1
|
Sensini A, Stamati O, Marchiori G, Sancisi N, Gotti C, Giavaresi G, Cristofolini L, Focarete ML, Zucchelli A, Tozzi G. Full-field strain distribution in hierarchical electrospun nanofibrous poly-L(lactic) acid/collagen scaffolds for tendon and ligament regeneration: A multiscale study. Heliyon 2024; 10:e26796. [PMID: 38444492 PMCID: PMC10912460 DOI: 10.1016/j.heliyon.2024.e26796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Regeneration of injured tendons and ligaments (T/L) is a worldwide need. In this study electrospun hierarchical scaffolds made of a poly-L (lactic) acid/collagen blend were developed reproducing all the multiscale levels of aggregation of these tissues. Scanning electron microscopy, microCT and tensile mechanical tests were carried out, including a multiscale digital volume correlation analysis to measure the full-field strain distribution of electrospun structures. The principal strains (εp1 and εp3) described the pattern of strains caused by the nanofibers rearrangement, while the deviatoric strains (εD) revealed the related internal sliding of nanofibers and bundles. The results of this study confirmed the biomimicry of such electrospun hierarchical scaffolds, paving the way to further tissue engineering and clinical applications.
Collapse
Affiliation(s)
- Alberto Sensini
- Department of Complex Tissue Regeneration and cell Biology-Inspired Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
- Department of Industrial Engineering, Alma Mater Studiorum—Università di Bologna, Bologna, Italy
| | | | - Gregorio Marchiori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Sancisi
- Department of Industrial Engineering, Alma Mater Studiorum—Università di Bologna, Bologna, Italy
| | - Carlo Gotti
- Advanced Mechanics and Materials – Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Cristofolini
- Department of Complex Tissue Regeneration and cell Biology-Inspired Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum—Università di Bologna, I-40064, Ozzano dell'Emilia, Bologna, Italy
| | - Maria Letizia Focarete
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum—Università di Bologna, I-40064, Ozzano dell'Emilia, Bologna, Italy
- Department of Chemistry 'G. Ciamician' and National Consortium of Materials Science and Technology (INSTM, Bologna RU), Alma Mater Studiorum—Università di Bologna, Bologna, Italy
| | - Andrea Zucchelli
- Department of Industrial Engineering, Alma Mater Studiorum—Università di Bologna, Bologna, Italy
- Advanced Mechanics and Materials – Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Gianluca Tozzi
- Centre for Advanced Manufacturing and Materials, School of Engineering, University of Greenwich, Chatham Maritime, United Kingdom
| |
Collapse
|
2
|
Torre J, Cimavilla-Román P, Cuadra-Rodríguez D, Rodríguez-Pérez MÁ, Guttmann P, Werner S, Pinto J, Barroso-Solares S. Unveiling the Inner Structure of Micrometric Hollow Polymeric Fibers Using Synchrotron X-Ray Nanotomography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:14-26. [PMID: 38214892 DOI: 10.1093/micmic/ozad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/09/2023] [Accepted: 11/24/2023] [Indexed: 01/13/2024]
Abstract
In this study, a novel application of synchrotron X-ray nanotomography based on high-resolution full-field transmission X-ray microscopy for characterizing the structure and morphology of micrometric hollow polymeric fibers is presented. By employing postimage analysis using an open-source software such as Tomviz and ImageJ, various key parameters in fiber morphology, including diameter, wall thickness, wall thickness distribution, pore size, porosity, and surface roughness, were assessed. Electrospun polycaprolactone fibers with micrometric diameters and submicrometric features with induced porosity via gas dissolution foaming were used to this aim. The acquired synchrotron X-ray nanotomography data were analyzed using two approaches: 3D tomographic reconstruction and 2D radiographic projection-based analysis. The results of the combination of both approaches demonstrate unique capabilities of this technique, not achievable by other available techniques, allowing for a full characterization of the internal and external morphology and structure of the fibers as well as to obtain valuable qualitative insights into the overall fiber structure.
Collapse
Affiliation(s)
- Jorge Torre
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
- BioEcoUVA Research Institute on Bioeconomy, University of Valladolid, Valladolid, Calle Dr. Mergelina, 47011, Spain
- Study, Preservation, and Recovery of Archaeological, Historical and Environmental Heritage (AHMAT) Research Group, Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
| | - Paula Cimavilla-Román
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
| | - Daniel Cuadra-Rodríguez
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
- Study, Preservation, and Recovery of Archaeological, Historical and Environmental Heritage (AHMAT) Research Group, Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
| | - Miguel Ángel Rodríguez-Pérez
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
- BioEcoUVA Research Institute on Bioeconomy, University of Valladolid, Valladolid, Calle Dr. Mergelina, 47011, Spain
| | - Peter Guttmann
- Department of X-Ray Microscopy, Electron Storage Ring at BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße, 12489, 15, Berlin, Germany
| | - Stephan Werner
- Department of X-Ray Microscopy, Electron Storage Ring at BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße, 12489, 15, Berlin, Germany
| | - Javier Pinto
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
- BioEcoUVA Research Institute on Bioeconomy, University of Valladolid, Valladolid, Calle Dr. Mergelina, 47011, Spain
- Study, Preservation, and Recovery of Archaeological, Historical and Environmental Heritage (AHMAT) Research Group, Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
| | - Suset Barroso-Solares
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
- BioEcoUVA Research Institute on Bioeconomy, University of Valladolid, Valladolid, Calle Dr. Mergelina, 47011, Spain
- Study, Preservation, and Recovery of Archaeological, Historical and Environmental Heritage (AHMAT) Research Group, Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
| |
Collapse
|
3
|
Fan J, Abedi-Dorcheh K, Sadat Vaziri A, Kazemi-Aghdam F, Rafieyan S, Sohrabinejad M, Ghorbani M, Rastegar Adib F, Ghasemi Z, Klavins K, Jahed V. A Review of Recent Advances in Natural Polymer-Based Scaffolds for Musculoskeletal Tissue Engineering. Polymers (Basel) 2022; 14:polym14102097. [PMID: 35631979 PMCID: PMC9145843 DOI: 10.3390/polym14102097] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
The musculoskeletal (MS) system consists of bone, cartilage, tendon, ligament, and skeletal muscle, which forms the basic framework of the human body. This system plays a vital role in appropriate body functions, including movement, the protection of internal organs, support, hematopoiesis, and postural stability. Therefore, it is understandable that the damage or loss of MS tissues significantly reduces the quality of life and limits mobility. Tissue engineering and its applications in the healthcare industry have been rapidly growing over the past few decades. Tissue engineering has made significant contributions toward developing new therapeutic strategies for the treatment of MS defects and relevant disease. Among various biomaterials used for tissue engineering, natural polymers offer superior properties that promote optimal cell interaction and desired biological function. Natural polymers have similarity with the native ECM, including enzymatic degradation, bio-resorb and non-toxic degradation products, ability to conjugate with various agents, and high chemical versatility, biocompatibility, and bioactivity that promote optimal cell interaction and desired biological functions. This review summarizes recent advances in applying natural-based scaffolds for musculoskeletal tissue engineering.
Collapse
Affiliation(s)
- Jingzhi Fan
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
| | - Keyvan Abedi-Dorcheh
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Asma Sadat Vaziri
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Fereshteh Kazemi-Aghdam
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Saeed Rafieyan
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Masoume Sohrabinejad
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Mina Ghorbani
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Fatemeh Rastegar Adib
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Zahra Ghasemi
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Kristaps Klavins
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
- Correspondence: (K.K.); (V.J.)
| | - Vahid Jahed
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
- Correspondence: (K.K.); (V.J.)
| |
Collapse
|
4
|
Electro-spinning of highly-aligned polyacrylonitrile nano-fibres with continuous spooling. Sci Rep 2021; 11:21713. [PMID: 34741129 PMCID: PMC8571412 DOI: 10.1038/s41598-021-99890-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
This paper reports on a new configuration for producing highly-aligned electro-spun fibres that can be produced on a static substrate or one where it is hauled off and spooled continuously to enable the production of continuous lengths. The fixture consists of a Vee-shaped polytetrafluorethylene shield at 60° with a 1 cm wide integral rectangular base that is mounted on a copper disk with a 10 cm diameter. Specified concentrations of polyacrylonitrile in dimethyl sulfoxide were electro-spun on to a strip of cellulose paper. In the static setup, approximately 91% of the fibres were deposited to within 3°. When the spooling rig was used, a tape of the cellulose paper was hauled off at 0.07 mm/min, 78% of the fibres were aligned to within 3°. Simulations of the conventional and Vee-shield electro-spinning setups were undertaken and they provided corroboration for the experimental observations with regard to the mechanism responsible for fibre alignment. The feasibility of using this technique to produce 0°/- 45°/+ 45° stacked layers of aligned fibre preform is demonstrated.
Collapse
|
5
|
High-resolution microscopy assisted mechanical modeling of ultrafine electrospun network. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Sensini A, Santare MH, Eichenlaub E, Bloom E, Gotti C, Zucchelli A, Cristofolini L. Tuning the Structure of Nylon 6,6 Electrospun Bundles to Mimic the Mechanical Performance of Tendon Fascicles. Front Bioeng Biotechnol 2021; 9:626433. [PMID: 33889568 PMCID: PMC8056020 DOI: 10.3389/fbioe.2021.626433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Tendon and ligament injuries are triggered by mechanical loading, but the specific mechanisms are not yet clearly identified. It is well established however, that the inflection and transition points in tendon stress-strain curves represent thresholds that may signal the onset of irreversible fibrillar sliding. This phenomenon often results in a progressive macroscopic failure of these tissues. With the aim to simulate and replace tendons, electrospinning has been demonstrated to be a suitable technology to produce nanofibers similar to the collagen fibrils in a mat form. These nanofibrous mats can be easily assembled in higher hierarchical levels to reproduce the whole tissue structure. Despite the fact that several groups have developed electrospun tendon-inspired structures, an investigation of the inflection and transition point mechanics is missing. Comparing their behavior with that of the natural counterpart is important to adequately replicate their behavior at physiological strain levels. To fill this gap, in this work fascicle-inspired electrospun nylon 6,6 bundles were produced with different collector peripheral speeds (i.e., 19.7 m s–1; 13.7 m s–1; 7.9 m s–1), obtaining different patterns of nanofibers alignment. The scanning electron microcopy revealed a fibril-inspired structure of the nanofibers with an orientation at the higher speed similar to those in tendons and ligaments (T/L). A tensile mechanical characterization was carried out showing an elastic-brittle biomimetic behavior for the higher speed bundles with a progressively more ductile behavior at slower speeds. Moreover, for each sample category the transition and the inflection points were defined to study how these points can shift with the nanofiber arrangement and to compare their values with those of tendons. The results of this study will be of extreme interest for the material scientists working in the field, to model and improve the design of their electrospun structures and scaffolds and enable building a new generation of artificial tendons and ligaments.
Collapse
Affiliation(s)
- Alberto Sensini
- Advanced Applications in Mechanical Engineering and Materials Technology - Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Michael H Santare
- Department of Mechanical Engineering, University of Delaware, Newark, DE, United States.,Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Emily Eichenlaub
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Ellen Bloom
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Carlo Gotti
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Andrea Zucchelli
- Advanced Applications in Mechanical Engineering and Materials Technology - Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum-Università di Bologna, Bologna, Italy.,Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Luca Cristofolini
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy.,Health Sciences and Technologies - Interdepartmental Center for Industrial Research (CIRI-HST), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| |
Collapse
|
7
|
Taskin MB, Ahmad T, Wistlich L, Meinel L, Schmitz M, Rossi A, Groll J. Bioactive Electrospun Fibers: Fabrication Strategies and a Critical Review of Surface-Sensitive Characterization and Quantification. Chem Rev 2021; 121:11194-11237. [DOI: 10.1021/acs.chemrev.0c00816] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Taufiq Ahmad
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Laura Wistlich
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry and Helmholtz Institute for RNA Based Infection Research, 97074 Würzburg, Germany
| | - Michael Schmitz
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Angela Rossi
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
8
|
Gotti C, Sensini A, Fornaia G, Gualandi C, Zucchelli A, Focarete ML. Biomimetic Hierarchically Arranged Nanofibrous Structures Resembling the Architecture and the Passive Mechanical Properties of Skeletal Muscles: A Step Forward Toward Artificial Muscle. Front Bioeng Biotechnol 2020; 8:767. [PMID: 32766220 PMCID: PMC7379046 DOI: 10.3389/fbioe.2020.00767] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscles are considered to date the best existing actuator in nature thanks to their hierarchical multiscale fibrous structure capable to enhance their strength and contractile performances. In recent years, driven by the growing of the soft robotics and tissue-engineering research field, many biomimetic soft actuators and scaffolds were designed by taking inspiration from the biological skeletal muscle. In this work we used the electrospinning technique to develop a hierarchically arranged nanofibrous structure resembling the morphology and passive biomechanical properties of skeletal muscles. To mimic the passive properties of muscle, a low-modulus polyurethane was used. Several electrospun structures (mats, bundles, and a muscle-like assembly) were produced with different internal 3D arrangements of the nanofibers. A thermal characterization through thermogravimetric and differential scanning calorimetry analysis investigated the physico-chemical properties of the material. The multiscale morphological similarities with the biological counterpart were verified by means of scanning electron microscopy investigation. The tensile tests on the different electrospun samples revealed that the muscle-like assembly presented slightly higher strength and stiffness compared to the skeletal muscle ones. Moreover, mathematical models of the mechanical behavior of the nanofibrous structures were successfully developed, allowing to better investigate the relationships between structure and mechanics of the samples. The promising results suggest the suitability of this hierarchical electrospun nanofibrous structure for applications in regenerative medicine and, if combined with active materials, in soft actuators for robotic.
Collapse
Affiliation(s)
- Carlo Gotti
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Alberto Sensini
- Advanced Mechanics and Materials–Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Gianmaria Fornaia
- Department of Chemistry “G. Ciamician” and National Interuniversity Consortium of Materials Science and Technology, Bologna Research Unit, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Chiara Gualandi
- Advanced Mechanics and Materials–Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
- Department of Chemistry “G. Ciamician” and National Interuniversity Consortium of Materials Science and Technology, Bologna Research Unit, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Andrea Zucchelli
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
- Advanced Mechanics and Materials–Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Maria Letizia Focarete
- Department of Chemistry “G. Ciamician” and National Interuniversity Consortium of Materials Science and Technology, Bologna Research Unit, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
- Health Sciences and Technologies–Interdepartmental Center for Industrial Research (CIRI-HST), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| |
Collapse
|
9
|
Tozzi G, Ahmed F. Preface to ToScA 2017 special issue. J Microsc 2019; 272:163-164. [PMID: 30475395 DOI: 10.1111/jmi.12770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- G Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - F Ahmed
- Exponent International, London, UK.,IAC, The Natural History Museum, London, UK
| |
Collapse
|
10
|
Alvarez J, Saudino G, Musteata V, Madhavan P, Genovese A, Behzad AR, Sougrat R, Boi C, Peinemann KV, Nunes SP. 3D Analysis of Ordered Porous Polymeric Particles using Complementary Electron Microscopy Methods. Sci Rep 2019; 9:13987. [PMID: 31562349 PMCID: PMC6764970 DOI: 10.1038/s41598-019-50338-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/03/2019] [Indexed: 01/04/2023] Open
Abstract
Highly porous particles with internal triply periodic minimal surfaces were investigated for sorption of proteins. The visualization of the complex ordered morphology requires complementary advanced methods of electron microscopy for 3D imaging, instead of a simple 2D projection: transmission electron microscopy (TEM) tomography, slice-and-view focused ion beam (FIB) and serial block face (SBF) scanning electron microscopy (SEM). The capability of each method of 3D image reconstruction was demonstrated and their potential of application to other synthetic polymeric systems was discussed. TEM has high resolution for details even smaller than 1 nm, but the imaged volume is relatively restricted (2.5 μm)3. The samples are pre-sliced in an ultramicrotome. FIB and SBF are coupled to a SEM. The sample sectioning is done in situ, respectively by an ion beam or an ultramicrotome, SBF, a method so far mostly applied only to biological systems, was particularly highly informative to reproduce the ordered morphology of block copolymer particles with 32–54 nm nanopores and sampling volume (20 μm)3.
Collapse
Affiliation(s)
- Juan Alvarez
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center, 23955-6900, Thuwal, Saudi Arabia
| | - Giovanni Saudino
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center, 23955-6900, Thuwal, Saudi Arabia.,Alma Mater Studiorum-Università di Bologna, via Terracini 28, 40131, Bologna, Italy
| | - Valentina Musteata
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center, 23955-6900, Thuwal, Saudi Arabia
| | - Poornima Madhavan
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center, 23955-6900, Thuwal, Saudi Arabia
| | - Alessandro Genovese
- King Abdullah University of Science and Technology (KAUST), Core Labs, 23955-6900, Thuwal, Saudi Arabia
| | - Ali Reza Behzad
- King Abdullah University of Science and Technology (KAUST), Core Labs, 23955-6900, Thuwal, Saudi Arabia
| | - Rachid Sougrat
- King Abdullah University of Science and Technology (KAUST), Core Labs, 23955-6900, Thuwal, Saudi Arabia
| | - Cristiana Boi
- Alma Mater Studiorum-Università di Bologna, via Terracini 28, 40131, Bologna, Italy
| | - Klaus-Viktor Peinemann
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Advanced Membranes and Porous Materials Center, 23955-6900, Thuwal, Saudi Arabia
| | - Suzana P Nunes
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center, 23955-6900, Thuwal, Saudi Arabia.
| |
Collapse
|
11
|
Chang W, Callan KT, Dragoo JL. The Behavior of Tendon Progenitor Cells from Tendinopathic Tendons: Implications for Treatment. Tissue Eng Part A 2019; 26:38-46. [PMID: 31111771 DOI: 10.1089/ten.tea.2019.0042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tendinopathy remains a significant clinical challenge. Although there is some evidence that leukocyte-rich platelet-rich plasma can improve the symptoms of tendinopathy, more efficacious treatments will be required in the future to improve probability of successfully resolving this condition in athletes. Because optimal treatments are not currently available, there is a need to better understand the pathology of tendinopathy from the perspective of tendon progenitor cells (TPCs). TPCs isolated from normal and tendinopathy donors were characterized by their stem cell properties and proliferation capacities, along with their ability to become tenocytes under mechanical loading. The results showed a significant 2.6-fold increase in the viable cell population in tendinopathy versus normal donors. Although the percentage of self-renewing cells was similar, the total number of TPCs in tendinopathy was significantly higher (1.6-fold) than normal TPCs based on the colony formation assays. In contrast, TPCs from tendinopathy tissue showed significantly lower cellular proliferation rate by cumulative population doublings. Next, the expanded TPCs from both tissues successfully demonstrated the trilineage differentiation capabilities with specific gene markers, staining, and biochemical assays. To induce tenogenic differentiation, stretchable silicone wells were designed and fabricated, plus the creation of an adaptor platform used on a syringe pump for mechanical stretch. This economic design provided the adequate cyclic loading to drive tenogenic differentiation. With these devices, the stretch duration was optimized and showed the significant increase in scleraxis (SCX) and tenomodulin (TNMD) expression at 2.60 (fold change) and 3.86 (fold change in logarithm), respectively, by reverse transcription-quantitative polymerase chain reaction in normal TPCs after stretch. This assay also demonstrated the widespread cell reorientation following stretch in normal TPCs. In contrast, the mechanical loading did not increase the SCX gene expression; TNMD expression remained undetectable, and cell realignment was significantly less in tendinopathy TPCs. In addition, western blot analysis confirmed the elevated TNMD protein expression in normal TPCs following stretch and the lack of expression in tendinopathy TPCs. In summary, tendinopathy TPCs were unable to differentiate into tenocytes following mechanical stretch. Future studies may aim to reprogram tendinopathy TPCs to allow tenogenic induction. Impact Statement This article presents a model to distinguish between normal and tendinopathy progenitor cell behavior, which reveals insight into the pathophysiology of tendinopathy. With the design of a platform adaptor, mechanical stretch was applied to tendon progenitor cells (TPCs) that promoted tenogenic differentiation. This design provided programmable features for more flexible application with low cost. These devices successfully stimulated tenogenic differentiation of TPCs from normal, but not tendinopathic tendons under cyclic stretch. The scientific method provided in this article will allow testing of biologics, exosomes, and other treatment strategies to derive new, more efficient treatment of tendinopathy in the future.
Collapse
Affiliation(s)
- Wenteh Chang
- Department of Orthopaedic Surgery, Stanford University, Redwood City, California
| | - Kylie T Callan
- Department of Orthopaedic Surgery, Stanford University, Redwood City, California
| | - Jason L Dragoo
- Department of Orthopaedic Surgery, Stanford University, Redwood City, California
| |
Collapse
|
12
|
Sensini A, Cristofolini L, Zucchelli A, Focarete ML, Gualandi C, DE Mori A, Kao AP, Roldo M, Blunn G, Tozzi G. Hierarchical electrospun tendon-ligament bioinspired scaffolds induce changes in fibroblasts morphology under static and dynamic conditions. J Microsc 2019; 277:160-169. [PMID: 31339556 DOI: 10.1111/jmi.12827] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/05/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
The regeneration of injured tendons and ligaments is challenging because the scaffolds needs proper mechanical properties and a biomimetic morphology. In particular, the morphological arrangement of scaffolds is a key point to drive the cells growth to properly regenerate the collagen extracellular matrix. Electrospinning is a promising technique to produce hierarchically structured nanofibrous scaffolds able to guide cells in the regeneration of the injured tissue. Moreover, the dynamic stretching in bioreactors of electrospun scaffolds had demonstrated to speed up cell shape modifications in vitro. The aim of the present study was to combine different imaging techniques such as high-resolution X-ray tomography (XCT), scanning electron microscopy (SEM), fluorescence microscopy and histology to investigate if hierarchically structured poly (L-lactic acid) and collagen electrospun scaffolds can induce morphological modifications in human fibroblasts, while cultured in static and dynamic conditions. After 7 days of parallel cultures, the results assessed that fibroblasts had proliferated on the external nanofibrous sheath of the static scaffolds, elongating themselves circumferentially. The dynamic cultures revealed a preferential axial orientation of fibroblasts growth on the external sheath. The aligned nanofibre bundles inside the hierarchical scaffolds instead, allowed a physiological distribution of the fibroblasts along the nanofibre direction. Inside the dynamic scaffolds, cells appeared thinner compared with the static counterpart. This study had demonstrated that hierarchically structured electrospun scaffolds can induce different fibroblasts morphological modifications during static and dynamic conditions, modifying their shape in the direction of the applied loads. LAY DESCRIPTION: To enhance the regeneration of injured tendons and ligaments cells need to growth on dedicated structures (scaffolds) with mechanical properties and a fibrous morphology similar to the natural tissue. In particular, the morphological organisation of scaffolds is fundamental in leading cells to colonise them, regenerating the collagen extracellular matrix. Electrospinning is a promising technique to produce fibres with a similar to the human collagen fibres, suitable to design complex scaffolds able to guide cells in the reconstruction of the natural tissue. Moreover, it is well established that the cyclic stretching of these scaffolds inside dedicated systems called bioreactors, can speed up cells growth and their shape modification. The aim of the present study was to investigate how hierarchically structured electrospun scaffolds, made of resorbable material such as poly(L-lactic acid) and collagen, could induce morphological changes in human fibroblasts, while cultured during static and dynamic conditions. These scaffolds were composed by an external electrospun membrane that grouped inside it a ring-shaped bundle, made of axially aligned nanofibres, resembling the morphological arrangement of tendon and ligament tissue. After 7 days of parallel cultures, the scaffolds were investigated using the following imaging techniques: (i) high-resolution X-ray tomography (XCT); (ii) scanning electron microscopy (SEM); (iii) fluorescence microscopy and (iv) histology. The results showed that fibroblasts were able to grow on the external nanofibrous sheath of the static scaffolds, by elongating themselves along their circumference. The dynamic cultures revealed instead a preferential axial orientation of fibroblasts grown on the external sheath. The aligned nanofibre bundles inside the hierarchical scaffolds allowed an axial distribution of the fibroblasts along the nanofibres direction. This study has demonstrated that the electrospun hierarchically structured scaffolds investigated can modify the fibroblasts morphology both in static and dynamic conditions, in relation with the direction of the applied loads.
Collapse
Affiliation(s)
- A Sensini
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - L Cristofolini
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy.,Health Sciences and Technologies - Interdepartmental Center for Industrial Research (CIRI-HST), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - A Zucchelli
- Department of Industrial Engineering, Alma Mater Studiorum - University of Bologna, Bologna, Italy.,Advanced Mechanics and Materials - Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - M L Focarete
- Health Sciences and Technologies - Interdepartmental Center for Industrial Research (CIRI-HST), Alma Mater Studiorum - University of Bologna, Bologna, Italy.,Department of Chemistry 'G. Ciamician' and National Consortium of Materials Science and Technology (INSTM, Bologna RU), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - C Gualandi
- Department of Chemistry 'G. Ciamician' and National Consortium of Materials Science and Technology (INSTM, Bologna RU), Alma Mater Studiorum - University of Bologna, Bologna, Italy.,Advanced Mechanics and Materials - Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - A DE Mori
- School of Pharmacy and Biomedical Science, University of Portsmouth - St Michael's Building, Portsmouth, U.K
| | - A P Kao
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, U.K
| | - M Roldo
- School of Pharmacy and Biomedical Science, University of Portsmouth - St Michael's Building, Portsmouth, U.K
| | - G Blunn
- School of Pharmacy and Biomedical Science, University of Portsmouth - St Michael's Building, Portsmouth, U.K
| | - G Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, U.K
| |
Collapse
|
13
|
Sensini A, Gotti C, Belcari J, Zucchelli A, Focarete ML, Gualandi C, Todaro I, Kao AP, Tozzi G, Cristofolini L. Morphologically bioinspired hierarchical nylon 6,6 electrospun assembly recreating the structure and performance of tendons and ligaments. Med Eng Phys 2019; 71:79-90. [PMID: 31262555 DOI: 10.1016/j.medengphy.2019.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/17/2019] [Accepted: 06/19/2019] [Indexed: 01/06/2023]
Abstract
Reconstructions of ruptured tendons and ligaments currently have dissatisfactory failure rate. Failures are mainly due to the mechanical mismatch of commercial implants with respect to the host tissue. In fact, it is crucial to replicate the morphology (hierarchical in nature) and mechanical response (highly-nonlinear) of natural tendons and ligaments. The aim of this study was to develop morphologically bioinspired hierarchical Nylon 6,6 electrospun assemblies recreating the structure and performance of tendons and ligaments. First, we built different electrospun bundles to find the optimal orientation of the nanofibers. A 2nd-level hierarchical assembly was fabricated with a dedicated process that allowed tightly joining the bundles one next to the other with an electrospun sheath, so as to improve the mechanical performance. Finally, a further hierarchical 3rd-level assembly was constructed by grouping several 2nd-level assemblies. The morphology of the different structures was assessed with scanning electron microscopy and high-resolution X-ray tomography, which allowed measuring the directionality of the nanofibers in the bundles and in the sheaths. The mechanical properties of the single bundles and of the 2nd-level assemblies were measured with tensile tests. The single bundles and the hierarchical assemblies showed morphology and directionality of the nanofibers similar to the tendons and ligaments. The strength and stiffness were comparable to that of tendons and ligaments. In conclusion, this work showed an innovative electrospinning production process to build nanofibrous Nylon 6,6 hierarchical assemblies which are suitable as future implantable devices and able to mimic the multiscale morphology and the biomechanical properties of tendons and ligaments.
Collapse
Affiliation(s)
- Alberto Sensini
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, I-40131 Bologna, Italy
| | - Carlo Gotti
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, I-40131 Bologna, Italy
| | - Juri Belcari
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, I-40131 Bologna, Italy
| | - Andrea Zucchelli
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, I-40131 Bologna, Italy
| | - Maria Letizia Focarete
- Department of Chemistry 'G. Ciamician' and National Consortium of Materials Science and Technology (INSTM, Bologna RU), Alma Mater Studiorum-University of Bologna, I-40126 Bologna, Italy; Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-HST), Alma Mater Studiorum-University of Bologna, I-40064 Ozzano dell'Emilia, Bologna, Italy
| | - Chiara Gualandi
- Department of Chemistry 'G. Ciamician' and National Consortium of Materials Science and Technology (INSTM, Bologna RU), Alma Mater Studiorum-University of Bologna, I-40126 Bologna, Italy; Advanced Mechanics and Materials - Interdepartmental Center for Industrial Research (CIRI-MAM), Alma Mater Studiorum-University of Bologna, I-40123 Bologna, Italy
| | - Ivan Todaro
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, I-40131 Bologna, Italy
| | - Alexander P Kao
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, United Kingdom
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, United Kingdom
| | - Luca Cristofolini
- Department of Industrial Engineering, Alma Mater Studiorum-University of Bologna, I-40131 Bologna, Italy; Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-HST), Alma Mater Studiorum-University of Bologna, I-40064 Ozzano dell'Emilia, Bologna, Italy.
| |
Collapse
|
14
|
Sensini A, Gualandi C, Focarete ML, Belcari J, Zucchelli A, Boyle L, Reilly GC, Kao AP, Tozzi G, Cristofolini L. Multiscale hierarchical bioresorbable scaffolds for the regeneration of tendons and ligaments. Biofabrication 2019; 11:035026. [DOI: 10.1088/1758-5090/ab20ad] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Sensini A, Cristofolini L. Biofabrication of Electrospun Scaffolds for the Regeneration of Tendons and Ligaments. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1963. [PMID: 30322082 PMCID: PMC6213815 DOI: 10.3390/ma11101963] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Tendon and ligament tissue regeneration and replacement are complex since scaffolds need to guarantee an adequate hierarchical structured morphology, and non-linear mechanical properties. Moreover, to guide the cells' proliferation and tissue re-growth, scaffolds must provide a fibrous texture mimicking the typical of the arrangement of the collagen in the extracellular matrix of these tissues. Among the different techniques to produce scaffolds, electrospinning is one of the most promising, thanks to its ability to produce fibers of nanometric size. This manuscript aims to provide an overview to researchers approaching the field of repair and regeneration of tendons and ligaments. To clarify the general requirements of electrospun scaffolds, the first part of this manuscript presents a general overview concerning tendons' and ligaments' structure and mechanical properties. The different types of polymers, blends and particles most frequently used for tendon and ligament tissue engineering are summarized. Furthermore, the focus of the review is on describing the different possible electrospinning setups and processes to obtain different nanofibrous structures, such as mats, bundles, yarns and more complex hierarchical assemblies. Finally, an overview concerning how these technologies are exploited to produce electrospun scaffolds for tendon and ligament tissue applications is reported together with the main findings and outcomes.
Collapse
Affiliation(s)
- Alberto Sensini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-Università di Bologna, 40131 Bologna, Italy.
| | - Luca Cristofolini
- Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum-Università di Bologna, 40131 Bologna, Italy.
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum-Università di Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy.
| |
Collapse
|