1
|
Kucharczyk T, Nicoś M, Kucharczyk M, Kalinka E. NRG1 Gene Fusions-What Promise Remains Behind These Rare Genetic Alterations? A Comprehensive Review of Biology, Diagnostic Approaches, and Clinical Implications. Cancers (Basel) 2024; 16:2766. [PMID: 39123493 PMCID: PMC11311641 DOI: 10.3390/cancers16152766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) presents a variety of druggable genetic alterations that revolutionized the treatment approaches. However, identifying new alterations may broaden the group of patients benefitting from such novel treatment options. Recently, the interest focused on the neuregulin-1 gene (NRG1), whose fusions may have become a potential predictive factor. To date, the occurrence of NRG1 fusions has been considered a negative prognostic marker in NSCLC treatment; however, many premises remain behind the targetability of signaling pathways affected by the NRG1 gene. The role of NRG1 fusions in ErbB-mediated cell proliferation especially seems to be considered as a main target of treatment. Hence, NSCLC patients harboring NRG1 fusions may benefit from targeted therapies such as pan-HER family inhibitors, which have shown efficacy in previous studies in various cancers, and anti-HER monoclonal antibodies. Considering the increased interest in the NRG1 gene as a potential clinical target, in the following review, we highlight its biology, as well as the potential clinical implications that were evaluated in clinics or remained under consideration in clinical trials.
Collapse
Affiliation(s)
- Tomasz Kucharczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Marek Kucharczyk
- Department of Zoology and Nature Conservation, Institute of Biology, Maria Curie-Sklodowska University in Lublin, 20-033 Lublin, Poland;
| | - Ewa Kalinka
- Oncology Clinic, Institute of the Polish Mother’s Health Center in Lodz, 93-338 Lodz, Poland;
| |
Collapse
|
2
|
Zhang X, He J, Xu S, Fu L, Zheng P, Xu S, Pan Q, Zhu W. Insights into the Overcoming EGFR Del19/T790M/C797S Mutation: A Perspective on the 2-Aryl-4-aminothienopyrimidine Backbone. ChemMedChem 2024; 19:e202300634. [PMID: 38351876 DOI: 10.1002/cmdc.202300634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Indexed: 03/08/2024]
Abstract
The epithelial growth factor receptor (EGFR) signaling pathway has been proposed to benefit non-small cell lung cancer (NSCLC) treatment. In this manuscript, we investigated the modification of 2-aryl-4-aminoquinazoline, the classical backbone of the fourth-generation EGFR inhibitors, in addition to obtaining a series of novel 2-aryl-4-aminothienopyrimidine derivatives (A1~A45), we also gained further understanding of the modification of this framework. Derivatives were tested for cytotoxicity against cancer cell lines (cervical cancer cell line Hela, lung cancer cell lines A549, H1975, and PC-9, Ba/F3-EGFRDel19/T790M/C797S cells, and human normal hepatocytes LO2) as well as for the derivative's inhibitory activity against EGFRWT, EGFRL858R/T790M, and EGFRDel19/T790M/C797S kinase inhibitory activities. The results showed that most of the target compounds showed moderate to excellent activity against one or more cancer cell lines. Among them, the antitumor activity (IC50) of the most promising A9 against A549 and H1975 cell lines was 0.77±0.08 μM, 6.90±0.83 μM, respectively. At concentration of 10 μM, A9 can be employed as the fourth-generation of EGFR inhibitors with the ability to overcome the C797S drug resistance since it can suppress EGFRDel19/T790M/C797S cells and kinase by 98.90 % and 85.88 %, respectively. Moreover, the tumor-bearing nude mice experiment further shows that A9 can significantly inhibit the growth of tumor in vivo, with the tumor inhibition rate (TIR) of 55.92 %, which was equivalent to the positive group. After that, from the result of HE staining experiment and blood biochemical analysis experiment, A9 show low toxicity and good safety, which is worthy of further research and development.
Collapse
Affiliation(s)
- Xuan Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Jie He
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Shidi Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Li Fu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| |
Collapse
|
3
|
Lin JZ, Lin N, Zhao WJ. A prognostic biomarker NRG1 promotes U-87 MG glioblastoma cell malignancy by inhibiting autophagy via ERBB2/AKT/mTOR pathway. J Cell Biochem 2023; 124:1273-1288. [PMID: 37450666 DOI: 10.1002/jcb.30444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/17/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain malignancy. Studies have shown that autophagy-related (ATG) genes play important roles in regulating GBM malignancy. However, the mechanism still needs to be fully elucidated. Based on clinical and gene expression information of GBM patients downloaded from The The Cancer Genome Atlas database, Kaplan-Meier, univariate Cox regression, least absolute shrinkage and selection operator regression and multivariate Cox regression were applied to construct a risk signature for GBM prognosis, followed by validation using receiver operating characteristic analysis. Next, Cell Counting Kit-8, wound healing assay, flow cytometry, monodansyl cadaverine autophagy staining assay, immunofluorescence staining and western blot, either in the absence or presence of ERBB2/AKT/mTOR inhibitors, were carried out in GBM U87 cell line to explore molecular pathway underlying GBM malignancy. A three-ATG-gene signature (HIF1A, ITGA3, and NGR1) was constructed for GBM prognosis with the greatest contribution from NRG1. In vitro experiments showed that NRG1 promoted U87 cell migration and proliferation by inhibiting autophagy, and ERBB2/AKT/mTOR is a downstream pathway that mediates the autophagy-inhibitory effects of NRG1. We constructed an ATG gene prognostic model for GBM and demonstrated that NRG1 inhibited autophagy by activating ERBB2/AKT/mTOR, promoting GBM malignancy, thus providing new insights into the molecular contribution of autophagy in GBM malignancy.
Collapse
Affiliation(s)
- Jia-Zhe Lin
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Nuan Lin
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Yang J, Cao J, Min S, Li P, Lv F, Ren L. Recombinant human neuregulin-1 alleviates immobilization-induced neuromuscular dysfunction via neuregulin-1/ErbB signaling pathway in rat. Arch Biochem Biophys 2023:109631. [PMID: 37276924 DOI: 10.1016/j.abb.2023.109631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023]
Abstract
Immobilization-induced Neuromuscular Dysfunction (NMD) increases morbidity and mortality of patients in Intensive Care Units. However, the underlying mechanism of NMD remain poorly elucidated which limited the development of therapeutic method for NMD. Here we developed an immobilization rat model and tested the hypothesis that decreased expression of NRG-1, abnormal expression and distribution of nicotinic acetylcholine receptors (nAChRs) in skeletal muscle caused by immobilization can lead to NMD. To investigate the role of NRG-1/ErbB pathway on immobilization-induced NMD, exogenous recombinant human neuregulin-1 (rhNRG-1) was used to increase the expression of NRG-1 in skeletal muscle during immobilization. It was observed rhNRG-1 significantly alleviated the muscle loss and enhanced the expression of ε-nAChR, while diminished the expression of γ- and α7-nAChR and NMD. Interestingly, ErbB inhibitor PD158780 blocked the protective effects of rhNRG-1. Collectively, the results of present study suggested that rhNRG-1 attenuated immobilization-induced muscle loss and NMD, suppressed γ- and α7-nAChR production, enhanced ε-nAChR synthesis via activating NRG-1/ErbB pathway. Taken together, our findings provide novel insights into NMD contribution, suggesting that the rhNRG-1 is a promising therapy to protect against immobilization-induced myopathy.
Collapse
Affiliation(s)
- Jun Yang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jun Cao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Su Min
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Ping Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Feng Lv
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Li Ren
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
5
|
Tan MH, Xu XH, Yuan TJ, Hou X, Wang J, Jiang ZH, Peng LH. Self-powered smart patch promotes skin nerve regeneration and sensation restoration by delivering biological-electrical signals in program. Biomaterials 2022; 283:121413. [DOI: 10.1016/j.biomaterials.2022.121413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/02/2022]
|
6
|
Tamargo J, Caballero R, Delpón E. Cancer Chemotherapy-Induced Sinus Bradycardia: A Narrative Review of a Forgotten Adverse Effect of Cardiotoxicity. Drug Saf 2022; 45:101-126. [PMID: 35025085 DOI: 10.1007/s40264-021-01132-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Cardiotoxicity is a common adverse effect of anticancer drugs (ACDs), including the so-called targeted drugs, and increases morbidity and mortality in patients with cancer. Attention has focused mainly on ACD-induced heart failure, myocardial ischemia, hypertension, thromboembolism, QT prolongation, and tachyarrhythmias. Yet, although an increasing number of ACDs can produce sinus bradycardia (SB), this proarrhythmic effect remains an underappreciated complication, probably because of its low incidence and severity since most patients are asymptomatic. However, SB merits our interest because its incidence increases with the aging of the population and cancer is an age-related disease and because SB represents a risk factor for QT prolongation. Indeed, several ACDs that produce SB also prolong the QT interval. We reviewed published reports on ACD-induced SB from January 1971 to November 2020 using the PubMed and EMBASE databases. Published reports from clinical trials, case reports, and recent reviews were considered. This review describes the associations between ACDs and SB, their clinical relevance, risk factors, and possible mechanisms of onset and treatment.
Collapse
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology, School of Medicine, Universidad Complutense, Institute of Health Gregorio Marañón, CIBERCV, 28040, Madrid, Spain.
| | - Ricardo Caballero
- Department of Pharmacology, School of Medicine, Universidad Complutense, Institute of Health Gregorio Marañón, CIBERCV, 28040, Madrid, Spain
| | - Eva Delpón
- Department of Pharmacology, School of Medicine, Universidad Complutense, Institute of Health Gregorio Marañón, CIBERCV, 28040, Madrid, Spain
| |
Collapse
|
7
|
Li Q, Zhu B, Chen J, Wang H, Wu Y, Chen H, He X. Effects of Oncogene Neuregulin 1 on Breast Cancer Cells. Pak J Biol Sci 2022; 25:345-352. [PMID: 35638529 DOI: 10.3923/pjbs.2022.345.352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objectives:</b> The NRG1 fusion protein is a driving factor for the occurrence and development of many tumours. We aimed to evaluate the effects of oncogene Neuregulin 1 (NRG1) on the proliferation and migration of breast cancer cells. <b>Materials and Methods:</b> Target gene NRG1 was transfected into breast cancer cells using the gene transfection technique and the migration ability of cells was observed by wound healing assay. The migration and invasion abilities of cells were further observed by Transwell assay and cell apoptosis was observed by TUNEL staining. The cell cycle distribution of breast cancer cells was detected by flow cytometry. <b>Results:</b> The wound healing assay exhibited that breast cancer cells overexpressing NRG1 exhibited stronger migration (p = 0.0047). More breast cancer cells of up-regulating NRG1 penetrated the transwell chamber, showing enhanced invasion ability (p = 0.0029). The TUNEL assay and flow cytometry demonstrated that NRG1 inhibited cell apoptosis and made them enter the active division stage. <b>Conclusion:</b> The NRG1 can promote the malignant function of breast cancer cells by augmenting migration and invasion abilities. High expression of NRG1 remarkably suppressed the apoptosis of breast cancer cells.
Collapse
|
8
|
Kim K, Lee D. ERBB3-dependent AKT and ERK pathways are essential for atrioventricular cushion development in mouse embryos. PLoS One 2021; 16:e0259426. [PMID: 34714866 PMCID: PMC8555822 DOI: 10.1371/journal.pone.0259426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
Abstract
ERBB family members and their ligands play an essential role in embryonic heart development and adult heart physiology. Among them, ERBB3 is a binding partner of ERBB2; the ERBB2/3 complex mediates downstream signaling for cell proliferation. ERBB3 has seven consensus binding sites to the p85 regulatory subunit of PI3K, which activates the downstream AKT pathway, leading to the proliferation of various cells. This study generated a human ERBB3 knock-in mouse expressing a mutant ERBB3 whose seven YXXM p85 binding sites were replaced with YXXA. Erbb3 knock-in embryos exhibited lethality between E12.5 to E13.5, and showed a decrease in mesenchymal cell numbers and density in AV cushions. We determined that the proliferation of mesenchymal cells in the atrioventricular (AV) cushion in Erbb3 knock-in mutant embryos was temporarily reduced due to the decrease of AKT and ERK1/2 phosphorylation. Overall, our results suggest that AKT/ERK activation by the ERBB3-dependent PI3K signaling is crucial for AV cushion morphogenesis during embryonic heart development.
Collapse
Affiliation(s)
- Kyoungmi Kim
- Department of Physiology and Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- * E-mail: (KK); (DL)
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
- * E-mail: (KK); (DL)
| |
Collapse
|
9
|
Gu X, Jin B, Qi Z, Yin X. Identification of potential microRNAs and KEGG pathways in denervation muscle atrophy based on meta-analysis. Sci Rep 2021; 11:13560. [PMID: 34193880 PMCID: PMC8245453 DOI: 10.1038/s41598-021-92489-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
The molecular mechanism of muscle atrophy has been studied a lot, but there is no comprehensive analysis focusing on the denervated muscle atrophy. The gene network that controls the development of denervated muscle atrophy needs further elucidation. We examined differentially expressed genes (DEGs) from five denervated muscle atrophy microarray datasets and predicted microRNAs that target these DEGs. We also included the differentially expressed microRNAs datasets of denervated muscle atrophy in previous studies as background information to identify potential key microRNAs. Finally, we compared denervated muscle atrophy with disuse muscle atrophy caused by other reasons, and obtained the Den-genes which only differentially expressed in denervated muscle atrophy. In this meta-analysis, we obtained 429 up-regulated genes, 525 down-regulated genes and a batch of key microRNAs in denervated muscle atrophy. We found eight important microRNA-mRNA interactions (miR-1/Jun, miR-1/Vegfa, miR-497/Vegfa, miR-23a/Vegfa, miR-206/Vegfa, miR-497/Suclg1, miR-27a/Suclg1, miR-27a/Mapk14). The top five KEGG pathways enriched by Den-genes are Insulin signaling pathway, T cell receptor signaling pathway, MAPK signaling pathway, Toll-like receptor signaling pathway and B cell receptor signaling pathway. Our research has delineated the RNA regulatory network of denervated muscle atrophy, and uncovered the specific genes and terms in denervated muscle atrophy.
Collapse
Affiliation(s)
- Xinyi Gu
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China
| | - Bo Jin
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China
| | - Zhidan Qi
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China
| | - Xiaofeng Yin
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China. .,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China.
| |
Collapse
|
10
|
Laskin J, Liu SV, Tolba K, Heining C, Schlenk RF, Cheema P, Cadranel J, Jones MR, Drilon A, Cseh A, Gyorffy S, Solca F, Duruisseaux M. NRG1 fusion-driven tumors: biology, detection, and the therapeutic role of afatinib and other ErbB-targeting agents. Ann Oncol 2020; 31:1693-1703. [PMID: 32916265 DOI: 10.1016/j.annonc.2020.08.2335] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/03/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022] Open
Abstract
Oncogenic gene fusions are hybrid genes that result from structural DNA rearrangements, leading to deregulated activity. Fusions involving the neuregulin-1 gene (NRG1) result in ErbB-mediated pathway activation and therefore present a rational candidate for targeted treatment. The most frequently reported NRG1 fusion is CD74-NRG1, which most commonly occurs in patients with invasive mucinous adenocarcinomas (IMAs) of the lung, although several other NRG1 fusion partners have been identified in patients with lung cancer, including ATP1B1, SDC4, and RBPMS. NRG1 fusions are also present in patients with other solid tumors, such as pancreatic ductal adenocarcinoma. In general, NRG1 fusions are rare across different types of cancer, with a reported incidence of <1%, with the notable exception of IMA, which represents ≈2%-10% of lung adenocarcinomas and has a reported incidence of ≈10%-30% for NRG1 fusions. A substantial proportion (≈20%) of NRG1 fusion-positive non-small-cell lung cancer cases are nonmucinous adenocarcinomas. ErbB-targeted treatments, such as afatinib, a pan-ErbB tyrosine kinase inhibitor, are potential therapeutic strategies to address unmet treatment needs in patients harboring NRG1 fusions.
Collapse
Affiliation(s)
- J Laskin
- Division of Medical Oncology, Department of Medicine, University of British Columbia, BC Cancer, Vancouver, BC, Canada.
| | - S V Liu
- Georgetown University Medical Center, Washington, USA
| | - K Tolba
- Oregon Health and Science University, Portland, OR, USA
| | - C Heining
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden and German Cancer Research Center (DKFZ), Dresden, Germany; Center for Personalized Oncology, NCT Dresden and University Hospital Carl Gustav Carus Dresden at Technical University Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - R F Schlenk
- National Center of Tumor Diseases Heidelberg, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - P Cheema
- William Osler Health System, University of Toronto, Toronto, ON, Canada
| | - J Cadranel
- Assistance Publique Hôpitaux de Paris, Hôpital Tenon and Sorbonne Université, Paris, France
| | - M R Jones
- QIAGEN Digital Insights, QIAGEN Inc., Redwood City, CA, USA
| | - A Drilon
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Cseh
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - S Gyorffy
- AstraZeneca Canada Ltd, Mississauga, ON, Canada
| | - F Solca
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - M Duruisseaux
- Hospices Civils de Lyon Cancer Institute, Anticancer Antibodies Lab Cancer Research Center of Lyon INSERM 1052 CNRS 528, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
11
|
Enhancing Autophagy Protects Against Sepsis-Induced Neuromuscular Dysfunction Associated with Qualitative Changes to Acetylcholine Receptors. Shock 2020; 52:111-121. [PMID: 30286033 DOI: 10.1097/shk.0000000000001189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sepsis-induced myopathy is a heavy burden for patients during respiratory failure as well as after discharge, which could be characterized with qualitative changes to nAChR in a rat model of sepsis, regulated by NRG-1. Autophagy is an innate immune defense mechanism against microbial challenges. We found neuromuscular dysfunction in anterior tibial muscle of male Sprague-Dawley rats 24 h after cecal ligation and puncture (CLP). CLP resulted in increased systemic and local inflammation in anterior tibial muscle tissue. The start-up phase of autophagy, as measured by LC3II, was activated immediately after CLP and continued until 24 h; the degradation phase was suppressed until 24 h, after a brief increase at 4 h (revealed by p62). NRG-1 first increased, and then decreased to a level lower than that in the sham group. Meanwhile, expression of γ- and α7- acetylcholine receptors was detected at 8 and 16 h after CLP; levels increased continuously until 24 h. Subsequently, we investigated the significance of autophagy in CLP-induced neuromuscular dysfunction by treatment with rapamycin or 3-methyladenine, which were classical pharmaceuticals for enhancing or suppressing autophagy. Rapamycin activated autophagy, limited the CLP-induced systemic pro-inflammatory response and blood bacterial load without affecting local inflammatory response, upregulated NRG-1, downregulated γ- and α7-acetylcholine receptors, and improved 7-day neuromuscular function and survival rate. In contrast, 3-methyladenine enhanced local inflammatory response, suppressed autophagy, worsened 7-day neuromuscular function. We conclude that impaired autophagy may contribute to sepsis-induced neuromuscular dysfunction in young male rats. Enhancing autophagy with rapamycin alleviated qualitative changes to acetylcholine receptors without triggering local anti-inflammatory response and improved anterior tibial muscle function in septic early phase (24 h) as well as in septic chronic phase (7d). Enhancing autophagy soon after sepsis is a potential strategy for treatment of sepsis-induced myopathy.
Collapse
|
12
|
Study of the Gastrointestinal Heat Retention Syndrome in Children: From Diagnostic Model to Biological Basis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2019:5303869. [PMID: 31929814 PMCID: PMC6942808 DOI: 10.1155/2019/5303869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/10/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
Abstract
Gastrointestinal heat retention syndrome (GHRS) refers to a condition that is associated with increased gastrointestinal heat caused by a metabolic block in energy. It is common in children and is closely related to the occurrence and development of recurrent respiratory tract infection, pneumonia, recurrent functional abdominal pain, etc. However, there are no standardized diagnostic criteria to differentiate the GHRS. Therefore, this study is aimed to establish a diagnostic model for children's GHRS and explore the possible biological basis by using systems biology to achieve. Furthermore, Delphi method and the clinical data of Lasso analysis were used to screen out the core symptoms. Nineteen core symptoms of GHRS in children were screened including digestive symptoms such as dry stool, poor appetite, vomiting, and some nervous system symptoms such as night restlessness and irritability. Based on the core symptoms, a GHRS diagnosis model was established using the eXtreme Gradient Boosting (XGBoost) method, and the accuracy of internal verification reached 93.03%. Relevant targets of the core symptoms in the Human Phenotype Ontology (HPO) were retrieved, and target interactions were linked through the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and core targets were selected after topological analysis using Cytoscape. Relevant biological processes and pathways were analyzed by applying the DAVID and KEGG databases. The enriched biological processes focused on the cell proliferation, differentiation, apoptosis, and mitochondrial metabolism, which were mainly associated with PI3K-AKT, MAPK network pathways, and the Wnt signaling pathway. In conclusion, we established a diagnosis model of GHRS in children based on the core symptoms and provided an objective standard for its clinical diagnosis. And, the Wnt signaling pathway and the estrogen receptor-activated PI3K-AKT and MAPK network pathways may play important roles in the GHRS processing.
Collapse
|
13
|
Barrenschee M, Cossais F, Böttner M, Egberts JH, Becker T, Wedel T. Impaired Expression of Neuregulin 1 and Nicotinic Acetylcholine Receptor β4 Subunit in Diverticular Disease. Front Cell Neurosci 2019; 13:563. [PMID: 31920561 PMCID: PMC6930903 DOI: 10.3389/fncel.2019.00563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Neuregulin 1 (NRG1) regulates the expression of the nicotinic acetylcholine receptor (nAChR) and is suggested to promote the survival and maintenance of the enteric nervous system (ENS), since deficiency of its corresponding receptor complex ErbB2/ErbB3 leads to postnatal colonic aganglionosis. As diverticular disease (DD) is associated with intestinal hypoganglionosis, the NRG1-ErbB2/ErbB3 system and the nAChR were studied in patients with DD and controls. Samples of tunica muscularis of the sigmoid colon from patients with DD (n = 8) and controls (n = 11) were assessed for mRNA expression of NRG1, ErbB2, and ErbB3 and the nAChR subunits α3, α5, α7, β2, and β4. Site-specific gene expression levels of the NRG1-ErbB2/3 system were determined in myenteric ganglia harvested by laser microdissection (LMD). Localization studies were performed by immunohistochemistry for the NRG1-ErbB2/3 system and nAChR subunit β4. Rat enteric nerve cell cultures were stimulated with NRG1 or glial-cell line derived neurotrophic factor (GDNF) for 6 days and mRNA expression of the aforementioned nAchR was measured. NRG1, ErbB3, and nAChR subunit β4 expression was significantly down-regulated in both the tunica muscularis and myenteric ganglia of patients with DD compared to controls, whereas mRNA expression of ErbB3 and nAChR subunits β2, α3, α5, and α7 remained unaltered. NRG1, ErbB3, and nAChR subunit β4 immunoreactive signals were reduced in neuronal somata and the neuropil of myenteric ganglia from patients with DD compared to control. nAChR subunit β4 exhibited also weaker immunoreactive signals in the tunica muscularis of patients with DD. NRG1 treatment but not GDNF treatment of enteric nerve cell cultures significantly enhanced mRNA expression of nAchR β4. The down-regulation of NRG1 and ErbB3 in myenteric ganglia of patients with DD supports the hypothesis that intestinal hypoganglionosis observed in DD may be attributed to a lack of neurotrophic factors. Regulation of nAChR subunit β4 by NRG1 and decreased nAChR β4 in patients with DD provide evidence that a lack of NRG1 may affect the composition of enteric neurotransmitter receptor subunits thus contributing to the intestinal motility disorders previously reported in DD.
Collapse
Affiliation(s)
- Martina Barrenschee
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts University of Kiel, Kiel, Germany
| | - François Cossais
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Martina Böttner
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Jan-Hendrik Egberts
- Department of General, Visceral-, Thoracic-, Transplantation-, and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Becker
- Department of General, Visceral-, Thoracic-, Transplantation-, and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thilo Wedel
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
14
|
Ryu S, Lee JM, Bae CA, Moon CE, Cho KO. Therapeutic efficacy of neuregulin 1-expressing human adipose-derived mesenchymal stem cells for ischemic stroke. PLoS One 2019; 14:e0222587. [PMID: 31560696 PMCID: PMC6764745 DOI: 10.1371/journal.pone.0222587] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 09/02/2019] [Indexed: 12/22/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (AdMSCs) have been reported to ameliorate neurological deficits after acute ischemic stroke. As neuregulin 1 (NRG1, or heregulin 1), a growth factor with versatile functions in the central nervous system, has demonstrated protective effects against ischemic brain injuries, we have generated NRG1-overexpressing AdMSCs in order to investigate whether NRG1-AdMSCs could enhance therapeutic benefits of AdMSCs in ischemic stroke. After AdMSCs were infected with adenoviral NRG1, increased NRG1 secretion in NRG1-AdMSCs was confirmed with ELISA. At 1 d after ischemic stroke that was induced by the occlusion of middle cerebral artery (MCAo) for 60 min in Sprague Dawley (SD) rats, adenoviral NRG1, AdMSCs, NRG1-AdMSCs, or PBS were injected into the striatum and serial neurologic examinations were performed. Administration of NRG1-AdMSCs resulted in significant improvement of functional outcome following stroke compared to AdMSCs- or adenoviral NRG1-treated group, in addition to the reduction in the infarct size evaluated by hematoxylin and eosin staining. When NRG1 expression in the brain was examined by double immunofluorescence to human nuclei (HuNu)/NRG1 and ELISA, NRG1-AdMSCs demonstrated marked increase in NRG1 expression. Moreover, western blot analysis further showed that transplantation of NRG1-AdMSCs significantly increased both endogenous and adenoviral NRG1 expression compared to AdMSCs-treated group. To elucidate molecular mechanisms, NRG1-associated downstream molecules were evaluated by western blot analysis. Expression of ErbB4, a receptor for NRG1, was markedly increased by NRG1-AdMSCs administration, in addition to pMAPK and pAkt, crucial molecules of NRG1-ErbB4 signaling. Taken together, our data suggest that NRG1-AdMSCs can provide excellent therapeutic potential in ischemic stroke by activating NRG1-ErbB4 signaling network.
Collapse
Affiliation(s)
- Sun Ryu
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae-Min Lee
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Cheong A. Bae
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chae-Eun Moon
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyung-Ok Cho
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- * E-mail:
| |
Collapse
|
15
|
Xie F, Zhang F, Min S, Chen J, Yang J, Wang X. Glial cell line-derived neurotrophic factor (GDNF) attenuates the peripheral neuromuscular dysfunction without inhibiting the activation of spinal microglia/monocyte. BMC Geriatr 2018; 18:110. [PMID: 29743034 PMCID: PMC5944173 DOI: 10.1186/s12877-018-0796-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Background Peripheral neuromuscular dysfunctions were found in elderly individuals, and spinal microglia/monocyte plays an important role on this process. This study aims to test whether the glial cell line-derived neurotrophic factor (GDNF) could attenuate age-related neuromuscular dysfunction by inhibiting the activation of spinal microglia/monocyte. Methods Male Sprague-Dawley rats were divided into an adult group and an aged group. The aged rats were intrathecally injected with normal saline (NS) and GDNF. All the rats were harvested 5 days after each injection. The muscular function was tested by compound muscle action potential, and the activation of microglia/monocyte was detected by immunofluorescence staining; cytokines were assayed by enzyme-linked immunosorbent assay; the expression level of GDNF and its known receptor GFR-α in the spinal cord, the expression level of neuregulin-1 (NRG-1) in the sciatic nerve, and the expression level of γ- and α7- ε-nicotinic acetylcholine receptors in the tibialis anterior muscle were measured by western blotting. Results The activated microglia/monocyte was found in the aged rats compared to the adult rats. The aged rats showed a significant neuromuscular dysfunction and cytokine release as well as increased expression of γ- and α7-nAChR. The protein expression of GDNF, GFR-α, and NRG-1 in the aged rats were significantly lower than that in the adult rats. However, the exogenous injection of GDNF could alleviate the neuromuscular dysfunction but not inhibit the activation of spinal microglia/monocyte. Furthermore, the levels of GFR-α and NRG-1 also increased after GDNF treatment. Conclusion The GDNF could attenuate the age-related peripheral neuromuscular dysfunction without inhibiting the activation of microglia/monocyte in the spinal cord.
Collapse
Affiliation(s)
- Fei Xie
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1#, Yuan Jia Gang, Chongqing, 400016, China
| | - Fan Zhang
- Department of Anesthesiology, the People's Hospital of Jianyang City, Chengdu, Sichuan, China
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1#, Yuan Jia Gang, Chongqing, 400016, China.
| | - Jingyuan Chen
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1#, Yuan Jia Gang, Chongqing, 400016, China
| | - Jun Yang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1#, Yuan Jia Gang, Chongqing, 400016, China
| | - Xin Wang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1#, Yuan Jia Gang, Chongqing, 400016, China
| |
Collapse
|
16
|
Yang SW, Jeong SW, Song KH. Increased expression of neuregulin 1 in the urothelium of rat bladder with partial bladder outlet obstruction. BMC Urol 2017; 17:115. [PMID: 29221474 PMCID: PMC5723058 DOI: 10.1186/s12894-017-0307-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/22/2017] [Indexed: 01/20/2023] Open
Abstract
Background This study determined whether changes in the expression of neuregulin (NRG) 1, erbB2 tyrosine kinase (ErbB2) and the M2 muscarinic receptor in the urothelium and detrusor muscle of the rat bladder were associated with partial bladder outlet obstruction (PBOO). Methods Male Sprague-Dawley rats (body weight 250–300 g) were used and subdivided into control (n = 10) and PBOO groups (n = 20). PBOO was induced for 21 days, and the expression of NRG1, ErbB2 and M2 muscarinic receptor mRNA and protein was evaluated using reverse transcriptase-polymerase chain reaction (RT-PCR) and western blotting, respectively. Results In the urothelium of rat bladder samples, protein expression and mRNA expression of NRG1, ErbB2 and M2 muscarinic receptor were significantly increased in the PBOO group compared to the control group (p < 0.05). Only mRNA expression levels of NRG1/ ErbB2 were higher in the detrusor muscle of the PBOO group compared to the control group (p < 0.05). Conclusions Our study demonstrated remarkable changes in the expression of NRG1/ErbB2 receptor mRNA and protein in the urothelium and muscle layer. These results suggest that NRG1 overexpression plays some kind of role against the PBOO-induced upregulated muscarinic receptors in detrusor overactivity.
Collapse
Affiliation(s)
- Seung Woo Yang
- Department of Urology, School of Medicine, Chungnam National University Hospital, Chungnam National University, 282 Monwha-ro, Jung-gu, Daejeon, Republic of Korea, 35015
| | - Seong Woo Jeong
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Ki Hak Song
- Department of Urology, School of Medicine, Chungnam National University Hospital, Chungnam National University, 282 Monwha-ro, Jung-gu, Daejeon, Republic of Korea, 35015.
| |
Collapse
|
17
|
Xie F, Min S, Chen J, Yang J, Wang X. Ulinastatin inhibited sepsis-induced spinal inflammation to alleviate peripheral neuromuscular dysfunction in an experimental rat model of neuromyopathy. J Neurochem 2017; 143:225-235. [PMID: 28796387 DOI: 10.1111/jnc.14145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/30/2022]
Abstract
Sepsis initiates a neuroinflammatory cascade that contributes to spinal cord inflammation and behavioral impairment, and Toll-like receptor 4 (TLR4) is an important mediator of this cascade. In this study, we tested the hypothesis that ulinastatin (ULI) inhibits sepsis-induced spinal inflammation to alleviate peripheral neuromuscular dysfunction through the TLR4/myeloid differentiation factor 88 (MyD88)/NF-κB signaling pathway. Muscular function, spinal cord water content, and cytokine levels of spinal cord were tested in TLR4-inhibited rats subjected to cecal ligation and puncture (CLP). The normal rats were intrathecally injected with different concentrations of ULI or normal saline 60 min before CLP. At 24 h after CLP, the activation of microglia/macrophage was detected by immunofluorescence staining; and the cytokines were assayed by ELISA. The protein expression level of the TLR4 and its downstream effectors (MyD88 and NF-κB), the neuregulin-1, and the γ- and α7-nicotinic acetylcholine receptor was measured using western blotting. The protein expression of TLR4 in the spinal cord reached a maximum at 24 h post-CLP. Compared to the sham rats, the TLR4-inhibited rats showed attenuated functional impairment and cytokine release. ULI (5000 U/kg ) treatment pre-CLP significantly reduced the number of TLR4-positive microglia/macrophages as well as inflammatory mediator release in septic rats. Furthermore, the levels of TLR4, MyD88, and NF-κB and the expression level of γ-/α7-nicotinic acetylcholine receptors also decreased after ULI treatment. ULI administration may improve patient outcome by reducing the spinal inflammation through a mechanism involving the TLR4/MyD88/NF-κB signaling in sepsis.
Collapse
Affiliation(s)
- Fei Xie
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingyuan Chen
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Yang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Wang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Su D, Zhou Y, Hu S, Guan L, Shi C, Wang Q, Chen Y, Lu C, Li Q, Ma X. Role of GAB1/PI3K/AKT signaling high glucose-induced cardiomyocyte apoptosis. Biomed Pharmacother 2017; 93:1197-1204. [DOI: 10.1016/j.biopha.2017.07.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 11/24/2022] Open
|
19
|
Axonal Type III Nrg1 Controls Glutamate Synapse Formation and GluA2 Trafficking in Hippocampal-Accumbens Connections. eNeuro 2017; 4:eN-NWR-0232-16. [PMID: 28275713 PMCID: PMC5329619 DOI: 10.1523/eneuro.0232-16.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 11/21/2022] Open
Abstract
Altered neuregulin 1 (Nrg1)/ErbB signaling and glutamatergic hypofunction have been implicated in the pathophysiology of schizophrenia. Here, we employed gene chimeric ventral hippocampus (vHipp)-nucleus accumbens (nAcc) coculture from mouse, electrophysiology, immunocytochemistry, FM1-43 vesicle fusion, and electron microscopy techniques to examine the pre- and postsynaptic mechanisms of genetic deficits in Nrg1/ErbB signaling-induced glutamatergic dysfunctions. Reduced presynaptic type III Nrg1 expression along vHipp axons decreases the number of glutamate synapses and impairs GluA2 trafficking in the postsynaptic nAcc neurons, resulting in decreased frequency and amplitude of miniature EPSCs (mEPSCs). Reduced expression of axonal type III Nrg1 along vHipp projections also decreases functional synaptic vesicle (SV) clustering and vesicular trafficking to presynaptic vHipp axonal terminals. These findings suggest that Nrg1/ErbB signaling modulate glutamatergic transmission via both pre- and postsynaptic mechanisms.
Collapse
|
20
|
Xie F, Min S, Liu L, Peng L, Hao X, Zhu X. Advanced age enhances the sepsis-induced up-regulation of the γ- and α7-nicotinic acetylcholine receptors in different parts of the skeletal muscles. Arch Gerontol Geriatr 2016; 65:1-8. [DOI: 10.1016/j.archger.2016.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/12/2015] [Accepted: 02/06/2016] [Indexed: 11/17/2022]
|
21
|
Hollins SL, Cairns MJ. MicroRNA: Small RNA mediators of the brains genomic response to environmental stress. Prog Neurobiol 2016; 143:61-81. [PMID: 27317386 DOI: 10.1016/j.pneurobio.2016.06.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/24/2016] [Accepted: 06/11/2016] [Indexed: 01/09/2023]
Abstract
The developmental processes that establish the synaptic architecture of the brain while retaining capacity for activity-dependent remodeling, are complex and involve a combination of genetic and epigenetic influences. Dysregulation of these processes can lead to problems with neural circuitry which manifest in humans as a range of neurodevelopmental syndromes, such as schizophrenia, bipolar disorder and fragile X mental retardation. Recent studies suggest that prenatal, postnatal and intergenerational environmental factors play an important role in the aetiology of stress-related psychopathology. A number of these disorders have been shown to display epigenetic changes in the postmortem brain that reflect early life experience. These changes affect the regulation of gene expression though chromatin remodeling (transcriptional) and post-transcriptional influences, especially small noncoding microRNA (miRNA). These dynamic and influential molecules appear to play an important function in both brain development and its adaption to stress. In this review, we examine the role of miRNA in mediating the brain's response to both prenatal and postnatal environmental perturbations and explore how stress- induced alterations in miRNA expression can regulate the stress response via modulation of the immune system. Given the close relationship between environmental stress, miRNA, and brain development/function, we assert that miRNA hold a significant position at the molecular crossroads between neural development and adaptations to environmental stress. A greater understanding of the dynamics that mediate an individual's predisposition to stress-induced neuropathology has major human health benefits and is an important area of research.
Collapse
Affiliation(s)
- Sharon L Hollins
- School of Biomedical Sciences and Pharmacy and the Hunter Medical Research Institute, the University of Newcastle, Callaghan, NSW 2308, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy and the Hunter Medical Research Institute, the University of Newcastle, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia.
| |
Collapse
|
22
|
Lee CK, Park KH, Baik SK, Jeong SW. Decreased excitability and voltage-gated sodium currents in aortic baroreceptor neurons contribute to the impairment of arterial baroreflex in cirrhotic rats. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1088-101. [DOI: 10.1152/ajpregu.00129.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 03/10/2016] [Indexed: 02/07/2023]
Abstract
Cardiovascular autonomic dysfunction, which is manifested by an impairment of the arterial baroreflex, is prevalent irrespective of etiology and contributes to the increased morbidity and mortality in cirrhotic patients. However, the cellular mechanisms that underlie the cirrhosis-impaired arterial baroreflex remain unknown. In the present study, we examined whether the cirrhosis-impaired arterial baroreflex is attributable to the dysfunction of aortic baroreceptor (AB) neurons. Biliary and nonbiliary cirrhotic rats were generated via common bile duct ligation (CBDL) and intraperitoneal injections of thioacetamide (TAA), respectively. Histological and molecular biological examinations confirmed the development of fibrosis in the livers of both cirrhotic rat models. The heart rate changes during phenylephrine-induced baroreceptor activation indicated that baroreflex sensitivity was blunted in the CBDL and TAA rats. Under the current-clamp mode of the patch-clamp technique, cell excitability was recorded in DiI-labeled AB neurons. The number of action potential discharges in the A- and C-type AB neurons was significantly decreased because of the increased rheobase and threshold potential in the CBDL and TAA rats compared with sham-operated rats. Real-time PCR and Western blotting indicated that the NaV1.7, NaV1.8, and NaV1.9 transcripts and proteins were significantly downregulated in the nodose ganglion neurons from the CBDL and TAA rats compared with the sham-operated rats. Consistent with these molecular data, the tetrodotoxin-sensitive NaV currents and the tetrodotoxin-resistant NaV currents were significantly decreased in A- and C-type AB neurons, respectively, from the CBDL and TAA rats compared with the sham-operated rats. Taken together, these findings implicate a key cellular mechanism in the cirrhosis-impaired arterial baroreflex.
Collapse
Affiliation(s)
- Choong-Ku Lee
- Department of Physiology, Brain Research Group, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Kwang-Hwa Park
- Department of Pathology, Brain Research Group, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Soon-Koo Baik
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seong-Woo Jeong
- Department of Physiology, Brain Research Group, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
23
|
Shim YK, Kim N. Nonsteroidal Anti-inflammatory Drug and Aspirin-induced Peptic Ulcer Disease. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2016; 67:300-12. [DOI: 10.4166/kjg.2016.67.6.300] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Young Kwang Shim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Increased Expression of Neuregulin 1 and erbB2 Tyrosine Kinase in the Bladder of Rats With Cyclophosphamide-Induced Interstitial Cystitis. Int Neurourol J 2015; 19:158-63. [PMID: 26620897 PMCID: PMC4582087 DOI: 10.5213/inj.2015.19.3.158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/27/2015] [Indexed: 12/20/2022] Open
Abstract
Purpose: The aim of this study was to evaluate changes in expressions of neuregulin (NRG)1 and erbB2 tyrosine kinase (ErbB2) in bladders of rats with cyclophosphamide (CYP)-induced interstitial cystitis (IC). Methods: Twenty-four Sprague-Dawley rats were divided into the IC group (n=16) and the control group (n=8). After inducing IC with intraperitoneal CYP injection, expressions of NRG1 and ErbB2 were analyzed using western blotting and reverse transcriptase-polymerase chain reaction. Results: In Western blotting, relative intensities and distributions of both NRG1 and ErbB2 were approximately 1.5- and 3.2-fold higher, respectively, in the IC group than in the control group (mean±standard deviation: 1.42±0.09 vs. 0.93±0.15 and 0.93±0.16 vs. 0.29±0.08, P<0.05). In the rat bladder samples, mRNA expression levels of NRG1 and ErbB2 were higher in the IC group than in the control group (P<0.05). Conclusions: Our study has demonstrated significant changes in mRNA expression and immunoreactivity of NRG1 and ErbB2 receptors in the urinary bladder after CYP-induced IC. These results suggest that the up-regulated NRG1 may play a role in inducing an overactive bladder and promoting regeneration in the inflammatory bladder with CYP-induced IC.
Collapse
|
25
|
Barrenschee M, Lange C, Cossais F, Egberts JH, Becker T, Wedel T, Böttner M. Expression and function of Neuregulin 1 and its signaling system ERBB2/3 in the enteric nervous system. Front Cell Neurosci 2015; 9:360. [PMID: 26441531 PMCID: PMC4585281 DOI: 10.3389/fncel.2015.00360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022] Open
Abstract
Neuregulin 1 (NRG1) is suggested to promote the survival and maintenance of the enteric nervous system (ENS). As deficiency in its corresponding receptor signaling complex ERBB2/ERBB3 leads to postnatal colonic hypo/aganglionosis we assessed the distributional and expressional pattern of the NRG1-ERBB2/ERBB3 system in the human colon and explored the neurotrophic capacity of NRG1 on cultured enteric neurons. Site-specific mRNA expression of the NRG1-ERBB2/3 system was determined in microdissected samples harvested from enteric musculature and ganglia. Localization of NRG1, ERBB2 and ERBB3 was determined by dual-label-immunohistochemistry using pan-neuronal and pan-glial markers. Morphometric analysis was performed on NRG1-stimulated rat enteric nerve cultures to evaluate neurotrophic effects. mRNA expression of the NRG1-ERBB2/3 system was determined by qPCR. Co-localization of NRG1 with neuronal or synaptic markers was analyzed in enteric nerve cultures stimulated with glial cell line-derived neurotrophic factor (GDNF). The NRG1 system was expressed in both neurons and glial cells of enteric ganglia and in nerve fibers. NRG1 significantly enhanced growth parameters in enteric nerve cell cultures and ErB3 mRNA expression was down-regulated upon NRG1 stimulation. GDNF negatively regulates ErbB2 and ErbB3 mRNA expression. The NRG1-ERBB2/3 system is physiologically present in the human ENS and NRG1 acts as a neurotrophic factor for the ENS. The down-regulation of ErbB3/ErbB2 in GDNF stimulated nerve cell cultures points to an interaction of both neurotrophic factors. Thus, the data may provide a basis to assess disturbed signaling components of the NRG1 system in enteric neuropathies.
Collapse
Affiliation(s)
- Martina Barrenschee
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts-University of Kiel Kiel, Germany
| | - Christina Lange
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts-University of Kiel Kiel, Germany
| | - François Cossais
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts-University of Kiel Kiel, Germany
| | - Jan-Hendrik Egberts
- Department of General, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel Kiel, Germany
| | - Thomas Becker
- Department of General, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel Kiel, Germany
| | - Thilo Wedel
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts-University of Kiel Kiel, Germany
| | - Martina Böttner
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts-University of Kiel Kiel, Germany
| |
Collapse
|
26
|
Kim HG, Cho SM, Lee CK, Jeong SW. Neuregulin 1 as an endogenous regulator of nicotinic acetylcholine receptors in adult major pelvic ganglion neurons. Biochem Biophys Res Commun 2015; 463:632-7. [DOI: 10.1016/j.bbrc.2015.05.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
|
27
|
Xiong HL, Zhou SW, Sun AH, He Y, Li J, Yuan X. MicroRNA‑197 reverses the drug resistance of fluorouracil‑induced SGC7901 cells by targeting mitogen‑activated protein kinase 1. Mol Med Rep 2015; 12:5019-25. [PMID: 26151540 PMCID: PMC4581796 DOI: 10.3892/mmr.2015.4052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/10/2015] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of small non‑coding RNA molecules, which serve an important function in the development of multidrug resistance in cancer through the post‑transcriptional regulation of gene expression and RNA silencing. In the present study, the functional effects of miR‑197 were analyzed in chemo‑resistant gastric cancer cells. Low expression levels of miR‑197 were observed in the fluorouracil (5‑FU)‑resistant gastric cell line SGC7901/5‑FU when compared with those in the parental gastric cell line SGC7901. Overexpression of miR‑197 in SGC7901/5‑FU cells was identified to partially restore 5‑FU sensitivity. miRNA target prediction algorithms suggested that mitogen‑activated protein kinase 1 (MAPK1) is a candidate target gene for miR‑197. A luciferase reporter assay confirmed that miR‑197 led to silencing of the MAPK1 gene by recognizing and then specifically binding to the predicted site of the MAPK1 mRNA 3'‑untranslated region. When miR‑197 was overexpressed in SGC7901 cells, the protein levels of MAPK1 were downregulated. Furthermore, MAPK1 knockdown significantly increased the growth inhibition rate of the SGC7901/5‑FU cells compared with those in the control group. These results indicated that miR‑197 may influence the sensitivity of 5‑FU treatment in a gastric cancer cell line by targeting MAPK1.
Collapse
Affiliation(s)
- Hai-Lin Xiong
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Si-Wei Zhou
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Ai-Hua Sun
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Ying He
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Jun Li
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Xia Yuan
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| |
Collapse
|
28
|
Chung HC, Lee CK, Park KH, Jeong SW. Bladder outlet obstruction causes up-regulation of nicotinic acetylcholine receptors in bladder-projecting pelvic ganglion neurons. Brain Res 2015; 1602:111-8. [PMID: 25625357 DOI: 10.1016/j.brainres.2015.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 12/21/2022]
Abstract
Pelvic ganglion (PG) neurons relay sympathetic and parasympathetic signals to the lower urinary tract, comprising the urinary bladder and bladder outlet, and are thus essential for both storage and voiding reflexes. Autonomic transmission is mediated by activation of the nicotinic acetylcholine receptor (nAChR) in PG neurons. Previously, bladder outlet obstruction (BOO), secondary to benign prostatic hyperplasia, was found to increase soma sizes of bladder-projecting PG neurons. To date, however, it remains unknown whether these morphological changes are accompanied by functional plasticity in PG neurons. In the present study, we investigated whether BOO alters acetylcholine receptor (nAChR) transcript expression and current density in bladder PG neurons. Partial ligation of the rat urethra for six weeks induced detrusor overactivity (DO), as observed during cystometrical measurement. In rats exhibiting DO, membrane capacitance of parasympathetic bladder PG neurons was selectively increased. Real-time PCR analysis revealed that BOO enhanced the expression of the transcripts encoding the nAChR α3 and β4 subunits in PG neurons. Notably, BOO significantly increased ACh-evoked current density in parasympathetic bladder PG neurons, whereas no changes were observed in sympathetic bladder and parasympathetic penile PG neurons. In addition, other ligand-gated ionic currents were immune to BOO in bladder PG neurons. Taken together, these data suggest that BOO causes upregulation of nAChR in parasympathetic bladder PG neurons, which in turn may potentiate ganglionic transmission and contribute to the development of DO.
Collapse
Affiliation(s)
- Hyun-Chul Chung
- Department of Urology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| | - Choong-Ku Lee
- Department of Physiology, Brain Research Group, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| | - Kwang-Hwa Park
- Department of Pathology, Brain Research Group, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| | - Seong-Woo Jeong
- Department of Physiology, Brain Research Group, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| |
Collapse
|
29
|
Albers KM, Zhang XL, Diges CM, Schwartz ES, Yang CI, Davis BM, Gold MS. Artemin growth factor increases nicotinic cholinergic receptor subunit expression and activity in nociceptive sensory neurons. Mol Pain 2014; 10:31. [PMID: 24886596 PMCID: PMC4036648 DOI: 10.1186/1744-8069-10-31] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023] Open
Abstract
Background Artemin (Artn), a member of the glial cell line-derived growth factor (GDNF) family, supports the development and function of a subpopulation of peptidergic, TRPV1-positive sensory neurons. Artn (enovin, neublastin) is elevated in inflamed tissue and its injection in skin causes transient thermal hyperalgesia. A genome wide expression analysis of trigeminal ganglia of mice that overexpress Artn in the skin (ART-OE mice) showed elevation in nicotinic acetylcholine receptor (nAChR) subunits, suggesting these ion channels contribute to Artn-induced sensitivity. Here we have used gene expression, immunolabeling, patch clamp electrophysiology and behavioral testing assays to investigate the link between Artn, nicotinic subunit expression and thermal hypersensitivity. Results Reverse transcriptase-PCR validation showed increased levels of mRNAs encoding the nAChR subunits α3 (13.3-fold), β3 (4-fold) and β4 (7.7-fold) in trigeminal ganglia and α3 (4-fold) and β4 (2.8-fold) in dorsal root ganglia (DRG) of ART-OE mice. Sensory ganglia of ART-OE mice had increased immunoreactivity for nAChRα3 and exhibited increased overlap in labeling with GFRα3-positive neurons. Patch clamp analysis of back-labeled cutaneous afferents showed that while the majority of nicotine-evoked currents in DRG neurons had biophysical and pharmacological properties of α7-subunit containing nAChRs, the Artn-induced increase in α3 and β4 subunits resulted in functional channels. Behavioral analysis of ART-OE and wildtype mice showed that Artn-induced thermal hyperalgesia can be blocked by mecamylamine or hexamethonium. Complete Freund’s adjuvant (CFA) inflammation of paw skin, which causes an increase in Artn in the skin, also increased the level of nAChR mRNAs in DRG. Finally, the increase in nAChRs transcription was not dependent on the Artn-induced increase in TRPV1 or TRPA1 in ART-OE mice since nAChRs were elevated in ganglia of TRPV1/TRPA1 double knockout mice. Conclusions These findings suggest that Artn regulates the expression and composition of nAChRs in GFRα3 nociceptors and that these changes contribute to the thermal hypersensitivity that develops in response to Artn injection and perhaps to inflammation.
Collapse
Affiliation(s)
- Kathryn M Albers
- Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | |
Collapse
|