1
|
Wu L, Chen J, Yan T, Fu B, Wu D, Kuang L. Multi-omics analysis unveils early molecular responses to aluminum toxicity in barley root tip. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109209. [PMID: 39437666 DOI: 10.1016/j.plaphy.2024.109209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Barley (Hordeum vulgare L.) is widely cultivated across diverse soil types, including acidic soils where aluminum (Al) toxicity is the major limiting factor. The relative Al sensitivity of barley highlights the need for a deeper understanding of early molecular responses in root tip (the primary target of Al toxicity) to develop Al-tolerant cultivars. Integrative N6-methyladenosine (m6A) modification, transcriptomic, and metabolomic analyses revealed that elevated auxin and jasmonic acid (JA) levels modulated Al-induced root growth inhibition by repressing genes involved in cell elongation and proliferation. Additionally, these pathways promoted pectin demethylation via up-regulation of genes encoding pectin methylesterases (PMEs). The up-regulation of citrate efflux transporter genes including Al-activated citrate transporter 1 (HvAACT1), and ATP-binding cassette (ABC) transporters like HvABCB25, facilitated Al exclusion and vacuolar sequestration. Enhanced activity within the phenylpropanoid pathway supported antioxidant defenses and internal chelation through the production of specific flavonoids and altered cell wall composition via lignin unit modulation. Notably, several Al-responsive genes, including HvABCB25 and transcription factors (TFs), exhibited m6A modification changes, with two microtubule associated protein 65 (MAP65) members displaying opposing regulatory patterns at both transcriptional and m6A levels, underscoring the crucial role of m6A modification in gene expression regulation. This comprehensive study provides valuable insights into the epitranscriptomic regulation of gene expression and metabolite accumulation in barley root tip under Al stress.
Collapse
Affiliation(s)
- Liyuan Wu
- Department of Architectural Engineering, Yuanpei College, Shaoxing University, Shaoxing, 312000, China
| | - Jian Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Tao Yan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Baixiang Fu
- Department of Architectural Engineering, Yuanpei College, Shaoxing University, Shaoxing, 312000, China
| | - Dezhi Wu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Liuhui Kuang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
2
|
Wu X, Xia M, Su P, Zhang Y, Tu L, Zhao H, Gao W, Huang L, Hu Y. MYB transcription factors in plants: A comprehensive review of their discovery, structure, classification, functional diversity and regulatory mechanism. Int J Biol Macromol 2024; 282:136652. [PMID: 39427786 DOI: 10.1016/j.ijbiomac.2024.136652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The MYB transcription factor (TF) family is one of the largest families in plants and performs highly diverse regulatory functions, particularly in relation to pathogen/pest resistance, nutrient/noxious substance absorption, drought/salt resistance, trichome growth, stamen development, leaf senescence, and flavonoid/terpenoid biosynthesis. Owing to their vital role in various biological regulatory processes, the mechanisms of MYB TFs have been extensively studied. Notably, MYB TFs not only directly regulate targets, such as phytohormones, reactive oxygen species signaling and secondary cell wall formation, but also serve as crucial points of crosstalk between these signaling networks. Here, we have comprehensively described the structures, classifications, and biological functions of MYB TFs, with a specific focus on their roles and mechanisms in the response to biotic and abiotic stresses, plant morphogenesis, and secondary metabolite biosynthesis. Different from other reported reviews, this review provides comprehensive knowledge on plant MYB TFs and will provide valuable insights in understanding regulatory networks and associated functions of plant MYB TFs to apply in resistance breeding and crop improvement.
Collapse
Affiliation(s)
- Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Meng Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Yifeng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Lichan Tu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, PR China
| | - Huan Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Yating Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
3
|
Cao S, Peng L, Yu J, Li Z, Wang Z, Ma D, Sun X, Zheng H, Zhang B, Chen X, Chen Z, Xia J. Overexpression of OsGASR1 promotes Al tolerance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 350:112294. [PMID: 39414150 DOI: 10.1016/j.plantsci.2024.112294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Aluminum (Al) toxicity in acid soils poses a significant threat to rice, which exhibits highly complex genetic mechanisms for both external detoxification and internal tolerance among cereal crops. Although several genes involved Al tolerance have been identified, the molecular mechanisms underlying Al tolerance in rice remain to be fully explored. Here, we functionally characterized the gibberellin-stimulated transcription gene OsGASR1, which encodes a small cysteine-rich peptide localized to the nucleus and cytoplasm and plays a significant role in Al tolerance in rice. The expression of OsGASR1 is rapidly up-regulated by Al in rice root tips but not in the shoots. Its expression is not regulated by the central regulator Aluminum Resistance Transcription Factor 1 (ART1), indicating that OsGASR1 functions as a novel gene in rice Al resistance independent of ART1. Knockout of OsGASR1 reduced root length but did not affect Al tolerance in rice, whereas overexpression of OsGASR1 enhanced Al tolerance without affecting Al distribution and accumulation and promoted the accumulation of reactive oxygen species (ROS) in the root tips. RNA-seq analysis revealed that overexpression of OsGASR1 upregulated the expression of genes associated with cell wall modification, oxidative stress, and Al tolerance. Collectively, these findings suggest that OsGASR1 is involved in Al tolerance in rice independently of ART1, and the up-regulation of this gene is necessary for rice Al tolerance.
Collapse
Affiliation(s)
- Shuling Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Liyun Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinyu Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ziheng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhigang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Dan Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaoqian Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Huawei Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Baolei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xingxiang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhufeng Chen
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, ZhuhaiMacao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai 519087, China.
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Fang C, Wu J, Liang W. Systematic Investigation of Aluminum Stress-Related Genes and Their Critical Roles in Plants. Int J Mol Sci 2024; 25:9045. [PMID: 39201731 PMCID: PMC11354972 DOI: 10.3390/ijms25169045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Aluminum (Al) stress is a dominant obstacle for plant growth in acidic soil, which accounts for approximately 40-50% of the world's potential arable land. The identification and characterization of Al stress response (Al-SR) genes in Arabidopsis, rice, and other plants have deepened our understanding of Al's molecular mechanisms. However, as a crop sensitive to acidic soil, only eight Al-SR genes have been identified and functionally characterized in maize. In this review, we summarize the Al-SR genes in plants, including their classifications, subcellular localizations, expression organs, functions, and primarily molecular regulatory networks. Moreover, we predict 166 putative Al-SR genes in maize based on orthologue analyses, facilitating a comprehensive understanding of the impact of Al stress on maize growth and development. Finally, we highlight the potential applications of alleviating Al toxicity in crop production. This review deepens our understanding of the Al response in plants and provides a blueprint for alleviating Al toxicity in crop production.
Collapse
Affiliation(s)
- Chaowei Fang
- College of Life Science, Henan Normal University, Xinxiang 453007, China;
| | - Jiajing Wu
- Xinxiang Academy of Agricultural Sciences, Xinxiang 453000, China;
| | - Weihong Liang
- College of Life Science, Henan Normal University, Xinxiang 453007, China;
| |
Collapse
|
5
|
Zhong K, Zhang P, Wei X, Platre MP, He W, Zhang L, Małolepszy A, Cao M, Hu S, Tang S, Li B, Hu P, Busch W. Natural variation of TBR confers plant zinc toxicity tolerance through root cell wall pectin methylesterification. Nat Commun 2024; 15:5823. [PMID: 38992052 PMCID: PMC11239920 DOI: 10.1038/s41467-024-50106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Zinc (Zn) is an essential micronutrient but can be cytotoxic when present in excess. Plants have evolved mechanisms to tolerate Zn toxicity. To identify genetic loci responsible for natural variation of plant tolerance to Zn toxicity, we conduct genome-wide association studies for root growth responses to high Zn and identify 21 significant associated loci. Among these loci, we identify Trichome Birefringence (TBR) allelic variation determining root growth variation in high Zn conditions. Natural alleles of TBR determine TBR transcript and protein levels which affect pectin methylesterification in root cell walls. Together with previously published data showing that pectin methylesterification increase goes along with decreased Zn binding to cell walls in TBR mutants, our findings lead to a model in which TBR allelic variation enables Zn tolerance through modulating root cell wall pectin methylesterification. The role of TBR in Zn tolerance is conserved across dicot and monocot plant species.
Collapse
Affiliation(s)
- Kaizhen Zhong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Peng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Matthieu Pierre Platre
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Wenrong He
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ling Zhang
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anna Małolepszy
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Min Cao
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Baohai Li
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, Zhejiang, China.
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
6
|
Chen HH, Zheng ZC, Hua D, Chen XF, Huang ZR, Guo J, Yang LT, Chen LS. Boron-mediated amelioration of copper toxicity in Citrus sinensis seedlings involved reduced concentrations of copper in leaves and roots and their cell walls rather than increased copper fractions in their cell walls. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133738. [PMID: 38350317 DOI: 10.1016/j.jhazmat.2024.133738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Little information is available on how boron (B) supplementation affects plant cell wall (CW) remodeling under copper (Cu) excess. 'Xuegan' (Citrus sinensis) seedlings were submitted to 0.5 or 350 µM Cu × 2.5 or 25 µM B for 24 weeks. Thereafter, we determined the concentrations of CW materials (CWMs) and CW components (CWCs), the degree of pectin methylation (DPM), and the pectin methylesterase (PME) activities and PME gene expression levels in leaves and roots, as well as the Cu concentrations in leaves and roots and their CWMs (CWCs). Additionally, we analyzed the Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectra of leaf and root CWMs. Our findings suggested that adding B reduced the impairment of Cu excess to CWs by reducing the Cu concentrations in leaves and roots and their CWMs and maintaining the stability of CWs, thereby improving leaf and root growth. Cu excess increased the Cu fractions in leaf and root pectin by decreasing DPM due to increased PME activities, thereby contributing to citrus Cu tolerance. FTIR and XRD indicated that the functional groups of the CW pectin, hemicellulose, cellulose, and lignin could bind and immobilize Cu, thereby reducing Cu cytotoxicity in leaves and roots.
Collapse
Affiliation(s)
- Huan-Huan Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi-Chao Zheng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dan Hua
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu-Feng Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeng-Rong Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiuxin Guo
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Yu H, Teng Z, Liu B, Lv J, Chen Y, Qin Z, Peng Y, Meng S, He Y, Duan M, Zhang J, Ye N. Transcription factor OsMYB30 increases trehalose content to inhibit α-amylase and seed germination at low temperature. PLANT PHYSIOLOGY 2024; 194:1815-1833. [PMID: 38057158 DOI: 10.1093/plphys/kiad650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023]
Abstract
Low-temperature germination (LTG) is an important agronomic trait for direct-seeding cultivation of rice (Oryza sativa). Both OsMYB30 and OsTPP1 regulate the cold stress response in rice, but the function of OsMYB30 and OsTPP1 in regulating LTG and the underlying molecular mechanism remains unknown. Employing transcriptomics and functional studies revealed a sugar signaling pathway that regulates seed germination in response to low temperature (LT). Expression of OsMYB30 and OsTPP1 was induced by LT during seed germination, and overexpressing either OsMYB30 or OsTPP1 delayed seed germination and increased sensitivity to LT during seed germination. Transcriptomics and qPCR revealed that expression of OsTPP1 was upregulated in OsMYB30-overexpressing lines but downregulated in OsMYB30-knockout lines. In vitro and in vivo experiments revealed that OsMYB30 bound to the promoter of OsTPP1 and regulated the abundance of OsTPP1 transcripts. Overaccumulation of trehalose (Tre) was found in both OsMYB30- and OsTPP1-overexpressing lines, resulting in inhibition of α-amylase 1a (OsAMY1a) gene during seed germination. Both LT and exogenous Tre treatments suppressed the expression of OsAMY1a, and the osamy1a mutant was not sensitive to exogenous Tre during seed germination. Overall, we concluded that OsMYB30 expression was induced by LT to activate the expression of OsTPP1 and increase Tre content, which thus inhibited α-amylase activity and seed germination. This study identified a phytohormone-independent pathway that integrates environmental cues with internal factors to control seed germination.
Collapse
Affiliation(s)
- Huihui Yu
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhenning Teng
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Bohan Liu
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Jiahan Lv
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yinke Chen
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhonge Qin
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yan Peng
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shuan Meng
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yuchi He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430000, China
| | - Meijuan Duan
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Nenghui Ye
- Hunan Provincial Key Laboratory of Rice Stress Biology, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
8
|
Liu F, Ma D, Yu J, Meng R, Wang Z, Zhang B, Chen X, Zhang L, Peng L, Xia J. Overexpression of an ART1-Interacting Gene OsNAC016 Improves Al Tolerance in Rice. Int J Mol Sci 2023; 24:17036. [PMID: 38069359 PMCID: PMC10706868 DOI: 10.3390/ijms242317036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Rice (Oryza sativa) exhibits tremendous aluminum (Al)-tolerance. The C2H2-transcription factor (TF) ART1 critically regulates rice Al tolerance via modulation of specific gene expression. However, little is known about the posttranscriptional ART1 regulation. Here, we identified an ART1-interacted gene OsNAC016 via a yeast two-hybrid (Y2H) assay. OsNAC016 was primarily expressed in roots and weakly induced by Al. Immunostaining showed that OsNAC016 was a nuclear protein and localized in all root cells. Knockout of OsNAC016 did not alter Al sensitivity. Overexpression of OsNAC016 resulted in less Al aggregation within roots and enhanced Al tolerance in rice. Based on transcriptomic and qRT-PCR evaluations, certain cell-wall-related or ART-regulated gene expressions such as OsMYB30 and OsFRDL4 were altered in OsNAC016-overexpressing plants. These results indicated that OsNAC016 interacts with ART1 to cooperatively regulate some Al-tolerance genes and is a critical regulatory factor in rice Al tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; (F.L.); (D.M.); (J.Y.); (R.M.); (Z.W.); (B.Z.); (X.C.); (L.Z.); (L.P.)
| |
Collapse
|
9
|
Li X, Tian Y. STOP1 and STOP1-like proteins, key transcription factors to cope with acid soil syndrome. FRONTIERS IN PLANT SCIENCE 2023; 14:1200139. [PMID: 37416880 PMCID: PMC10321353 DOI: 10.3389/fpls.2023.1200139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/25/2023] [Indexed: 07/08/2023]
Abstract
Acid soil syndrome leads to severe yield reductions in various crops worldwide. In addition to low pH and proton stress, this syndrome includes deficiencies of essential salt-based ions, enrichment of toxic metals such as manganese (Mn) and aluminum (Al), and consequent phosphorus (P) fixation. Plants have evolved mechanisms to cope with soil acidity. In particular, STOP1 (Sensitive to proton rhizotoxicity 1) and its homologs are master transcription factors that have been intensively studied in low pH and Al resistance. Recent studies have identified additional functions of STOP1 in coping with other acid soil barriers: STOP1 regulates plant growth under phosphate (Pi) or potassium (K) limitation, promotes nitrate (NO3 -) uptake, confers anoxic tolerance during flooding, and inhibits drought tolerance, suggesting that STOP1 functions as a node for multiple signaling pathways. STOP1 is evolutionarily conserved in a wide range of plant species. This review summarizes the central role of STOP1 and STOP1-like proteins in regulating coexisting stresses in acid soils, outlines the advances in the regulation of STOP1, and highlights the potential of STOP1 and STOP1-like proteins to improve crop production on acid soils.
Collapse
Affiliation(s)
- Xinbo Li
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yifu Tian
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|