1
|
Wang M, Guo W, Chen JF. Caffeine: a potential mechanism for anti-obesity. Purinergic Signal 2024:10.1007/s11302-024-10022-1. [PMID: 38802651 DOI: 10.1007/s11302-024-10022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Obesity refers to the excessive accumulation of fat caused by a long-term imbalance between energy intake (EI) and energy expenditure (EE). Over recent years, obesity has become a major public health challenge. Caffeine is a natural product that has been demonstrated to exert anti-obesity effects; however, the mechanisms responsible for the effect of caffeine on weight loss have yet to be fully elucidated. Most obesity-related deaths are due to cardiovascular disease. Recent research has demonstrated that caffeine can reduce the risk of death from cardiovascular disease; thus, it can be hypothesized that caffeine may represent a new therapeutic agent for weight loss. In this review, we synthesize data arising from clinical and animal studies over the last decade and discuss the potential mechanisms by which caffeine may induce weight loss, focusing particularly on increasing energy consumption, suppressing appetite, altering lipid metabolism, and influencing the gut microbiota. Finally, we summarize the major challenges associated with caffeine and anti-obesity research and highlight possible directions for future research and development.
Collapse
Affiliation(s)
- Meng Wang
- International Joint Research Center on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wei Guo
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
2
|
Nunes ACL, Carmo M, Behrenswerth A, Canas PM, Agostinho P, Cunha RA. Adenosine A 2A Receptor Blockade Provides More Effective Benefits at the Onset Rather than after Overt Neurodegeneration in a Rat Model of Parkinson's Disease. Int J Mol Sci 2024; 25:4903. [PMID: 38732120 PMCID: PMC11084368 DOI: 10.3390/ijms25094903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Adenosine A2A receptor (A2AR) antagonists are the leading nondopaminergic therapy to manage Parkinson's disease (PD) since they afford both motor benefits and neuroprotection. PD begins with a synaptic dysfunction and damage in the striatum evolving to an overt neuronal damage of dopaminergic neurons in the substantia nigra. We tested if A2AR antagonists are equally effective in controlling these two degenerative processes. We used a slow intracerebroventricular infusion of the toxin MPP+ in male rats for 15 days, which caused an initial loss of synaptic markers in the striatum within 10 days, followed by a neuronal loss in the substantia nigra within 30 days. Interestingly, the initial loss of striatal nerve terminals involved a loss of both dopaminergic and glutamatergic synaptic markers, while GABAergic markers were preserved. The daily administration of the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) in the first 10 days after MPP+ infusion markedly attenuated both the initial loss of striatal synaptic markers and the subsequent loss of nigra dopaminergic neurons. Strikingly, the administration of SCH58261 (0.1 mg/kg, i.p. for 10 days) starting 20 days after MPP+ infusion was less efficacious to attenuate the loss of nigra dopaminergic neurons. This prominent A2AR-mediated control of synaptotoxicity was directly confirmed by showing that the MPTP-induced dysfunction (MTT assay) and damage (lactate dehydrogenase release assay) of striatal synaptosomes were prevented by 50 nM SCH58261. This suggests that A2AR antagonists may be more effective to counteract the onset rather than the evolution of PD pathology.
Collapse
Affiliation(s)
- Ana Carla L. Nunes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
| | - Marta Carmo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
| | - Andrea Behrenswerth
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
| | - Paula M. Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
| | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.C.L.N.); (M.C.); (A.B.); (P.M.C.); (P.A.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
3
|
Shalaby HN, Zaki HF, Ain-Shoka AAA, Mohammed RA. Adenosine A 2A Receptor Blockade Ameliorates Mania Like Symptoms in Rats: Signaling to PKC-α and Akt/GSK-3β/β-Catenin. Mol Neurobiol 2022; 59:6397-6410. [PMID: 35943710 PMCID: PMC9463338 DOI: 10.1007/s12035-022-02977-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022]
Abstract
Adenosinergic system dysfunction is implicated in the pathophysiology of multiple neuropsychiatric disorders including mania and bipolar diseases. The established synergistic interaction between A2A and D2 receptors in the prefrontal cortex could highlight the idea of A2A receptor antagonism as a possible anti-manic strategy. Hence, the present study was performed to examine the effect of a selective adenosine A2A receptor blocker (SCH58261) on methylphenidate-induced mania-like behavior while investigating the underlying mechanisms. Rats were injected with methylphenidate (5 mg/kg/day, i.p.) for 3 weeks with or without administration of either SCH58261 (0.01 mg/kg/day, i.p.) or lithium (150 mg/kg/day, i.p.) starting from day 9. In the diseased rats, adenosine A2AR antagonism reduced locomotor hyperactivity and risk-taking behavior along with decreased dopamine and glutamate levels. Meanwhile, SCH58261 restored NMDA receptor function, suppressed PKC-α expression, down-regulated β-Arrestin-2, up-regulated pS473-Akt and pS9-GSK-3β. Further, SCH58261 promoted synaptic plasticity markers through increasing BDNF levels along with down-regulating GAP-43 and SNAP-25. The A2A antagonist also reduced NF-κBp65 and TNF-α together with elevating IL-27 level giving an anti-inflammatory effect. In conclusion, suppression of PKC-α and modulation of Akt/GSK-3β/β-catenin axis through A2AR inhibition, could introduce adenosine A2AR as a possible therapeutic target for treatment of mania-like behavior. This notion is supported by the ability of the A2AR antagonist (SCH58261) to produce comparable results to those observed with the standard anti-manic drug (Lithium).
Collapse
Affiliation(s)
- Heba Nasr Shalaby
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hala Fahmy Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Reham Atef Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Wu Q, Feng Y, Liu L, Liu Y, Liu X, Zhang L, Li Y, Wang L. Corticotropin-Releasing Factor Aggravates Ischemic Stroke Injury by the Inflammatory Activation of Microglia. Endocrinology 2022; 163:6523128. [PMID: 35137012 DOI: 10.1210/endocr/bqac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Indexed: 11/19/2022]
Abstract
Ischemic stroke is the second leading cause of death worldwide. Therefore, exploring effective and emerging molecular targets for ischemic stroke is a primary task of basic and clinical research. The aim of the present study was to investigate the function of corticotropin-releasing factor (CRF) in ischemic stroke and its related mechanisms, to provide a reference for the treatment of ischemic stroke. CRF, antalarmin, or astressin-2B were used to activate or block the CRF1 (CRF receptor 1) or CRF2 (CRF receptor 2) in BV2 cells and adult male mice, thus constructing a distal middle cerebral artery occlusion (dMCAO) model. CRF not only accelerated microglial activity by promoting transcription and production of inflammatory factors, but also promoted the transformation of activated BV2 cells from a neuroprotective phenotype (M2) to cytotoxic phenotype (M1), and these effects were mediated by the TLR4/NF-κB signaling pathway. These effects can be blocked by antalarmin but not by astressin-2B. CRF significantly aggravated the neurological deficit, increased infarction volume, and exacerbated neuronal injuries. Additionally, CRF significantly improved the levels of TNF-α and phospho-NF-κB in the ischemia penumbra. Finally, CRF significantly increased the number of CD16/Iba-1-positive cells and decreased the number of CD206/Iba-1-positive cells in the ischemia penumbra. These results provide evidence of the proinflammatory role of CRF in an ischemic stroke model and a possible underlying mechanism, which may facilitate the elucidation of potential treatment approaches for ischemic stroke.
Collapse
Affiliation(s)
- Qiang Wu
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yan Feng
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Ling Liu
- Department of Pathology, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, 050031, China
| | - Yang Liu
- Department of Pathology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, China
| | - Xin Liu
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Liqiao Zhang
- Department of Neurosurgery, East Branch of Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yanan Li
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Liqun Wang
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| |
Collapse
|
5
|
Lichlyter DA, Krumm ZA, Golde TA, Doré S. Role of CRF and the hypothalamic-pituitary-adrenal axis in stroke: revisiting temporal considerations and targeting a new generation of therapeutics. FEBS J 2022; 290:1986-2010. [PMID: 35108458 DOI: 10.1111/febs.16380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Ischaemic neurovascular stroke represents a leading cause of death in the developed world. Preclinical and human epidemiological evidence implicates the corticotropin-releasing factor (CRF) family of neuropeptides as mediators of acute neurovascular injury pathology. Preclinical investigations of the role of CRF, CRF receptors and CRF-dependent activation of the hypothalamic-pituitary-adrenal (HPA) axis have pointed toward a tissue-specific and temporal relationship between activation of these pathways and physiological outcomes. Based on the literature, the major phases of ischaemic stroke aetiology may be separated into an acute phase in which CRF and anti-inflammatory stress signalling are beneficial and a chronic phase in which these contribute to neural degeneration, toxicity and apoptotic signalling. Significant gaps in knowledge remain regarding the pathway, temporality and systemic impact of CRF signalling and stress biology in neurovascular injury progression. Heterogeneity among experimental designs poses a challenge to defining the apparent reciprocal relationship between neurological injury and stress metabolism. Despite these challenges, it is our opinion that the elucidated temporality may be best matched with an antibody against CRF with a half-life of days to weeks as opposed to minutes to hours as with small-molecule CRF receptor antagonists. This state-of-the-art review will take a multipronged approach to explore the expected potential benefit of a CRF antibody by modulating CRF and corticotropin-releasing factor receptor 1 signalling, glucocorticoids and autonomic nervous system activity. Additionally, this review compares the modulation of CRF and HPA axis activity in neuropsychiatric diseases and their counterpart outcomes post-stroke and assess lessons learned from antibody therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel A Lichlyter
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Zachary A Krumm
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd A Golde
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Departments of Neurology, Psychiatry, Pharmaceutics, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
6
|
Pousinha PA, Mouska X, Bianchi D, Temido-Ferreira M, Rajão-Saraiva J, Gomes R, Fernandez SP, Salgueiro-Pereira AR, Gandin C, Raymond EF, Barik J, Goutagny R, Bethus I, Lopes LV, Migliore M, Marie H. The Amyloid Precursor Protein C-Terminal Domain Alters CA1 Neuron Firing, Modifying Hippocampus Oscillations and Impairing Spatial Memory Encoding. Cell Rep 2020; 29:317-331.e5. [PMID: 31597094 DOI: 10.1016/j.celrep.2019.08.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/09/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
There is a growing consensus that Alzheimer's disease (AD) involves failure of the homeostatic machinery, which underlies the firing stability of neural circuits. What are the culprits leading to neuron firing instability? The amyloid precursor protein (APP) is central to AD pathogenesis, and we recently showed that its intracellular domain (AICD) could modify synaptic signal integration. We now hypothesize that AICD modifies neuron firing activity, thus contributing to the disruption of memory processes. Using cellular, electrophysiological, and behavioral techniques, we show that pathological AICD levels weaken CA1 neuron firing activity through a gene-transcription-dependent mechanism. Furthermore, increased AICD production in hippocampal neurons modifies oscillatory activity, specifically in the γ-frequency range, and disrupts spatial memory task. Collectively, our data suggest that AICD pathological levels, observed in AD mouse models and in human patients, might contribute to progressive neuron homeostatic failure, driving the shift from normal aging to AD.
Collapse
Affiliation(s)
| | - Xavier Mouska
- Université Côte d'Azur, CNRS UMR 7275, IPMC, Valbonne, France
| | - Daniela Bianchi
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Mariana Temido-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Rajão-Saraiva
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Rui Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Carine Gandin
- Université Côte d'Azur, CNRS UMR 7275, IPMC, Valbonne, France
| | | | - Jacques Barik
- Université Côte d'Azur, CNRS UMR 7275, IPMC, Valbonne, France
| | - Romain Goutagny
- Université de Strasbourg, CNRS UMR 7364, LNCA, Strasbourg, France
| | - Ingrid Bethus
- Université Côte d'Azur, CNRS UMR 7275, IPMC, Valbonne, France
| | - Luisa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Hélène Marie
- Université Côte d'Azur, CNRS UMR 7275, IPMC, Valbonne, France
| |
Collapse
|
7
|
Armada-Moreira A, Coelho JE, Lopes LV, Sebastião AM, Städler B, Vaz SH. Multicompartment Microreactors Prevent Excitotoxic Dysfunctions In Rat Primary Cortical Neurons. ACTA ACUST UNITED AC 2020; 4:e2000139. [PMID: 32869522 DOI: 10.1002/adbi.202000139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/29/2020] [Indexed: 12/24/2022]
Abstract
Excitotoxicity is a cellular phenomenon that comprises the consequences of toxic actions of excitatory neurotransmitters, such as glutamate. This process is usually related to overproduction of reactive oxygen species (ROS) and ammonia (NH4 + ) toxicity. Platinum nanoparticle (Pt-NP)-based microreactors able to degrade hydrogen peroxide (H2 O2 ) and NH4 + , are previously described as a novel therapeutical approach against excitotoxicity, conferring protection to neuroblasts. Now, it is demonstrated that these microreactors are compatible with rat primary cortical neurons, show high levels of neuronal membrane interaction, and are able to improve cell survival and neuronal activity when neurons are exposed to H2 O2 or NH4 + . Additionally, more complex microreactors are assembled, including enzyme-loaded liposomes containing glutamate dehydrogenase and glutathione reductase, in addition to Pt-NP. The in vitro activity of these microreactors is characterized and they are compared to the Pt-NP-based microreactors in terms of biological activity, concluding that they enhance cell viability similarly or more extensively than the latter. Extracellular electrophysiological recordings demonstrate that these microreactors rescue neuronal functionality lost upon incubation with H2 O2 or NH4 + . This study provides more evidence for the potential application of these microreactors in a biomedical context with more complex cellular environments.
Collapse
Affiliation(s)
- Adam Armada-Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, Lisboa, 1649-028, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Joana E Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal
| | - Luísa V Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, Lisboa, 1649-028, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, Lisboa, 1649-028, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal
| |
Collapse
|
8
|
Temido-Ferreira M, Ferreira DG, Batalha VL, Marques-Morgado I, Coelho JE, Pereira P, Gomes R, Pinto A, Carvalho S, Canas PM, Cuvelier L, Buée-Scherrer V, Faivre E, Baqi Y, Müller CE, Pimentel J, Schiffmann SN, Buée L, Bader M, Outeiro TF, Blum D, Cunha RA, Marie H, Pousinha PA, Lopes LV. Age-related shift in LTD is dependent on neuronal adenosine A 2A receptors interplay with mGluR5 and NMDA receptors. Mol Psychiatry 2020; 25:1876-1900. [PMID: 29950682 PMCID: PMC7387321 DOI: 10.1038/s41380-018-0110-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 01/31/2023]
Abstract
Synaptic dysfunction plays a central role in Alzheimer's disease (AD), since it drives the cognitive decline. An association between a polymorphism of the adenosine A2A receptor (A2AR) encoding gene-ADORA2A, and hippocampal volume in AD patients was recently described. In this study, we explore the synaptic function of A2AR in age-related conditions. We report, for the first time, a significant overexpression of A2AR in hippocampal neurons of aged humans, which is aggravated in AD patients. A similar profile of A2AR overexpression in rats was sufficient to drive age-like memory impairments in young animals and to uncover a hippocampal LTD-to-LTP shift. This was accompanied by increased NMDA receptor gating, dependent on mGluR5 and linked to enhanced Ca2+ influx. We confirmed the same plasticity shift in memory-impaired aged rats and APP/PS1 mice modeling AD, which was rescued upon A2AR blockade. This A2AR/mGluR5/NMDAR interaction might prove a suitable alternative for regulating aberrant mGluR5/NMDAR signaling in AD without disrupting their constitutive activity.
Collapse
Grants
- FCT - Fundação para a Ciência e Tecnologia
- Région Hauts de France (PARTNAIRR COGNADORA), ANR (ADORATAU and SPREADTAU), LECMA/Alzheimer Forschung Initiative, Programmes d’Investissements d’Avenir LabEx (excellence laboratory) DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer’s disease), France Alzheimer/Fondation de France, the FHU VasCog research network (Lille, France), Fondation pour la Recherche Médicale, Fondation Plan Alzheimer, INSERM, CNRS, Université Lille 2, Lille Métropole Communauté Urbaine, FEDER, DN2M, LICEND and CoEN.
- DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Goettingen
- ATIP/AVENIR program (Centre National de la Recherche Scientifique - CNRS)
- ATIP/AVENIR program (Centre National de la Recherche Scientifique - CNRS), by the Foundation Plan Alzheimer (Senior Innovative Grant 2010)
Collapse
Affiliation(s)
- Mariana Temido-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Diana G Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
- MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, 4200-450, Porto, Portugal
| | - Vânia L Batalha
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Inês Marques-Morgado
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Pedro Pereira
- Laboratory of Neuropathology, Department of Neurosciences, Hospital de Santa Maria, CHLN, EPE, 1649-035, Lisbon, Portugal
| | - Rui Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
- Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Andreia Pinto
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Sara Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Paula M Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Laetitia Cuvelier
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Valerie Buée-Scherrer
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, "Alzheimer & Tauopathie", LabEx DISTALZ, Lille, France
| | - Emilie Faivre
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, "Alzheimer & Tauopathie", LabEx DISTALZ, Lille, France
| | - Younis Baqi
- PharmaCenter Bonn, Pharmazeutische Chemie I, Pharmazeutisches Institut, University of Bonn, Bonn, Germany
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, PO Box 36, Postal Code 123, Muscat, Oman
| | - Christa E Müller
- PharmaCenter Bonn, Pharmazeutische Chemie I, Pharmazeutisches Institut, University of Bonn, Bonn, Germany
| | - José Pimentel
- Laboratory of Neuropathology, Department of Neurosciences, Hospital de Santa Maria, CHLN, EPE, 1649-035, Lisbon, Portugal
| | - Serge N Schiffmann
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Luc Buée
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, "Alzheimer & Tauopathie", LabEx DISTALZ, Lille, France
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), 13125, Berlin, Germany
- Charité-University Medicine, 10117, Berlin, Germany
- Institute of Biology, University of Lübeck, 23652, Lübeck, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
- Max Planck Institute for Experimental Medicine, 37075, Göttingen, Germany
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082, Lisbon, Portugal
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - David Blum
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172 JPArc, "Alzheimer & Tauopathie", LabEx DISTALZ, Lille, France
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Hélène Marie
- Université Côte d'Azur, CNRS UMR7276, IPMC, 06560, Valbonne, France
| | - Paula A Pousinha
- Université Côte d'Azur, CNRS UMR7276, IPMC, 06560, Valbonne, France
| | - Luísa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028, Lisbon, Portugal.
| |
Collapse
|
9
|
Choudhury H, Chellappan DK, Sengupta P, Pandey M, Gorain B. Adenosine Receptors in Modulation of Central Nervous System Disorders. Curr Pharm Des 2020; 25:2808-2827. [PMID: 31309883 DOI: 10.2174/1381612825666190712181955] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022]
Abstract
The ubiquitous signaling nucleoside molecule, adenosine is found in different cells of the human body to provide its numerous pharmacological role. The associated actions of endogenous adenosine are largely dependent on conformational change of the widely expressed heterodimeric G-protein-coupled A1, A2A, A2B, and A3 adenosine receptors (ARs). These receptors are well conserved on the surface of specific cells, where potent neuromodulatory properties of this bioactive molecule reflected by its easy passage through the rigid blood-brainbarrier, to simultaneously act on the central nervous system (CNS). The minimal concentration of adenosine in body fluids (30-300 nM) is adequate to exert its neuromodulatory action in the CNS, whereas the modulatory effect of adenosine on ARs is the consequence of several neurodegenerative diseases. Modulatory action concerning the activation of such receptors in the CNS could be facilitated towards neuroprotective action against such CNS disorders. Our aim herein is to discuss briefly pathophysiological roles of adenosine on ARs in the modulation of different CNS disorders, which could be focused towards the identification of potential drug targets in recovering accompanying CNS disorders. Researches with active components with AR modulatory action have been extended and already reached to the bedside of the patients through clinical research in the improvement of CNS disorders. Therefore, this review consist of recent findings in literatures concerning the impact of ARs on diverse CNS disease pathways with the possible relevance to neurodegeneration.
Collapse
Affiliation(s)
- Hira Choudhury
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Dinesh K Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, MA`HSA University, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
10
|
Simpson S, Shankar K, Kimbrough A, George O. Role of corticotropin-releasing factor in alcohol and nicotine addiction. Brain Res 2020; 1740:146850. [PMID: 32330519 DOI: 10.1016/j.brainres.2020.146850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
The two most prevalent substance use disorders involve alcohol and nicotine, which are often co-abused. Robust preclinical and translational evidence indicates that individuals initiate drug use for the acute rewarding effects of the substance. The development of negative emotional states is key for the transition from recreational use to substance use disorders as subjects seek the substance to obtain relief from the negative emotional states of acute withdrawal and protracted abstinence. The neuropeptide corticotropin-releasing factor (CRF) is a major regulator of the brain stress system and key in the development of negative affective states. The present review examines the role of CRF in preclinical models of alcohol and nicotine abuse and explores links between CRF and anxiety-like, dysphoria-like, and other negative affective states. Finally, the present review discusses preclinical models of nicotine and alcohol use with regard to the CRF system, advances in molecular and genetic manipulations of CRF, and the importance of examining both males and females in this field of research.
Collapse
Affiliation(s)
- Sierra Simpson
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; Department of Neuroscience, Scripps Research, La Jolla, CA 92037, United States
| | - Kokila Shankar
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; Department of Neuroscience, Scripps Research, La Jolla, CA 92037, United States
| | - Adam Kimbrough
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
| | - Olivier George
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States.
| |
Collapse
|
11
|
Williams TA, Bernier NJ. Corticotropin-releasing factor protects against ammonia neurotoxicity in isolated larval zebrafish brains. J Exp Biol 2020; 223:jeb211540. [PMID: 31988165 DOI: 10.1242/jeb.211540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/20/2020] [Indexed: 08/26/2023]
Abstract
The physiological roles of corticotropin-releasing factor (CRF) have recently been extended to cytoprotection. Here, to determine whether CRF is neuroprotective in fish, the effects of CRF against high environmental ammonia (HEA)-mediated neurogenic impairment and cell death were investigated in zebrafish. In vivo, exposure of 1 day post-fertilization (dpf) embryos to HEA only reduced the expression of the determined neuron marker neurod1 In contrast, in 5 dpf larvae, HEA increased the expression of nes and sox2, neural progenitor cell markers, and reduced the expression of neurog1, gfap and mbpa, proneuronal cell, radial glia and oligodendrocyte markers, respectively, and neurod1 The N-methyl-d-aspartate (NMDA) receptor inhibitor MK801 rescued the HEA-induced reduction in neurod1 in 5 dpf larvae but did not affect the HEA-induced transcriptional changes in other neural cell types, suggesting that hyperactivation of NMDA receptors specifically contributes to the deleterious effects of HEA in determined neurons. As observed in vivo, HEA exposure elicited marked changes in the expression of cell type-specific markers in isolated 5 dpf larval brains. The addition of CRF reversed the in vitro effects of HEA on neurod1 expression and prevented an HEA-induced increase in cell death. Finally, the protective effects of CRF against HEA-mediated neurogenic impairment and cell death were prevented by the CRF type 1 receptor selective antagonist antalarmin. Together, these results provide novel evidence that HEA has developmental time- and cell type-specific neurotoxic effects, that NMDA receptor hyperactivation contributes to HEA-mediated impairment of determined neurons, and that CRF has neuroprotective properties in the larval zebrafish brain.
Collapse
Affiliation(s)
- Tegan A Williams
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
12
|
Singh BL, Chen L, Cai H, Shi H, Wang Y, Yu C, Chen X, Han X, Cai X. Activation of adenosine A2a receptor accelerates and A2a receptor antagonist reduces intermittent hypoxia induced PC12 cell injury via PKC-KATP pathway. Brain Res Bull 2019; 150:118-126. [PMID: 31129168 DOI: 10.1016/j.brainresbull.2019.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Obstructive sleep apnea hypopnea syndrome (OSAHS) is associated with multiple system diseases. Neurocognitive dysfunction resulting from central nervous system complications has been reported, especially in children with OSAHS. Chronic intermittent hypoxia is accepted to be the major pathophysiological mechanism of OSAHS. Adenosine plays an important role in cellular function via interactions with its receptors. A2a receptor has been recognized as a factor involved in neuroprotection. However, the role of adenosine A2a receptor in intermittent hypoxia induced cellular injury is not completely understood. In this study, we aim to investigate the underlying mechanisms of A2a receptor mediated cellular damage caused by intermittent hypoxia in PC12 cells. We found that activated A2a receptor by CGS21680 decreased cellular viability, increased PKC as well as ATP-sensitive potassium channel (KATP) subunits expression Kir6.2 and SUR1. Inhibition of A2a receptor by SCH58261 increased cellular viability, suppressed PKC and SUR1 expression level, ultimately showing a protective role in PC12 cells. Moreover, we observed that CHE, which is an antagonist of PKC, downregulated Kir6.2 and SUR1 expression and increased cellular viability. Additionally, we found that A2a receptor activation induced cell injury was associated with increased Cleaved-Caspase 3 expression, which can be decreased by inhibition of A2a receptor or PKC. In conclusion, our findings indicate that A2a receptor induced KATP expression by PKC activation and plays a role in accelerating PC12 cells injury induced by intermittent hypoxia exposure via A2a-PKC-KATP signal pathway mediated apoptosis.
Collapse
Affiliation(s)
- Brett Lyndall Singh
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Liya Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Huilin Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Hua Shi
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yueyuan Wang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Chenyi Yu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China
| | - Xu Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China
| | - Xinru Han
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xiaohong Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China; The Second School Of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
13
|
Shishkina TV, Mishchenko TA, Mitroshina EV, Shirokova OM, Pimashkin AS, Kastalskiy IA, Mukhina IV, Kazantsev VB, Vedunova MV. Glial cell line-derived neurotrophic factor (GDNF) counteracts hypoxic damage to hippocampal neural network function in vitro. Brain Res 2018; 1678:310-321. [DOI: 10.1016/j.brainres.2017.10.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022]
|
14
|
α-synuclein interacts with PrP C to induce cognitive impairment through mGluR5 and NMDAR2B. Nat Neurosci 2017; 20:1569-1579. [PMID: 28945221 DOI: 10.1038/nn.4648] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
Synucleinopathies, such as Parkinson's disease and dementia with Lewy bodies, are neurodegenerative disorders that are characterized by the accumulation of α-synuclein (aSyn) in intracellular inclusions known as Lewy bodies. Prefibrillar soluble aSyn oligomers, rather than larger inclusions, are currently considered to be crucial species underlying synaptic dysfunction. We identified the cellular prion protein (PrPC) as a key mediator in aSyn-induced synaptic impairment. The aSyn-associated impairment of long-term potentiation was blocked in Prnp null mice and rescued following PrPC blockade. We found that extracellular aSyn oligomers formed a complex with PrPC that induced the phosphorylation of Fyn kinase via metabotropic glutamate receptors 5 (mGluR5). aSyn engagement of PrPC and Fyn activated NMDA receptor (NMDAR) and altered calcium homeostasis. Blockade of mGluR5-evoked phosphorylation of NMDAR in aSyn transgenic mice rescued synaptic and cognitive deficits, supporting the hypothesis that a receptor-mediated mechanism, independent of pore formation and membrane leakage, is sufficient to trigger early synaptic damage induced by extracellular aSyn.
Collapse
|
15
|
Prolactin-induced neuroprotection against glutamate excitotoxicity is mediated by the reduction of [Ca2+]i overload and NF-κB activation. PLoS One 2017; 12:e0176910. [PMID: 28475602 PMCID: PMC5419567 DOI: 10.1371/journal.pone.0176910] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/19/2017] [Indexed: 12/16/2022] Open
Abstract
Prolactin (PRL) is a peptidic hormone that displays pleiotropic functions in the organism including different actions in the brain. PRL exerts a neuroprotective effect against excitotoxicity produced by glutamate (Glu) or kainic acid in both in vitro and in vivo models. It is well known that Glu excitotoxicity causes cell death through apoptotic or necrotic pathways due to intracellular calcium ([Ca2+] i) overload. Therefore, the aim of the present study was to assess the molecular mechanisms by which PRL maintains cellular viability of primary cultures of rat hippocampal neurons exposed to Glu excitotoxicity. We determined cell viability by monitoring mitochondrial activity and using fluorescent markers for viable and dead cells. The intracellular calcium level was determined by a fluorometric assay and proteins involved in the apoptotic pathway were determined by immunoblot. Our results demonstrated that PRL afforded neuroprotection against Glu excitotoxicity, as evidenced by a decrease in propidium iodide staining and by the decrease of the LDH activity. In addition, the MTT assay shows that PRL maintains normal mitochondrial activity even in neurons exposed to Glu. Furthermore, the Glu-induced intracellular [Ca2+]i overload was attenuated by PRL. These data correlate with the reduction found in the level of active caspase-3 and the pro-apoptotic ratio (Bax/Bcl-2). Concomitantly, PRL elicited the nuclear translocation of the transcriptional factor NF-κB, which was detected by immunofluorescence and confocal microscopy. To our knowledge, this is the first report demonstrating that PRL prevents Glu excitotoxicity by a mechanism involving the restoration of the intracellular calcium homeostasis and mitochondrial activity, as well as an anti-apoptotic action possibly mediated by the activity of NF-κB. Overall, the current results suggest that PRL could be of potential therapeutic advantage in the treatment of neurodegenerative diseases.
Collapse
|
16
|
Barros-Barbosa AR, Ferreirinha F, Oliveira Â, Mendes M, Lobo MG, Santos A, Rangel R, Pelletier J, Sévigny J, Cordeiro JM, Correia-de-Sá P. Adenosine A 2A receptor and ecto-5'-nucleotidase/CD73 are upregulated in hippocampal astrocytes of human patients with mesial temporal lobe epilepsy (MTLE). Purinergic Signal 2016; 12:719-734. [PMID: 27650530 PMCID: PMC5124012 DOI: 10.1007/s11302-016-9535-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Refractoriness to existing medications of up to 80 % of the patients with mesial temporal lobe epilepsy (MTLE) prompts for finding new antiepileptic drug targets. The adenosine A2A receptor emerges as an interesting pharmacological target since its excitatory nature partially counteracts the dominant antiepileptic role of endogenous adenosine acting via inhibitory A1 receptors. Gain of function of the excitatory A2A receptor has been implicated in a significant number of brain pathologies commonly characterized by neuronal excitotoxicity. Here, we investigated changes in the expression and cellular localization of the A2A receptor and of the adenosine-generating enzyme, ecto-5'-nucleotidase/CD73, in the hippocampus of control individuals and MTLE human patients. Western blot analysis indicates that the A2A receptor is more abundant in the hippocampus of MTLE patients compared to control individuals. Immunoreactivity against the A2A receptor predominates in astrocytes staining positively for the glial fibrillary acidic protein (GFAP). No co-localization was observed between the A2A receptor and neuronal cell markers, like synaptotagmin 1/2 (nerve terminals) and neurofilament 200 (axon fibers). Hippocampal astrogliosis observed in MTLE patients was accompanied by a proportionate increase in A2A receptor and ecto-5'-nucleotidase/CD73 immunoreactivities. Given our data, we hypothesize that selective blockade of excessive activation of astrocytic A2A receptors and/or inhibition of surplus adenosine formation by membrane-bound ecto-5'-nucleotidase/CD73 may reduce neuronal excitability, thus providing a novel therapeutic target for drug-refractory seizures in MTLE patients.
Collapse
Affiliation(s)
- Aurora R Barros-Barbosa
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ângela Oliveira
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Marina Mendes
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - M Graça Lobo
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Agostinho Santos
- Serviço de Patologia Forense, Instituto Nacional de Medicina Legal e Ciências Forenses-Delegação do Norte (INMLCF-DN), Porto, Portugal
| | - Rui Rangel
- Serviço de Neurocirurgia, Centro Hospitalar do Porto-Hospital Geral de Santo António (CHP-HGSA), Porto, Portugal
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec-Université Laval, CHUL, QC, Québec, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, CHUL, QC, Québec, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médicine, Université Laval, QC, Québec, Canada
| | - J Miguel Cordeiro
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
17
|
Lu J, Cui J, Li X, Wang X, Zhou Y, Yang W, Chen M, Zhao J, Pei G. An Anti-Parkinson's Disease Drug via Targeting Adenosine A2A Receptor Enhances Amyloid-β Generation and γ-Secretase Activity. PLoS One 2016; 11:e0166415. [PMID: 27835671 PMCID: PMC5106031 DOI: 10.1371/journal.pone.0166415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/30/2016] [Indexed: 11/23/2022] Open
Abstract
γ-secretase mediates the intramembranous proteolysis of amyloid precursor protein (APP) and determines the generation of Aβ which is associated with Alzheimer’s disease (AD). Here we identified that an anti-Parkinson’s disease drug, Istradefylline, could enhance Aβ generation in various cell lines and primary neuronal cells of APP/PS1 mouse. Moreover, the increased generation of Aβ42 was detected in the cortex of APP/PS1 mouse after chronic treatment with Istradefylline. Istradefylline promoted the activity of γ-secretase which could lead to increased Aβ production. These effects of Istradefylline were reduced by the knockdown of A2AR but independent of A2AR-mediated G protein- or β-arrestin-dependent signal pathway. We further observed that A2AR colocalized with γ-secretase in endosomes and physically interacted with the catalytic subunit presenilin-1 (PS1). Interestingly, Istradefylline attenuated the interaction in time- and dosage-dependent manners. Moreover the knockdown of A2AR which in theory would release PS1 potentiated both Aβ generation and γ-secretase activity. Thus, our study implies that the association of A2AR could modulate γ-secretase activity. Istradefylline enhance Aβ generation and γ-secretase activity possibly via modulating the interaction between A2AR and γ-secretase, which may bring some undesired effects in the central nervous system (CNS).
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jin Cui
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Xiaohang Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Xin Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yue Zhou
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenjuan Yang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Ming Chen
- Chemical Biology Core Facility, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jian Zhao
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
- * E-mail:
| |
Collapse
|
18
|
Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 2016; 139:1019-1055. [PMID: 27365148 DOI: 10.1111/jnc.13724] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
The adenosine modulation system mostly operates through inhibitory A1 (A1 R) and facilitatory A2A receptors (A2A R) in the brain. The activity-dependent release of adenosine acts as a brake of excitatory transmission through A1 R, which are enriched in glutamatergic terminals. Adenosine sharpens salience of information encoding in neuronal circuits: high-frequency stimulation triggers ATP release in the 'activated' synapse, which is locally converted by ecto-nucleotidases into adenosine to selectively activate A2A R; A2A R switch off A1 R and CB1 receptors, bolster glutamate release and NMDA receptors to assist increasing synaptic plasticity in the 'activated' synapse; the parallel engagement of the astrocytic syncytium releases adenosine further inhibiting neighboring synapses, thus sharpening the encoded plastic change. Brain insults trigger a large outflow of adenosine and ATP, as a danger signal. A1 R are a hurdle for damage initiation, but they desensitize upon prolonged activation. However, if the insult is near-threshold and/or of short-duration, A1 R trigger preconditioning, which may limit the spread of damage. Brain insults also up-regulate A2A R, probably to bolster adaptive changes, but this heightens brain damage since A2A R blockade affords neuroprotection in models of epilepsy, depression, Alzheimer's, or Parkinson's disease. This initially involves a control of synaptotoxicity by neuronal A2A R, whereas astrocytic and microglia A2A R might control the spread of damage. The A2A R signaling mechanisms are largely unknown since A2A R are pleiotropic, coupling to different G proteins and non-canonical pathways to control the viability of glutamatergic synapses, neuroinflammation, mitochondria function, and cytoskeleton dynamics. Thus, simultaneously bolstering A1 R preconditioning and preventing excessive A2A R function might afford maximal neuroprotection. The main physiological role of the adenosine modulation system is to sharp the salience of information encoding through a combined action of adenosine A2A receptors (A2A R) in the synapse undergoing an alteration of synaptic efficiency with an increased inhibitory action of A1 R in all surrounding synapses. Brain insults trigger an up-regulation of A2A R in an attempt to bolster adaptive plasticity together with adenosine release and A1 R desensitization; this favors synaptotocity (increased A2A R) and decreases the hurdle to undergo degeneration (decreased A1 R). Maximal neuroprotection is expected to result from a combined A2A R blockade and increased A1 R activation. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
19
|
The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function. Sci Rep 2016; 6:31493. [PMID: 27510168 PMCID: PMC4980603 DOI: 10.1038/srep31493] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/01/2016] [Indexed: 01/17/2023] Open
Abstract
Caffeine is associated with procognitive effects in humans by counteracting overactivation of the adenosine A2A receptor (A2AR), which is upregulated in the human forebrain of aged and Alzheimer’s disease (AD) patients. We have previously shown that an anti-A2AR therapy reverts age-like memory deficits, by reestablishment of the hypothalamic-pituitary-adrenal (HPA) axis feedback and corticosterone circadian levels. These observations suggest that A2AR over-activation and glucocorticoid dysfunction are key events in age-related hippocampal deficits; but their direct connection has never been explored. We now show that inducing A2AR overexpression in an aging-like profile is sufficient to trigger HPA-axis dysfunction, namely loss of plasmatic corticosterone circadian oscillation, and promotes reduction of GR hippocampal levels. The synaptic plasticity and memory deficits triggered by GR in the hippocampus are amplified by A2AR over-activation and were rescued by anti-A2AR therapy; finally, we demonstrate that A2AR act on GR nuclear translocation and GR-dependent transcriptional regulation. We provide the first demonstration that A2AR is a major regulator of GR function and that this functional interconnection may be a trigger to age-related memory deficits. This supports the idea that the procognitive effects of A2AR antagonists, namely caffeine, on Alzheimer’s and age-related cognitive impairments may rely on its ability to modulate GR actions.
Collapse
|
20
|
Purine nucleosides in neuroregeneration and neuroprotection. Neuropharmacology 2015; 104:226-42. [PMID: 26577017 DOI: 10.1016/j.neuropharm.2015.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022]
Abstract
In the present review, we stress the importance of the purine nucleosides, adenosine and guanosine, in protecting the nervous system, both centrally and peripherally, via activation of their receptors and intracellular signalling mechanisms. A most novel part of the review focus on the mechanisms of neuronal regeneration that are targeted by nucleosides, including a recently identified action of adenosine on axonal growth and microtubule dynamics. Discussion on the role of the purine nucleosides transversally with the most established neurotrophic factors, e.g. brain derived neurotrophic factor (BDNF), glial derived neurotrophic factor (GDNF), is also focused considering the intimate relationship between some adenosine receptors, as is the case of the A2A receptors, and receptors for neurotrophins. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
|
21
|
Ferreira DG, Batalha VL, Vicente Miranda H, Coelho JE, Gomes R, Gonçalves FQ, Real JI, Rino J, Albino-Teixeira A, Cunha RA, Outeiro TF, Lopes LV. Adenosine A2AReceptors Modulate α-Synuclein Aggregation and Toxicity. Cereb Cortex 2015; 27:718-730. [DOI: 10.1093/cercor/bhv268] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
22
|
Yang ZJ, Zhong YS. Effect of adenosine on GLAST expression in the retina of a chronic ocular hypertension rat model. Exp Ther Med 2015; 10:991-994. [PMID: 26622427 DOI: 10.3892/etm.2015.2607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 04/02/2015] [Indexed: 11/06/2022] Open
Abstract
This study was performed to evaluate the effect of adenosine and an adenosine receptor antagonist on the expression of the L-glutamate/L-aspartate transporter (GLAST) in the retina of a chronic ocular hypertension (COH) rat model. COH models were established via the cauterization of three episcleral veins. Measurements of the intraocular pressure of the right eye (COH eye) were taken weekly by a handheld digital tonometer. A total of 10 µM adenosine or 10 µM adenosine + 100 nM SCH442416 solution (2 µl) was injected into the rat vitreous space. The reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemistry were used to detect GLAST expression. Compared with the COH group, GLAST mRNA expression was decreased by 33.6% in the group treated with adenosine (n=6, P=0.020) and was increased by 159.6% in the group treated with SCH442416 (n=6, P=0.001). Administration of adenosine decreased GLAST protein expression by 34.7% (n=6, P<0.001), while treatment with the adenosine A2A receptor antagonist SCH442416 increased GLAST protein expression by 48.3% compared with the control COH group (n=6, P<0.001). Immunohistochemical experiments showed that administration of adenosine decreased GLAST protein expression, as compared with expression in the control COH rat retina. Administration of SCH442416 markedly increased GLAST protein expression. The results of the present study may provide a novel method for retinal neuron protection.
Collapse
Affiliation(s)
- Zi-Jian Yang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | - Yi-Sheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| |
Collapse
|
23
|
Ribeiro FF, Neves-Tomé R, Assaife-Lopes N, Santos TE, Silva RFM, Brites D, Ribeiro JA, Sousa MM, Sebastião AM. Axonal elongation and dendritic branching is enhanced by adenosine A2A receptors activation in cerebral cortical neurons. Brain Struct Funct 2015; 221:2777-99. [DOI: 10.1007/s00429-015-1072-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/27/2015] [Indexed: 01/09/2023]
|
24
|
Effect of adenosine and adenosine receptor antagonist on Müller cell potassium channel in Rat chronic ocular hypertension models. Sci Rep 2015; 5:11294. [PMID: 26063641 PMCID: PMC4462755 DOI: 10.1038/srep11294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 05/18/2015] [Indexed: 11/08/2022] Open
Abstract
Müller cells are principal glial cells in rat retina and have attracted much attention in glaucoma studies. However, it is not clear whether adenosine and adenosine receptor (AR) antagonists play any roles in the regulation of potassium channels in Müller cells and subsequently in the promotion of glutamine synthetase (GS) and L-Glutamate/L-Aspartate Transporter (GLAST) functions. We found that chronic ocular hypertension (COH) in rat down-regulated Müller cells Kir2.1, Kir4.1, TASK-1, GS and GLAST expressions and attenuated the peak of inward potassium current. Retinal ganglion cells (RGC) count was lower in the COH rats than that in the sham operation animals. Intravitreal injection of selective A2A AR antagonist SCH442416 up-regulated Müller cell Kir4.1, TASK-1, GS and GLAST expressions and enhanced inward potassium currents compared with those in the COH rats with vehicle control. Meanwhile, the RGC count was higher following intravitreal injection of SCH442416 in the COH rats than that after vehicle injection. The fact that PKA inhibitor H-89 blocked these SCH442416 effects suggested that the PKA signaling pathway was involved in the observed ocular responses following the intravitreal SCH442416 injection.
Collapse
|
25
|
Koutmani Y, Karalis KP. Neural stem cells respond to stress hormones: distinguishing beneficial from detrimental stress. Front Physiol 2015; 6:77. [PMID: 25814957 PMCID: PMC4356227 DOI: 10.3389/fphys.2015.00077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/26/2015] [Indexed: 11/13/2022] Open
Abstract
Neural stem cells (NSCs), the progenitors of the nervous system, control distinct, position-specific functions and are critically involved in the maintenance of homeostasis in the brain. The responses of these cells to various stressful stimuli are shaped by genetic, epigenetic, and environmental factors via mechanisms that are age and developmental stage-dependent and still remain, to a great extent, elusive. Increasing evidence advocates for the beneficial impact of the stress response in various settings, complementing the extensive number of studies on the detrimental effects of stress, particularly in the developing brain. In this review, we discuss suggested mechanisms mediating both the beneficial and detrimental effects of stressors on NSC activity across the lifespan. We focus on the specific effects of secreted factors and we propose NSCs as a “sensor,” capable of distinguishing among the different stressors and adapting its functions accordingly. All the above suggest the intriguing hypothesis that NSCs are an important part of the adaptive response to stressors via direct and indirect, specific mechanisms.
Collapse
Affiliation(s)
- Yassemi Koutmani
- Center for Experimental Surgery, Clinical and Translational Research, Biomedical Research Foundation of the Academy of Athens Athens, Greece
| | - Katia P Karalis
- Center for Experimental Surgery, Clinical and Translational Research, Biomedical Research Foundation of the Academy of Athens Athens, Greece ; Endocrine Division, Children's Hospital, Harvard Medical School Boston, MA, USA
| |
Collapse
|
26
|
Jerónimo-Santos A, Fonseca-Gomes J, Guimarães DA, Tanqueiro SR, Ramalho RM, Ribeiro JA, Sebastião AM, Diógenes MJ. Brain-derived neurotrophic factor mediates neuroprotection against Aβ-induced toxicity through a mechanism independent on adenosine 2A receptor activation. Growth Factors 2015; 33:298-308. [PMID: 26365294 DOI: 10.3109/08977194.2015.1080696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuronal survival through TrkB-FL activation. The activation of adenosine A2A receptors (A2AR) is essential for most of BDNF-mediated synaptic actions, such as synaptic plasticity, transmission and neurotransmitter release. We now aimed at evaluating the A2AR influence upon BDNF-mediated neuroprotection against Aβ25-35 toxicity in cultured neurons. Results showed that BDNF increases cell survival and reduces the caspase-3 and calpain activation induced by amyloid-β (Aβ) peptide, in a mechanism probably dependent on PLCγ pathway. This BDNF-mediated neuroprotection is not affected by A2AR activation or inhibition. Moreover neither activation nor inhibition of A2AR, per se, significantly influenced Aβ-induced neuronal death on calpain-mediated cleavage of TrkB induced by Aβ. In conclusion, these results suggest that, in opposition to the fast synaptic actions of BDNF, the neuroprotective actions of this neurotrophin against a strong Aβ insult do not require the activation of A2AR.
Collapse
Affiliation(s)
- André Jerónimo-Santos
- a Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon , Lisbon , Portugal and
- b Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - João Fonseca-Gomes
- a Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon , Lisbon , Portugal and
- b Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Diogo Andrade Guimarães
- a Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon , Lisbon , Portugal and
- b Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Sara Ramalho Tanqueiro
- a Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon , Lisbon , Portugal and
- b Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Rita Mira Ramalho
- a Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon , Lisbon , Portugal and
- b Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Joaquim Alexandre Ribeiro
- a Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon , Lisbon , Portugal and
- b Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Ana Maria Sebastião
- a Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon , Lisbon , Portugal and
- b Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Maria José Diógenes
- a Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon , Lisbon , Portugal and
- b Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| |
Collapse
|
27
|
Smith KM, Browne SE, Jayaraman S, Bleickardt CJ, Hodge LM, Lis E, Yao L, Rittle SL, Innocent N, Mullins DE, Boykow G, Reynolds IJ, Hill D, Parker EM, Hodgson RA. Effects of the selective adenosine A2A receptor antagonist, SCH 412348, on the parkinsonian phenotype of MitoPark mice. Eur J Pharmacol 2014; 728:31-8. [PMID: 24486705 DOI: 10.1016/j.ejphar.2014.01.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 11/24/2022]
Abstract
Adenosine A2A receptors are predominantly localized on striatopallidal gamma-aminobutyric acid (GABA) neurons, where they are colocalized with dopamine D2 receptors and are involved in the regulation of movement. Adenosine A2A receptor antagonists have been evaluated as a novel treatment for Parkinson's disease and have demonstrated efficacy in a broad spectrum of pharmacological and toxicological rodent and primate models. Fewer studies have been performed to evaluate the efficacy of adenosine A2A receptor antagonists in genetic models of hypodopaminergic states. SCH 412348 is a potent and selective adenosine A2A receptor antagonist that shows efficacy in rodent and primate models of movement disorders. Here we evaluated the effects of SCH 412348 in the MitoPark mouse, a genetic model that displays a progressive loss of dopamine neurons. The dopamine cell loss is associated with a profound akinetic phenotype that is sensitive to levodopa (l-dopa). SCH 412348 (0.3-10mg/kg administered orally) dose dependently increased locomotor activity in the mice. Moreover, SCH 412348 retained its efficacy in the mice as motor impairment progressed (12-22 weeks of age), demonstrating that the compound was efficacious in mild to severe Parkinson's disease-like impairment in the mice. Additionally, SCH 412348 fully restored lost functionality in a measure of hind limb bradykinesia and partially restored functionality in a rotarod test. These findings provide further evidence of the anti-Parkinsonian effects of selective adenosine A2A receptor antagonists and predict that they will retain their efficacy in both mild and severe forms of motor impairment.
Collapse
Affiliation(s)
- Karen M Smith
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Susan E Browne
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Srinivasan Jayaraman
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Carina J Bleickardt
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Lisa M Hodge
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Edward Lis
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Leon Yao
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Sunday L Rittle
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Nathalie Innocent
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Deborra E Mullins
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - George Boykow
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Ian J Reynolds
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - David Hill
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Eric M Parker
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Robert A Hodgson
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA.
| |
Collapse
|