1
|
Dai J, Sun Y, Liu Z, Zhang Y, Duan S, Wang R. Using In situ Transmission Electron Microscopy to Study Strong Metal-Support Interactions in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2024; 63:e202409673. [PMID: 39052276 DOI: 10.1002/anie.202409673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
Precisely controlling the microstructure of supported metal catalysts and regulating metal-support interactions at the atomic level are essential for achieving highly efficient heterogeneous catalysts. Strong metal-support interaction (SMSI) not only stabilizes metal nanoparticles and improves their resistance to sintering but also modulates the electrical interaction between metal species and the support, optimizing the catalytic activity and selectivity. Therefore, understating the formation mechanism of SMSI and its dynamic evolution during the chemical reaction at the atomic scale is crucial for guiding the structural design and performance optimization of supported metal catalysts. Recent advancements in in situ transmission electron microscopy (TEM) have shed new light on these complex phenomena, providing deeper insights into the SMSI dynamics. Here, the research progress of in situ TEM investigation on SMSI in heterogeneous catalysis is systematically reviewed, focusing on the formation dynamics, structural evolution during the catalytic reactions, and regulation methods of SMSI. The significant advantages of in situ TEM technologies for SMSI research are also highlighted. Moreover, the challenges and probable development paths of in situ TEM studies on the SMSI are also provided.
Collapse
Affiliation(s)
- Jie Dai
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yifei Sun
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhewei Liu
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yiyuan Zhang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Sibin Duan
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongming Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
2
|
Wang W, Zhang X, Weng S, Peng C. Tuning Catalytic Activity of CO 2 Hydrogenation to C1 Product via Metal Support Interaction Over Metal/Metal Oxide Supported Catalysts. CHEMSUSCHEM 2024; 17:e202400104. [PMID: 38546355 DOI: 10.1002/cssc.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/16/2024] [Indexed: 04/28/2024]
Abstract
The metal supported catalysts are emerging catalysts that are receiving a lot of attention in CO2 hydrogenation to C1 products. Numerous experiments have demonstrated that the support (usually an oxide) is crucial for the catalytic performance. The support metal oxides are used to aid in the homogeneous dispersion of metal particles, prevent agglomeration, and control morphology owing to the metal support interaction (MSI). MSI can efficiently optimize the structural and electronic properties of catalysts and tune the conversion of key reaction intermediates involved in CO2 hydrogenation, thereby enhancing the catalytic performance. There is an increasing attention is being paid to the promotion effects in the catalytic CO2 hydrogenation process. However, a systematically understanding about the effects of MSI on CO2 hydrogenation to C1 products catalytic performance has not been fully studied yet due to the diversities in catalysts and reaction conditions. Hence, the characteristics and modes of MSI in CO2 hydrogenation to C1 products are elaborated in detail in our work.
Collapse
Affiliation(s)
- Weiwei Wang
- School of Life Sciences and Chemistry, School of MinNan Science, Technology University, Quanzhou, 362332, China
| | - Xiaoyu Zhang
- Sinochem Quanzhou Petrochemical Co., LTD., Quanzhou, 362100, China
| | - Shujia Weng
- School of Life Sciences and Chemistry, School of MinNan Science, Technology University, Quanzhou, 362332, China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
- Shanghai Research Center of Advanced Applied Technology, Shanghai, 201418, China
| |
Collapse
|
3
|
Li J, Zhang L, An X, Feng K, Wang X, He J, Huang Y, Liu J, Zhang L, Yan B, Li C, He L. Tuning Adsorbate-Mediated Strong Metal-Support Interaction by Oxygen Vacancy: A Case Study in Ru/TiO 2. Angew Chem Int Ed Engl 2024; 63:e202407025. [PMID: 38742866 DOI: 10.1002/anie.202407025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
The adsorbate-mediated strong metal-support interaction (A-SMSI) offers a reversible means of altering the selectivity of supported metal catalysts, thereby providing a powerful tool for facile modulation of catalytic performance. However, the fundamental understanding of A-SMSI remains inadequate and methods for tuning A-SMSI are still in their nascent stages, impeding its stabilization under reaction conditions. Here, we report that the initial concentration of oxygen vacancy in oxide supports plays a key role in tuning the A-SMSI between Ru nanoparticles and defected titania (TiO2-x). Based on this new understanding, we demonstrate the in situ formation of A-SMSI under reaction conditions, obviating the typically required CO2-rich pretreatment. The as-formed A-SMSI layer exhibits remarkable stability at various temperatures, enabling excellent activity, selectivity and long-term stability in catalyzing the reverse water gas-shift reaction. This study deepens the understanding of the A-SMSI and the ability to stabilize A-SMSI under reaction conditions represents a key step for practical catalytic applications.
Collapse
Affiliation(s)
- Juan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
| | - Lin Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, PR China
| | - Kai Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, PR China
| | - Xuchun Wang
- Department of Chemistry, Soochow University-Western University Centre for Synchrotron Radiation Research, University of Western Ontario, London, N6 A 5B7, Ontario, Canada
| | - Jiari He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
| | - Yang Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jingjing Liu
- Institute of Information Technology, Suzhou Institute of Trade and Commerce, Suzhou, 215009, Jiangsu, PR China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, PR China
| | - Binhang Yan
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, PR China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, PR China
| |
Collapse
|
4
|
Xu M, Peng M, Tang H, Zhou W, Qiao B, Ma D. Renaissance of Strong Metal-Support Interactions. J Am Chem Soc 2024; 146:2290-2307. [PMID: 38236140 DOI: 10.1021/jacs.3c09102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Strong metal-support interactions (SMSIs) have emerged as a significant and cutting-edge area of research in heterogeneous catalysis. They play crucial roles in modifying the chemisorption properties, interfacial structure, and electronic characteristics of supported metals, thereby exerting a profound influence on the catalytic properties. This Perspective aims to provide a comprehensive summary of the latest advancements and insights into SMSIs, with a focus on state-of-the-art in situ/operando characterization techniques. This overview also identifies innovative designs and applications of new types of SMSI systems in catalytic chemistry and highlights their pivotal role in enhancing catalytic performance, selectivity, and stability in specific cases. Particularly notable is the discovery of SMSI between active metals and metal carbides, which opens up a new era in the field of SMSI. Additionally, the strong interactions between atomically dispersed metals and supports are discussed, with an emphasis on the electronic effects of the support. The chemical nature of SMSI and its underlying catalytic mechanisms are also elaborated upon. It is evident that SMSI modification has become a powerful tool for enhancing catalytic performance in various catalytic applications.
Collapse
Affiliation(s)
- Ming Xu
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hailian Tang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Wu Zhou
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
5
|
Liu W, Liu H, Cui R, Cao Z, Dong Z, Luo L. Deciphering the Metal-Support Interaction of Au/ZnO Catalyst Induced by H 2 and O 2 Pretreatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305122. [PMID: 37718443 DOI: 10.1002/smll.202305122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Indexed: 09/19/2023]
Abstract
Metal-support interaction (MSI) provides great possibilities to tune the activity, selectivity, and stability of heterogeneous catalysts. Herein, the Au/ZnO catalyst is prepared by commercial ZnO and chloroauric acid, and the structure evolution of the catalyst pretreated by H2 and O2 gas at varied temperature is investigated to provide mechanistic insights of MSI. It is found that the H2 treatment at 300 °C and above can induce the formation of both the ZnOx overlayer and bulk Au-Zn alloy. In contrast, the O2 treatment can form the ZnOx overlayer at 500 °C and above without the formation of Au-Zn alloy. It is also revealed that the ZnOx overlayer is dynamically stable (permeable), which can provide access for reactant molecules during the reaction process. And, the Au-Zn alloy can recover to Au and ZnO under the CO oxidation reaction condition, which can be deemed as a re-activation process that endows H2 -treated samples with the superior activity and stability.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Hongpeng Liu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Ronghua Cui
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhongliang Cao
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zejian Dong
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Langli Luo
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
6
|
Jensen M, Kierulf-Vieira W, Kooyman PJ, Sjåstad AO. Variable temperature in situ TEM mapping of the thermodynamically stable element distribution in bimetallic Pt-Rh nanoparticles. NANOSCALE ADVANCES 2023; 5:5286-5294. [PMID: 37767042 PMCID: PMC10521204 DOI: 10.1039/d3na00448a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023]
Abstract
We report here the first variable temperature in situ transmission electron microscopy (TEM) study on smaller Pt-Rh nanoparticles (≤24 nm) under vacuum conditions. Well-defined 50 at% Pt/50 at% Rh Pt-Rh solid solution and Rh(core)-Pt(shell) nanoparticles, obtained via colloidal synthesis routes, were investigated between room temperature and 650 °C to elucidate the tendency of elemental mixing/segregation. Key findings are that Pt-Rh nanoparticles <13 nm are stable in a solid solution configuration over the entire studied temperature range, whereas nanoparticles >13 nm tend to segregate upon cooling. Such a cross-over in element distribution with nanoparticle size has not been reported for the Pt-Rh system previously. The results demonstrate the technique's ability to extract valuable information concerning the intricate dynamic processes that take place in the bimetallic Pt-Rh system at the nanoscale, which may be indispensable when optimizing, e.g., the metal composition in catalytically active materials.
Collapse
Affiliation(s)
- Martin Jensen
- Center for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo P.O. Box 1033 Blindern N-0315 Oslo Norway
| | - Walace Kierulf-Vieira
- Center for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo P.O. Box 1033 Blindern N-0315 Oslo Norway
| | - Patricia J Kooyman
- Catalysis Institute, Department of Chemical Engineering, University of Cape Town Private Bag X3 Rondebosch 7701 South Africa
| | - Anja O Sjåstad
- Center for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo P.O. Box 1033 Blindern N-0315 Oslo Norway
| |
Collapse
|
7
|
Kaiser S, Plansky J, Krinninger M, Shavorskiy A, Zhu S, Heiz U, Esch F, Lechner BAJ. Does Cluster Encapsulation Inhibit Sintering? Stabilization of Size-Selected Pt Clusters on Fe 3O 4(001) by SMSI. ACS Catal 2023; 13:6203-6213. [PMID: 37180966 PMCID: PMC10167661 DOI: 10.1021/acscatal.3c00448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/08/2023] [Indexed: 05/16/2023]
Abstract
The metastability of supported metal nanoparticles limits their application in heterogeneous catalysis at elevated temperatures due to their tendency to sinter. One strategy to overcome these thermodynamic limits on reducible oxide supports is encapsulation via strong metal-support interaction (SMSI). While annealing-induced encapsulation is a well-explored phenomenon for extended nanoparticles, it is as yet unknown whether the same mechanisms hold for subnanometer clusters, where concomitant sintering and alloying might play a significant role. In this article, we explore the encapsulation and stability of size-selected Pt5, Pt10, and Pt19 clusters deposited on Fe3O4(001). In a multimodal approach using temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and scanning tunneling microscopy (STM), we demonstrate that SMSI indeed leads to the formation of a defective, FeO-like conglomerate encapsulating the clusters. By stepwise annealing up to 1023 K, we observe the succession of encapsulation, cluster coalescence, and Ostwald ripening, resulting in square-shaped crystalline Pt particles, independent of the initial cluster size. The respective sintering onset temperatures scale with the cluster footprint and thus size. Remarkably, while small encapsulated clusters can still diffuse as a whole, atom detachment and thus Ostwald ripening are successfully suppressed up to 823 K, i.e., 200 K above the Hüttig temperature that indicates the thermodynamic stability limit.
Collapse
Affiliation(s)
- Sebastian Kaiser
- Chair
of Physical Chemistry and Catalysis Research Center, Department of
Chemistry, School of Natural Sciences, Technical
University of Munich, 85748 Garching, Germany
| | - Johanna Plansky
- Functional
Nanomaterials Group and Catalysis Research Center, Department of Chemistry,
School of Natural Sciences, Technical University
of Munich, 85748 Garching, Germany
| | - Matthias Krinninger
- Functional
Nanomaterials Group and Catalysis Research Center, Department of Chemistry,
School of Natural Sciences, Technical University
of Munich, 85748 Garching, Germany
| | | | - Suyun Zhu
- MAX
IV Laboratory, Lund University, Lund 221 00, Sweden
| | - Ueli Heiz
- Chair
of Physical Chemistry and Catalysis Research Center, Department of
Chemistry, School of Natural Sciences, Technical
University of Munich, 85748 Garching, Germany
| | - Friedrich Esch
- Chair
of Physical Chemistry and Catalysis Research Center, Department of
Chemistry, School of Natural Sciences, Technical
University of Munich, 85748 Garching, Germany
| | - Barbara A. J. Lechner
- Functional
Nanomaterials Group and Catalysis Research Center, Department of Chemistry,
School of Natural Sciences, Technical University
of Munich, 85748 Garching, Germany
- Institute
for Advanced Study, Technical University
of Munich, Lichtenbergstraße
2a, 85748 Garching, Germany
| |
Collapse
|
8
|
Kim JK, Kim S, Kim S, Kim HJ, Kim K, Jung W, Han JW. Dynamic Surface Evolution of Metal Oxides for Autonomous Adaptation to Catalytic Reaction Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203370. [PMID: 35738568 DOI: 10.1002/adma.202203370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Metal oxides possessing distinctive physical/chemical properties due to different crystal structures and stoichiometries play a pivotal role in numerous current technologies, especially heterogeneous catalysis for production/conversion of high-valued chemicals and energy. To date, many researchers have investigated the effect of the structure and composition of these materials on their reactivity to various chemical and electrochemical reactions. However, metal oxide surfaces evolve from their initial form under dynamic reaction conditions due to the autonomous behaviors of the constituent atoms to adapt to the surrounding environment. Such nanoscale surface phenomena complicate reaction mechanisms and material properties, interrupting the clarification of the origin of functionality variations in reaction environments. In this review, the current findings on the spontaneous surface reorganization of metal oxides during reactions are categorized into three types: 1) the appearance of nano-sized second phase from oxides, 2) the (partial) encapsulation of oxide atoms toward supported metal surfaces, and 3) the oxide surface reconstruction with selective cation leaching in aqueous solution. Then their effects on each reaction are summarized in terms of activity and stability, providing novel insight for those who design metal-oxide-based catalytic materials.
Collapse
Affiliation(s)
- Jun Kyu Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Sangwoo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Seunghyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hyung Jun Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, South Korea
| | - Kyeounghak Kim
- Department of Chemical Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, South Korea
| |
Collapse
|
9
|
De Coster V, Srinath NV, Yazdani P, Poelman H, Galvita VV. Does CO 2 Oxidize Ni Catalysts? A Quick X-ray Absorption Spectroscopy Answer. J Phys Chem Lett 2022; 13:7947-7952. [PMID: 35981090 DOI: 10.1021/acs.jpclett.2c01790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
MgAl2O4-supported Ni materials are highly active and cost-effective CO2 conversion catalysts, yet their oxidation by CO2 remains dubious. Herein, NiO/MgAl2O4, prepared via colloidal synthesis (10 wt % Ni) to limit size distribution, or wet impregnation (5, 10, 20, and 40 wt % Ni), and bare, i.e., unsupported, NiO are examined in H2 reduction and CO2 oxidation, using thermal conductivity detector-based measurements and in situ quick X-ray absorption spectroscopy, analyzed via multivariate curve resolution-alternating least-squares. Ni reoxidation does not occur for bare Ni but is observed solely on supported materials. Only samples with the smallest particle sizes get fully reoxidized. The Ni-MgAl2O4 interface, exhibiting metal-support interactions, activates CO2 and channels oxygen into the reduced lattice. Oxygen diffuses inward, away from the interface, oxidizing Ni entirely or partially, depending on the particle size in the applied oxidation time frame. This work provides evidence for Ni oxidation by CO2 and explores the conditions of its occurrence and the importance of metal-support effects.
Collapse
Affiliation(s)
- Valentijn De Coster
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | | | - Parviz Yazdani
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Hilde Poelman
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Vladimir V Galvita
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| |
Collapse
|
10
|
Qiu G, Pei Q, Yu Y, Jing Z, Wang J, He T, Chen P. Regulation of Strong Metal-Support Interaction by Alkaline Earth Metal Salts. Chem Asian J 2021; 16:2633-2640. [PMID: 34288552 DOI: 10.1002/asia.202100661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/16/2021] [Indexed: 11/08/2022]
Abstract
Classical strong metal-support interaction (SMSI) is of significant importance to heterogeneous catalysis, where electronic promotion and encapsulation of noble metal by reducible support are two main intrinsic properties of SMSI. However, the excessive encapsulation will inevitably hamper the contact between active sites and reactant, leading to reduced activity in catalysis. Herein, alkaline earth metal salts are employed to depress the encapsulation of Ru nanoparticles in Ru/TiO2 catalyst in the present study. Thermodynamic calculation, transmission electron microscopy (TEM) and chemisorption results show that the alkaline earth metal salts could successfully prevent the migration of TiO2-x overlayer to Ru nanoparticles in Ru/TiO2 catalyst via in situ formation of titanates, resulting in high exposure of active metal. Meanwhile, X-ray photoelectron spectroscopy (XPS) and hydrogen temperature-programmed reduction (H2 -TPR) results reveal that an even stronger electron donation from the reduced support to Ru nanoparticles is achieved. As a result, the alkaline earth metal salts-doped Ru/TiO2 catalysts exhibit superior activity in catalytic hydrogenation of aromatics, which is in contrast to the pristine Ru/TiO2 catalyst that shows negligible activity under the same conditions due to the excess encapsulation of Ru nanoparticles in Ru/TiO2 catalyst.
Collapse
Affiliation(s)
- Guanghao Qiu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qijun Pei
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Yang Yu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Zijun Jing
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Jintao Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Teng He
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Ping Chen
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
11
|
Armengol RA, Lim J, Ledendecker M, Hengge K, Scheu C. Correlation between the TiO 2 encapsulation layer on Pt and its electrochemical behavior. NANOSCALE ADVANCES 2021; 3:5075-5082. [PMID: 36132343 PMCID: PMC9417513 DOI: 10.1039/d1na00423a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/14/2021] [Indexed: 06/14/2023]
Abstract
Supported metal catalysts with partial encapsulation resulting from strong metal-support interactions show distinctive structural features which strongly affect their functionalities. Yet, challenges in systematic synthesis and in-depth characterization for such systems limit the present understanding of structure-property relationships. Herein, the synthesis and characterization of two Pt/TiO2 models are conducted by a simple change of the synthesis order, while keeping all other parameters constant. They differ in containing either bare or encapsulated Pt nanoparticles. The presence of an extremely thin and inhomogeneous TiO2 layer is clearly demonstrated on 2-3 nm sized Pt nanoparticles by combination of imaging, energy dispersive X-ray spectroscopy and electron energy loss spectroscopy performed in a transmission electron microscope. The two Pt/TiO2 systems exhibit differences in morphology and local structure which can be correlated with their electrochemical activity and stability using cyclic voltammetry experiments. Beyond enhanced particle stability, we report an increase in H+ intercalation on titania and reduced Pt activity due to partial encapsulation by TiO2. Finally, the growth of an encapsulation layer as a result of cyclic voltammetry measurements is discussed. These results shed light on the in-depth structure-property relationship of catalysts with strong metal-support interactions which leads to enhanced functional materials for electrochromic devices and energy applications.
Collapse
Affiliation(s)
| | - Joohyun Lim
- Department of Chemistry, Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
| | - Marc Ledendecker
- Department of Technical Chemistry I, Technical University Darmstadt Alarich-Weiss-Straße 8 64287 Germany
| | - Katharina Hengge
- Max-Planck Institut für Eisenforschung GmbH Max-Planck-Straße 1 40237 Germany
| | - Christina Scheu
- Max-Planck Institut für Eisenforschung GmbH Max-Planck-Straße 1 40237 Germany
| |
Collapse
|
12
|
Kibis LS, Svintsitskiy DA, Stadnichenko AI, Slavinskaya EM, Romanenko AV, Fedorova EA, Stonkus OA, Svetlichnyi VA, Fakhrutdinova ED, Vorokhta M, Šmíd B, Doronkin DE, Marchuk V, Grunwaldt JD, Boronin AI. In situ probing of Pt/TiO2 activity in low-temperature ammonia oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01533d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NAP-XPS and operando XAS study of Pt/TiO2 catalysts shows that Pt0 species stabilized on TiO2 surface have the highest activity at low-temperature NH3 oxidation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mykhailo Vorokhta
- Department of Surface and Plasma Science
- Faculty of Mathematics and Physics
- Charles University
- Prague 8
- Czech Republic
| | - Břetislav Šmíd
- Department of Surface and Plasma Science
- Faculty of Mathematics and Physics
- Charles University
- Prague 8
- Czech Republic
| | - Dmitry E. Doronkin
- Institute for Chemical Technology and Polymer Chemistry (ITCP)
- Karlsruhe Institute of Technology
- Karlsruhe
- Germany
- Institute of Catalysis Research and Technology (IKFT)
| | - Vasyl Marchuk
- Institute for Chemical Technology and Polymer Chemistry (ITCP)
- Karlsruhe Institute of Technology
- Karlsruhe
- Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP)
- Karlsruhe Institute of Technology
- Karlsruhe
- Germany
- Institute of Catalysis Research and Technology (IKFT)
| | | |
Collapse
|
13
|
Support effects in iridium-catalyzed aerobic oxidation of benzyl alcohol studied by modulation-excitation attenuated total reflection IR spectroscopy. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
von Boehn B, Scholtz L, Imbihl R. Reactivity and Stability of Ultrathin VOx Films on Pt(111) in Catalytic Methanol Oxidation. Top Catal 2020. [DOI: 10.1007/s11244-020-01321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe growth of ultrathin layers of VOx (< 12 monolayers) on Pt(111) and the activity of these layers in catalytic methanol oxidation at 10−4 mbar have been studied with low-energy electron diffraction, Auger electron spectroscopy, rate measurements, and with photoemission electron microscopy. Reactive deposition of V in O2 at 670 K obeys a Stranski–Krastanov growth mode with a (√3 × √3)R30° structure representing the limiting case for epitaxial growth of 3D-VOx. The activity of VOx/Pt(111) in catalytic methanol oxidation is very low and no redistribution dynamics is observed lifting the initial spatial homogeneity of the VOx layer. Under reaction conditions, part of the surface vanadium diffuses into the Pt subsurface region. Exposure to O2 causes part of the V to diffuse back to the surface, but only up to one monolayer of VOx can be stabilized in this way at 10−4 mbar.
Collapse
|
15
|
Clark AH, Acerbi N, Chater PA, Hayama S, Collier P, Hyde TI, Sankar G. Temperature reversible synergistic formation of cerium oxyhydride and Au hydride: a combined XAS and XPDF study. Phys Chem Chem Phys 2020; 22:18882-18890. [PMID: 32330216 DOI: 10.1039/d0cp00455c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ studies on the physical and chemical properties of Au in inverse ceria alumina supported catalysts have been conducted between 295 and 623 K using high energy resolved fluorescence detection X-ray absorption near edge spectroscopy and X-ray total scattering. Precise structural information is extracted on the metallic Au phase present in a 0.85 wt% Au containing inverse ceria alumina catalyst (ceria/Au/alumina). Herein evidence for the formation of an Au hydride species at elevated temperature is presented. Through modelling of total scattering data to extract the thermal properties of Au using Grüneisen theory of volumetric thermal expansion it proposed that the Au Hydride formation occurs synergistally with the formation of a cerium oxyhydride. The temperature reversible nature, whilst remaining in a reducing atmosphere, demonstrates the activation of hydrogen without consumption of oxygen from the supporting ceria lattice.
Collapse
Affiliation(s)
- Adam H Clark
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | | | | | | | | | | | | |
Collapse
|
16
|
Sha H, Liang S, Liu L, Cheng Z, Zhu J, Yu R. Surface termination and stoichiometry of LaAlO 3(001) surface studied by HRTEM. Micron 2020; 137:102919. [PMID: 32763838 DOI: 10.1016/j.micron.2020.102919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
As an important topic of condensed matter physics, metal oxide surfaces often exhibit exotic properties such as high catalytic activity, enhanced ferroelectricity and electronic phase transition, originating from the different local symmetry with respect to the bulk. As the structure determination of oxide surfaces presents challenges to conventional surface science techniques like scanning tunneling microscopy, aberration-corrected transmission electron microscopy (TEM) has been increasingly used to solve structures of oxide surfaces. In this work, the (001) surface of LaAlO3, one of the most used components of oxide heterostructures, has been investigated. Our TEM experiments and extensive image simulations show that the La-O terminated LaAlO3(001) surface undergoes significant reconstructions, forming La vacancies on the surface layer. Energetically, the LaAlO3(001) surface is stable with the reconstructed La-O termination in a wide range of oxygen chemical potentials. Polarity compensation, reduced density of states at the Fermi level and bond enhancement of subsurface oxygen anions all contribute to the stabilization of the reconstructed surface.
Collapse
Affiliation(s)
- Haozhi Sha
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Shiyou Liang
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Linhan Liu
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhiying Cheng
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jing Zhu
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Rong Yu
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Polo-Garzon F, Blum TF, Fung V, Bao Z, Chen H, Huang Z, Mahurin SM, Dai S, Chi M, Wu Z. Alcohol-Induced Low-Temperature Blockage of Supported-Metal Catalysts for Enhanced Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Felipe Polo-Garzon
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Thomas F. Blum
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Victor Fung
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zhenghong Bao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hao Chen
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Zhennan Huang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Shannon M. Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
18
|
Hernández Mejía C, Vogt C, Weckhuysen B, de Jong K. Stable niobia-supported nickel catalysts for the hydrogenation of carbon monoxide to hydrocarbons. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.11.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Li Z, Ji S, Liu Y, Cao X, Tian S, Chen Y, Niu Z, Li Y. Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chem Rev 2019; 120:623-682. [PMID: 31868347 DOI: 10.1021/acs.chemrev.9b00311] [Citation(s) in RCA: 475] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The use of well-defined materials in heterogeneous catalysis will open up numerous new opportunities for the development of advanced catalysts to address the global challenges in energy and the environment. This review surveys the roles of nanoparticles and isolated single atom sites in catalytic reactions. In the second section, the effects of size, shape, and metal-support interactions are discussed for nanostructured catalysts. Case studies are summarized to illustrate the dynamics of structure evolution of well-defined nanoparticles under certain reaction conditions. In the third section, we review the syntheses and catalytic applications of isolated single atomic sites anchored on different types of supports. In the final part, we conclude by highlighting the challenges and opportunities of well-defined materials for catalyst development and gaining a fundamental understanding of their active sites.
Collapse
Affiliation(s)
- Zhi Li
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Shufang Ji
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Yiwei Liu
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Xing Cao
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Shubo Tian
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Yuanjun Chen
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Zhiqiang Niu
- Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Yadong Li
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
20
|
Polo-Garzon F, Bao Z, Zhang X, Huang W, Wu Z. Surface Reconstructions of Metal Oxides and the Consequences on Catalytic Chemistry. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01097] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Felipe Polo-Garzon
- Chemical Science Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zhenghong Bao
- Chemical Science Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xuanyu Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Chemical Science Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Zili Wu
- Chemical Science Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
21
|
Zhang C, Zhang W, Drewett NE, Wang X, Yoo SJ, Wang H, Deng T, Kim JG, Chen H, Huang K, Feng S, Zheng W. Integrating Catalysis of Methane Decomposition and Electrocatalytic Hydrogen Evolution with Ni/CeO 2 for Improved Hydrogen Production Efficiency. CHEMSUSCHEM 2019; 12:1000-1010. [PMID: 30565883 DOI: 10.1002/cssc.201802618] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Ni/CeO2 enables either methane decomposition or water electrolysis for pure hydrogen production. Ni/CeO2 , prepared by a sol-gel method with only one heat treatment step, was used to catalyze methane decomposition for the generation of H2 . The solid byproduct, Ni/CeO2 /carbon nanotube (CNT), was further employed as an electrocatalyst in the hydrogen evolution reaction (HER) for H2 production. The Ni/CeO2 catalyst exhibits excellent activity for methane decomposition because CeO2 prevents carbon encapsulation of Ni nanoparticles during the preparation process and forms a special metal-support interface with Ni. The derived CNTs act as antenna to improve conductivity and promote the dispersion of agglomerated Ni/CeO2 . In addition, they provide H2 diffusion paths and prevent Ni/CeO2 from peeling off the HER electrode. Although long-term methane decomposition reduces the HER activity of Ni/CeO2 /CNTs (owing to degradation of the delicate Ni/CeO2 interface), the tunable nature of the synthesis makes this an attractive sustainable approach to synthesize future high-performance materials.
Collapse
Affiliation(s)
- Cai Zhang
- State Key Laboratory of Automotive Simulation and Control, and School of Materials Science & Engineering, and Electron, Microscopy Center, and International Center of Future Science, Jilin University, Changchun, 130012, P.R. China
| | - Wei Zhang
- State Key Laboratory of Automotive Simulation and Control, and School of Materials Science & Engineering, and Electron, Microscopy Center, and International Center of Future Science, Jilin University, Changchun, 130012, P.R. China
- CIC Energigune, Miñano, 01510, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain
| | | | - Xiyang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Seung Jo Yoo
- Electron Microscopy Research Center, Korea Basic Science Institute, Daejeon, 34133, South Korea
| | - Haoxiang Wang
- State Key Laboratory of Automotive Simulation and Control, and School of Materials Science & Engineering, and Electron, Microscopy Center, and International Center of Future Science, Jilin University, Changchun, 130012, P.R. China
| | - Ting Deng
- State Key Laboratory of Automotive Simulation and Control, and School of Materials Science & Engineering, and Electron, Microscopy Center, and International Center of Future Science, Jilin University, Changchun, 130012, P.R. China
| | - Jin-Gyu Kim
- Electron Microscopy Research Center, Korea Basic Science Institute, Daejeon, 34133, South Korea
| | - Hong Chen
- State Key Laboratory of Automotive Simulation and Control, and School of Materials Science & Engineering, and Electron, Microscopy Center, and International Center of Future Science, Jilin University, Changchun, 130012, P.R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, and School of Materials Science & Engineering, and Electron, Microscopy Center, and International Center of Future Science, Jilin University, Changchun, 130012, P.R. China
| |
Collapse
|
22
|
Pepin PA, Lee JD, Murray CB, Vohs JM. Thermal and Photocatalytic Reactions of Methanol and Acetaldehyde on Pt-Modified Brookite TiO2 Nanorods. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
|
24
|
Ro I, Resasco J, Christopher P. Approaches for Understanding and Controlling Interfacial Effects in Oxide-Supported Metal Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02071] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Insoo Ro
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| | - Joaquin Resasco
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| |
Collapse
|
25
|
Theofanidis SA, Galvita VV, Poelman H, Dharanipragada NVRA, Longo A, Meledina M, Van Tendeloo G, Detavernier C, Marin GB. Fe-Containing Magnesium Aluminate Support for Stability and Carbon Control during Methane Reforming. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01039] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Vladimir V. Galvita
- Laboratory for Chemical Technology, Ghent University, Technologiepark 914, B-9052 Ghent, Belgium
| | - Hilde Poelman
- Laboratory for Chemical Technology, Ghent University, Technologiepark 914, B-9052 Ghent, Belgium
| | | | - Alessandro Longo
- Institution Netherlands Organization for Scientific Research (NWO), The European Synchrotron, CS40220, 38043, 71 Avenue des Martyrs, 38000 Grenoble, France
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, UOS Palermo, Via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Maria Meledina
- Electron Microscopy for Materials Science (EMAT), Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Gustaaf Van Tendeloo
- Electron Microscopy for Materials Science (EMAT), Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Christophe Detavernier
- Department of Solid State Sciences, Ghent University, Krijgslaan 281, S1, B-9000 Ghent, Belgium
| | - Guy B. Marin
- Laboratory for Chemical Technology, Ghent University, Technologiepark 914, B-9052 Ghent, Belgium
| |
Collapse
|
26
|
Labrador NY, Songcuan EL, De Silva C, Chen H, Kurdziel SJ, Ramachandran RK, Detavernier C, Esposito DV. Hydrogen Evolution at the Buried Interface between Pt Thin Films and Silicon Oxide Nanomembranes. ACS Catal 2018. [DOI: 10.1021/acscatal.7b02668] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Natalie Y. Labrador
- Columbia University in the City of New York Department of Chemical Engineering, Lenfest
Center for Sustainable Energy, 500 W. 120th Street, New York, New York 10027, United States
| | - Eva L. Songcuan
- Columbia University in the City of New York Department of Chemical Engineering, Lenfest
Center for Sustainable Energy, 500 W. 120th Street, New York, New York 10027, United States
| | - Chathuranga De Silva
- Columbia University in the City of New York Department of Chemical Engineering, Lenfest
Center for Sustainable Energy, 500 W. 120th Street, New York, New York 10027, United States
| | - Han Chen
- Columbia University in the City of New York Department of Chemical Engineering, Lenfest
Center for Sustainable Energy, 500 W. 120th Street, New York, New York 10027, United States
| | - Sophia J. Kurdziel
- Columbia University in the City of New York Department of Chemical Engineering, Lenfest
Center for Sustainable Energy, 500 W. 120th Street, New York, New York 10027, United States
| | - Ranjith K. Ramachandran
- Ghent University, Department of Solid State Sciences,
CoCooN, Krijgslaan 281/S1, B-9000 Ghent, Belgium
| | - Christophe Detavernier
- Ghent University, Department of Solid State Sciences,
CoCooN, Krijgslaan 281/S1, B-9000 Ghent, Belgium
| | - Daniel V. Esposito
- Columbia University in the City of New York Department of Chemical Engineering, Lenfest
Center for Sustainable Energy, 500 W. 120th Street, New York, New York 10027, United States
| |
Collapse
|
27
|
Gubó R, Yim CM, Allan M, Pang CL, Berkó A, Thornton G. Variation of SMSI with the Au:Pd Ratio of Bimetallic Nanoparticles on TiO 2(110). Top Catal 2017; 61:308-317. [PMID: 31258302 PMCID: PMC6560464 DOI: 10.1007/s11244-017-0854-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Au/Pd nanoparticles are important in a number of catalytic processes. Here we investigate the formation of Au-Pd bimetallic nanoparticles on TiO2(110) and their susceptibility to encapsulation using scanning tunneling microscopy, as well as Auger spectroscopy and low energy electron diffraction. Sequentially depositing 5 MLE Pd and 1 MLE Au at 298 K followed by annealing to 573 K results in a bimetallic core and Pd shell, with TiOx encapsulation on annealing to ~ 800 K. Further deposition of Au on the pinwheel type TiOx layer results in a template-assisted nucleation of Au nanoclusters, while on the zigzag type TiOx layer no preferential adsorption site of Au was observed. Increasing the Au:Pd ratio to 3 MLE Pd and 2 MLE Au results in nanoparticles that are enriched in Au at their surface, which exhibit a strong resistance towards encapsulation. Hence the degree of encapsulation of the nanoparticles during sintering can be controlled by tuning the Au:Pd ratio.
Collapse
Affiliation(s)
- Richard Gubó
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1., 6720 Szeged, Hungary
- ELI-HU Nonprofit Kft, Extreme Light Infrastructure-ALPS, Dugonics tér 13, 6720 Szeged, Hungary
| | - Chi M. Yim
- London Centre for Nanotechnology and Chemistry Department, University College London, 20 Gordon Street, London, WC1H 0AJ UK
| | - Michael Allan
- London Centre for Nanotechnology and Chemistry Department, University College London, 20 Gordon Street, London, WC1H 0AJ UK
| | - Chi L. Pang
- London Centre for Nanotechnology and Chemistry Department, University College London, 20 Gordon Street, London, WC1H 0AJ UK
| | - András Berkó
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich B. tér 1., 6720 Szeged, Hungary
| | - Geoff Thornton
- London Centre for Nanotechnology and Chemistry Department, University College London, 20 Gordon Street, London, WC1H 0AJ UK
| |
Collapse
|
28
|
|
29
|
Spöri C, Kwan JTH, Bonakdarpour A, Wilkinson DP, Strasser P. Stabilitätsanforderungen von Elektrokatalysatoren für die Sauerstoffentwicklung: der Weg zu einem grundlegenden Verständnis und zur Minimierung der Katalysatordegradation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201608601] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Camillo Spöri
- The Electrochemical Energy, Catalysis and Materials, Science Laboratory, Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Jason Tai Hong Kwan
- Department of Chemical and Biological Engineering; University of British Columbia; 2360 East Mall Vancouver B.C V6T 1Z3 Kanada
| | - Arman Bonakdarpour
- Department of Chemical and Biological Engineering; University of British Columbia; 2360 East Mall Vancouver B.C V6T 1Z3 Kanada
| | - David P. Wilkinson
- Department of Chemical and Biological Engineering; University of British Columbia; 2360 East Mall Vancouver B.C V6T 1Z3 Kanada
| | - Peter Strasser
- The Electrochemical Energy, Catalysis and Materials, Science Laboratory, Institut für Chemie; Technische Universität Berlin; Straße des 17. Juni 124 10623 Berlin Deutschland
- Ertl Center for Electrochemistry and Catalysis; Gwangju Institute of Science and Technology; Gwangju 500-712 Südkorea
| |
Collapse
|
30
|
Spöri C, Kwan JTH, Bonakdarpour A, Wilkinson DP, Strasser P. The Stability Challenges of Oxygen Evolving Catalysts: Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation. Angew Chem Int Ed Engl 2017; 56:5994-6021. [PMID: 27805788 DOI: 10.1002/anie.201608601] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Indexed: 11/09/2022]
Abstract
This Review addresses the technical challenges, scientific basis, recent progress, and outlook with respect to the stability and degradation of catalysts for the oxygen evolution reaction (OER) operating at electrolyzer anodes in acidic environments with an emphasis on ion exchange membrane applications. First, the term "catalyst stability" is clarified, as well as current performance targets, major catalyst degradation mechanisms, and their mitigation strategies. Suitable in situ experimental methods are then evaluated to give insight into catalyst degradation and possible pathways to tune OER catalyst stability. Finally, the importance of identifying universal figures of merit for stability is highlighted, leading to a comprehensive accelerated lifetime test that could yield comparable performance data across different laboratories and catalyst types. The aim of this Review is to help disseminate and stress the important relationships between structure, composition, and stability of OER catalysts under different operating conditions.
Collapse
Affiliation(s)
- Camillo Spöri
- The Electrochemical Energy, Catalysis and Materials Science Laboratory, Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Jason Tai Hong Kwan
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, B.C, V6T 1Z3, Canada
| | - Arman Bonakdarpour
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, B.C, V6T 1Z3, Canada
| | - David P Wilkinson
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, B.C, V6T 1Z3, Canada
| | - Peter Strasser
- The Electrochemical Energy, Catalysis and Materials Science Laboratory, Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623, Berlin, Germany.,Ertl Center for Electrochemistry and Catalysis, Gwangju Institute of Science and Technology, Gwangju, 500-712, South Korea
| |
Collapse
|
31
|
Matsubu JC, Zhang S, DeRita L, Marinkovic NS, Chen JG, Graham GW, Pan X, Christopher P. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts. Nat Chem 2016; 9:120-127. [DOI: 10.1038/nchem.2607] [Citation(s) in RCA: 442] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 08/05/2016] [Indexed: 12/24/2022]
|