spectrophotometric assay for APX activity, the protocol allows identifying diverse APX isozymes present in different organs and plant species.
Collapse
Affiliation(s)
- Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signalling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), Granada, Spain.
| | - Hayet Houmani
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - María A Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signalling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), Granada, Spain
| | - José M Palma
- Spanish National Research Council, Estación Experimental del Zaidín, Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signalling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), Granada, Spain
| |
Collapse
|
8
|
Luo W, Tang Y, Li S, Zhang L, Liu Y, Zhang R, Diao X, Yu J. The m 6 A reader SiYTH1 enhances drought tolerance by affecting the messenger RNA stability of genes related to stomatal closure and reactive oxygen species scavenging in Setaria italica. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2569-2586. [PMID: 37861067 DOI: 10.1111/jipb.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Foxtail millet (Setaria italica), a vital drought-resistant crop, plays a significant role in ensuring food and nutritional security. However, its drought resistance mechanism is not fully understood. N6 -methyladenosine (m6 A) modification of RNA, a prevalent epi-transcriptomic modification in eukaryotes, provides a binding site for m6 A readers and affects plant growth and stress responses by regulating RNA metabolism. In this study, we unveiled that the YT521-B homology (YTH) family gene SiYTH1 positively regulated the drought tolerance of foxtail millet. Notably, the siyth1 mutant exhibited reduced stomatal closure and augmented accumulation of excessive H2 O2 under drought stress. Further investigations demonstrated that SiYTH1 positively regulated the transcripts harboring m6 A modification related to stomatal closure and reactive oxygen species (ROS) scavenging under drought stress. SiYTH1 was uniformly distributed in the cytoplasm of SiYTH1-GFP transgenic foxtail millet. It formed dynamic liquid-like SiYTH1 cytosol condensates in response to drought stress. Moreover, the cytoplasmic protein SiYTH1 was identified as a distinct m6 A reader, facilitating the stabilization of its directly bound SiARDP and ROS scavenging-related transcripts under drought stress. Furthermore, natural variation analysis revealed SiYTH1AGTG as the dominant allele responsible for drought tolerance in foxtail millet. Collectively, this study provides novel insights into the intricate mechanism of m6 A reader-mediated drought tolerance and presents a valuable genetic resource for improving drought tolerance in foxtail millet breeding.
Collapse
Affiliation(s)
- Weiwei Luo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuxiang Tang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shenglan Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Linlin Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuwei Liu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Renliang Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingjuan Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
9
|
Shafi S, Khan MA, Wani FJ, Sheikh FA, Ganai SA, Mughal NM, Shikari AB, Varshney RK, Djalovic I, Mir RR. Comprehensive biochemical approach for understanding the interaction between host "common bean" and pathogen " Colletotrichum lindemuthianum" causing bean anthracnose. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:2005-2020. [PMID: 38222272 PMCID: PMC10784445 DOI: 10.1007/s12298-023-01394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/16/2024]
Abstract
Anthracnose (ANT) caused by Colletotrichum lindemuthianum is the most devastating seed-borne fungal disease of common bean. In response to fungal infections, it is hypothesized that pathogen-plant interactions typically cause hypersensitive reactions by producing reactive oxygen species, hydrogen peroxide and lipid peroxidation of cell membranes. esent study was conducted by inoculating susceptible bean genotype "SB174" and resistant bean genotype "E10" with pathogen "C. lindemuthianum". Defense-related enzymes (ascorbate peroxidase, peroxidase, lipid peroxidase, and catalase) and C-based compounds (total phenols and flavonoids) were studied using the detached bean leaf method. Comparative defense response was studied in different plant tissues (pod, stem, and seed) in susceptible and resistant bean genotypes under uninoculated and pathogen-inoculated conditions. The host‒pathogen interaction was studied at mock inoculation, 2, 4 and 6 days after inoculation (dai). Comparing the pathogen-inoculated bean leaves to water-treated bean leaves, defense enzymes as well as total phenols and flavonoids exhibited differential expression. In a comparative study, the enzyme activity also displayed differential biochemical responses in pods, stems and seeds in both contrasting genotypes. For example, 5.1-fold (pod), 1.5-fold (stem) and 1.06-fold (seed) increases in ascorbate peroxidase activity were observed in the susceptible genotype at 6 dai compared to mock inoculation. Similarly, catalase activity in pods was upregulated (1.47-fold) in the resistant genotype and downregulated (1.30-fold) in the susceptible genotype at 6 dai. The study revealed that defense-related antioxidative enzymes, phenols and flavonoids are fine-tuned to detoxify important reactive oxygen species (ROS) molecules, induce systemic resistance and are successfully controlled in common bean plants against pathogen invasion.
Collapse
Affiliation(s)
- Safoora Shafi
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201 India
| | - Mohd Anwar Khan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201 India
| | - Fehim Jeelani Wani
- Division of Agricultural Economics & Statistics, SKUAST-Kashmir, Wadura, 193201 India
| | - Farooq Ahmad Sheikh
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201 India
| | - Shabir Ahmad Ganai
- Division of Basic Sciences & Humanities, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201 India
| | - Najeeb M Mughal
- Division of Plant Pathology, SKUAST-Kashmir, Shalimar, Srinagar 190025 India
| | - Asif Bashir Shikari
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201 India
| | - Rajeev Kumar Varshney
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA Australia
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, Novi Sad, Serbia
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201 India
| |
Collapse
|
10
|
Huang P, Tate M, Berg‐Falloure KM, Christensen SA, Zhang J, Schirawski J, Meeley R, Kolomiets MV. A non-JA producing oxophytodienoate reductase functions in salicylic acid-mediated antagonism with jasmonic acid during pathogen attack. MOLECULAR PLANT PATHOLOGY 2023; 24:725-741. [PMID: 36715587 PMCID: PMC10257049 DOI: 10.1111/mpp.13299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/11/2023]
Abstract
Peroxisome-localized oxo-phytodienoic acid (OPDA) reductases (OPR) are enzymes converting 12-OPDA into jasmonic acid (JA). However, the biochemical and physiological functions of the cytoplasmic non-JA producing OPRs remain largely unknown. Here, we generated Mutator-insertional mutants of the maize OPR2 gene and tested its role in resistance to pathogens with distinct lifestyles. Functional analyses showed that the opr2 mutants were more susceptible to the (hemi)biotrophic pathogens Colletotrichum graminicola and Ustilago maydis, but were more resistant to the necrotrophic fungus Cochliobolus heterostrophus. Hormone profiling revealed that increased susceptibility to C. graminicola was associated with decreased salicylic acid (SA) but increased JA levels. Mutation of the JA-producing lipoxygenase 10 (LOX10) reversed this phenotype in the opr2 mutant background, corroborating the notion that JA promotes susceptibility to this pathogen. Exogenous SA did not rescue normal resistance levels in opr2 mutants, suggesting that this SA-inducible gene is the key downstream component of the SA-mediated defences against C. graminicola. Disease assays of the single and double opr2 and lox10 mutants and the JA-deficient opr7opr8 mutants showed that OPR2 negatively regulates JA biosynthesis, and that JA is required for resistance against C. heterostrophus. Overall, this study uncovers a novel function of a non-JA producing OPR as a major negative regulator of JA biosynthesis during pathogen infection, a function that leads to its contrasting contribution to either resistance or susceptibility depending on pathogen lifestyle.
Collapse
Affiliation(s)
- Pei‐Cheng Huang
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTexasUSA
| | - Morgan Tate
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTexasUSA
| | | | - Shawn A. Christensen
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTexasUSA
- Present address:
Nutrition, Dietetics, and Food ScienceBrigham Young UniversityProvoUtahUSA
| | - Jinglan Zhang
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTexasUSA
- Present address:
Obstetrics and Gynecology HospitalInstitute of Reproduction and Development, Fudan UniversityShanghaiChina
| | - Jan Schirawski
- Matthias‐Schleiden Institute/Genetics, Faculty of Biological SciencesFriedrich‐Schiller UniversityJenaGermany
| | | | - Michael V. Kolomiets
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
11
|
Li S. Novel insight into functions of ascorbate peroxidase in higher plants: More than a simple antioxidant enzyme. Redox Biol 2023; 64:102789. [PMID: 37352686 DOI: 10.1016/j.redox.2023.102789] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
As plants are sessile organisms, they are inevitably exposed to a variety of environmental stimuli that trigger rapid changes in the generation and disposal of reactive oxygen species such as hydrogen peroxide (H2O2). A major H2O2 scavenging system in plant cells is the ascorbate-glutathione cycle, in which ascorbate peroxidase (APX) catalyzes the conversion of H2O2 into water employing ascorbate as specific electron donor. In higher plants, distinct APX isoforms can occur in multiple subcellular compartments, including chloroplasts, mitochondria, and peroxisomes and the cytosol, to modulate organellar and cellular levels of H2O2. It is well established that APX plays crucial roles in protecting plant cells against diverse environmental stresses, as well as in plant growth and development. Apart from ascorbate, recently, APXs have been found to have a broader substrate specificity and possess chaperone activity, hence participating various biological processes. In this review, we describe the antioxidant properties of APXs and highlight their novel roles beyond 'ascorbate peroxidases'.
Collapse
Affiliation(s)
- Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
12
|
Solís M, Hammerbacher A, Wingfield MJ, Naidoo S. A Robust Disease Scoring Method to Screen Eucalyptus for Resistance Against the Aggressive Leaf Pathogen Teratosphaeria destructans. PLANT DISEASE 2023; 107:PDIS06221347RE. [PMID: 36256741 DOI: 10.1094/pdis-06-22-1347-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Shoot and leaf blight caused by Teratosphaeria destructans is one of the most devastating foliar diseases on Eucalyptus. Therefore, breeding for resistance to this disease is considered urgent. Differences in susceptibility to T. destructans have been observed in the field but a robust inoculation protocol has, until recently, been unavailable and a disease scoring method for precise phenotyping has not been established. A first objective of this study was to determine the optimal conidial concentration for T. destructans inoculations on a susceptible Eucalyptus host. This concentration was then used to determine differences in susceptibility of six genotypes of Eucalyptus grandis × E. urophylla to the pathogen by assessing the percentage of infected stomata using electron microscopy and the percentage of leaf area covered by lesions (PLACL) using image processing. In addition, we developed a disease susceptibility index (SI) of six categories ranging from highly resistant (SI = 0) to highly susceptible (SI = 1.5 to 2). The more resistant genotypes were moderately resistant, with an SI value of 0.49 to 0.54 and a PLACL of 6.5 to 9%. In contrast, the more susceptible genotype scored an SI of 1.52 and PLACL of 48%. Host susceptibility was also assessed relative to the sporulation of the pathogen. This showed that the percentage of sporulation was not significantly correlated with host resistance. Overall, the results provide the basis for rigorous screening and selection of resistant genotypes to the disease caused by T. destructans using artificial inoculation.
Collapse
Affiliation(s)
- Myriam Solís
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
13
|
Chen C, Zhao Y, Tabor G, Nian H, Phillips J, Wolters P, Yang Q, Balint-Kurti P. A leucine-rich repeat receptor kinase gene confers quantitative susceptibility to maize southern leaf blight. THE NEW PHYTOLOGIST 2023; 238:1182-1197. [PMID: 36721267 DOI: 10.1111/nph.18781] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Southern leaf blight (SLB), caused by the necrotrophic fungal pathogen Cochliobolus heterostrophus (anamorph Bipolaris maydis), is a major foliar disease which causes significant yield losses in maize worldwide. A major quantitative trait locus, qSLB3.04 , conferring recessive resistance to SLB was previously mapped on maize chromosome 3. Using a combination of map-based cloning, association analysis, ethyl methanesulfonate and transposon mutagenesis, and CRISPR-Cas9 editing, we demonstrate that a leucine-rich repeat receptor-like kinase gene which we have called ChSK1 (Cochliobolus heterostrophus Susceptibility Kinase 1) at qSLB3.04 causes increased susceptibility to SLB. Genes of this type have generally been associated with the defense response. We present evidence that ChSK1 may be associated with suppression of the basal immune response. These findings contribute to our understanding of plant disease susceptibility genes and the potential to use them for engineering durable disease resistance.
Collapse
Affiliation(s)
- Chuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaqi Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Girma Tabor
- Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Huiqin Nian
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | - Qin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
- Plant Science Research Unit, USDA-ARS, Raleigh, NC, 27695, USA
| |
Collapse
|
14
|
Chen G, Xiao Y, Dai S, Dai Z, Wang X, Li B, Jaqueth JS, Li W, Lai Z, Ding J, Yan J. Genetic basis of resistance to southern corn leaf blight in the maize multi-parent population and diversity panel. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:506-520. [PMID: 36383026 PMCID: PMC9946143 DOI: 10.1111/pbi.13967] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Southern corn leaf blight (SLB), caused by the necrotrophic pathogen Cochliobolus heterostrophus, is one of the maize foliar diseases and poses a great threat to corn production around the world. Identification of genetic variations underlying resistance to SLB is of paramount importance to maize yield and quality. Here, we used a random-open-parent association mapping population containing eight recombinant inbred line populations and one association mapping panel consisting of 513 diversity maize inbred lines with high-density genetic markers to dissect the genetic basis of SLB resistance. Overall, 109 quantitative trait loci (QTLs) with predominantly small or moderate additive effects, and little epistatic effects were identified. We found 35 (32.1%) novel loci in comparison with the reported QTLs. We revealed that resistant alleles were significantly enriched in tropical accessions and the frequency of about half of resistant alleles decreased during the adaptation process owing to the selection of agronomic traits. A large number of annotated genes located in the SLB-resistant QTLs were shown to be involved in plant defence pathways. Integrating genome-wide association study, transcriptomic profiling, resequencing and gene editing, we identified ZmFUT1 and MYBR92 as the putative genes responsible for the major QTLs for resistance to C. heterostrophus. Our results present a comprehensive insight into the genetic basis of SLB resistance and provide resistant loci or genes as direct targets for crop genetic improvement.
Collapse
Affiliation(s)
- Gengshen Chen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Sha Dai
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Zhikang Dai
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xiaoming Wang
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | | | | | - Wenqiang Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Junqiang Ding
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
- The State Key Laboratory of Wheat and Maize Crop Science and Center for Crop Genome EngineeringHenan Agricultural UniversityZhengzhouChina
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| |
Collapse
|
15
|
Sun J, Pang C, Cheng X, Yang B, Jin B, Jin L, Qi Y, Sun Y, Chen X, Liu W, Cao H, Chen Y. Investigation of the antifungal activity of the dicarboximide fungicide iprodione against Bipolaris maydis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 190:105319. [PMID: 36740339 DOI: 10.1016/j.pestbp.2022.105319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Southern corn leaf blight (SCLB), mainly caused by Bipolaris maydis, is a destructive disease of maize worldwide. Iprodione is a widely used dicarboximide fungicide (DCF); however, its antifungal activity against B. maydis has not been well studied until now. In this study, the sensitivity of 103 B. maydis isolates to iprodione was determined, followed by biochemistry and physiology assays to ascertain the fungicide's effect on the morphology and other biological properties of B. maydis. The results indicated that iprodione exhibited strong inhibitory activity against B. maydis, and the EC50 values in inhibiting mycelial growth ranged from 0.088 to 1.712 μg/mL, with a mean value of 0.685 ± 0.687 μg/mL. After treatment with iprodione, conidial production of B. maydis was decreased significantly, and the mycelia branches increased with obvious shrinkage, distortion and fracture. Moreover, the expression levels of the osmotic pressure-related regulation genes histidine kinase (hk) and Ssk2-type mitogen-activated protein kinase (ssk2) were upregulated, the glycerin content of mycelia increased significantly, the relative conductivity of mycelia increased, and the cell wall membrane integrity was destroyed. The in vivo assay showed that iprodione at 200 μg/mL provided 79.16% protective efficacy and 90.92% curative efficacy, suggesting that the curative effect was better than the protective effect. All these results proved that iprodione exhibited strong inhibitory activity against B. maydis and provided excellent efficacy in controlling SCLB, indicating that iprodione could be an alternative candidate for the control of SCLB in China.
Collapse
Affiliation(s)
- Jiazhi Sun
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Chaoyue Pang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xin Cheng
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bingyun Yang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bingbing Jin
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Ling Jin
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yongxia Qi
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yang Sun
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Yu Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
16
|
Jardim-Messeder D, Caverzan A, Bastos GA, Galhego V, Souza-Vieira YD, Lazzarotto F, Felix-Mendes E, Lavaquial L, Nicomedes Junior J, Margis-Pinheiro M, Sachetto-Martins G. Genome-wide, evolutionary, and functional analyses of ascorbate peroxidase (APX) family in Poaceae species. Genet Mol Biol 2022; 46:e20220153. [PMID: 36512713 DOI: 10.1590/1678-4685-gmb-2022-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
Ascorbate peroxidases (APXs) are heme peroxidases involved in the control of hydrogen peroxide levels and signal transduction pathways related to development and stress responses. Here, a total of 238 APX, 30 APX-related (APX-R), and 34 APX-like (APX-L) genes were identified from 24 species from the Poaceae family. Phylogenetic analysis of APX indicated five distinct clades, equivalent to cytosolic (cAPX), peroxisomal (pAPX), mitochondrial (mitAPX), stromal (sAPX), and thylakoidal (tAPX) isoforms. Duplication events contributed to the expansion of this family and the divergence times. Different from other APX isoforms, the emergence of Poaceae mitAPXs occurred independently after eudicot and monocot divergence. Our results showed that the constitutive silencing of mitAPX genes is not viable in rice plants, suggesting that these isoforms are essential for rice regeneration or development. We also obtained rice plants silenced individually to sAPX isoforms, demonstrating that, different to plants double silenced to both sAPX and tAPX or single silenced to tAPX previously obtained, these plants do not show changes in the total APX activity and hydrogen peroxide content in the shoot. Among rice plants silenced to different isoforms, plants silenced to cAPX showed a higher decrease in total APX activity and an increase in hydrogen peroxide levels. These results suggest that the cAPXs are the main isoforms responsible for regulating hydrogen peroxide levels in the cell, whereas in the chloroplast, this role is provided mainly by the tAPX isoform. In addition to broadening our understanding of the core components of the antioxidant defense in Poaceae species, the present study also provides a platform for their functional characterization.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil.,Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Rio de Janeiro, RJ, Brazil
| | - Andreia Caverzan
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Gabriel Afonso Bastos
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Vanessa Galhego
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Ygor de Souza-Vieira
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Fernanda Lazzarotto
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| | - Esther Felix-Mendes
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Lucas Lavaquial
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - José Nicomedes Junior
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Rio de Janeiro, RJ, Brazil
| | - Márcia Margis-Pinheiro
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | | |
Collapse
|
17
|
González-Gordo S, Rodríguez-Ruiz M, López-Jaramillo J, Muñoz-Vargas MA, Palma JM, Corpas FJ. Nitric Oxide (NO) Differentially Modulates the Ascorbate Peroxidase (APX) Isozymes of Sweet Pepper (Capsicum annuum L.) Fruits. Antioxidants (Basel) 2022; 11:antiox11040765. [PMID: 35453450 PMCID: PMC9029456 DOI: 10.3390/antiox11040765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO) is a free radical which modulates protein function and gene expression throughout all stages of plant development. Fruit ripening involves a complex scenario where drastic phenotypical and metabolic changes take place. Pepper fruits are one of the most consumed horticultural products worldwide which, at ripening, undergo crucial phenotypical and biochemical events, with NO and antioxidants being implicated. Based on previous transcriptomic (RNA-Seq), proteomics (iTRAQ), and enzymatic data, this study aimed to identify the ascorbate peroxidase (APX) gene and protein profiles in sweet peppers and to evaluate their potential modulation by NO during fruit ripening. The data show the existence of six CaAPX genes (CaAPX1–CaAPX6) that encode corresponding APX isozymes distributed in cytosol, plastids, mitochondria, and peroxisomes. The time course expression analysis of these genes showed heterogeneous expression patterns throughout the different ripening stages, and also as a consequence of treatment with NO gas. Additionally, six APX isozymes activities (APX I–APX VI) were identified by non-denaturing PAGE, and they were also differentially modulated during maturation and NO treatment. In vitro analyses of fruit samples in the presence of NO donors, peroxynitrite, and glutathione, showed that CaAPX activity was inhibited, thus suggesting that different posttranslational modifications (PTMs), including S-nitrosation, Tyr-nitration, and glutathionylation, respectively, may occur in APX isozymes. In silico analysis of the protein tertiary structure showed that residues Cys32 and Tyr235 were conserved in the six CaAPXs, and are thus likely potential targets for S-nitrosation and nitration, respectively. These data highlight the complex mechanisms of the regulation of APX isozymes during the ripening process of sweet pepper fruits and how NO can exert fine control. This information could be useful for postharvest technology; NO regulates H2O2 levels through the different APX isozymes and, consequently, could modulate the shelf life and nutritional quality of pepper fruits.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Apartado 419, E-18080 Granada, Spain; (S.G.-G.); (M.R.-R.); (M.A.M.-V.); (J.M.P.)
| | - Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Apartado 419, E-18080 Granada, Spain; (S.G.-G.); (M.R.-R.); (M.A.M.-V.); (J.M.P.)
| | | | - María A. Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Apartado 419, E-18080 Granada, Spain; (S.G.-G.); (M.R.-R.); (M.A.M.-V.); (J.M.P.)
| | - José M. Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Apartado 419, E-18080 Granada, Spain; (S.G.-G.); (M.R.-R.); (M.A.M.-V.); (J.M.P.)
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Apartado 419, E-18080 Granada, Spain; (S.G.-G.); (M.R.-R.); (M.A.M.-V.); (J.M.P.)
- Correspondence:
| |
Collapse
|