1
|
Ye S, Agalave NM, Ma F, D Mahmood DF, Al-Grety A, Khoonsari PE, Svensson CI, Kultima K, Vera PL. Lumbosacral spinal proteomic changes during PAR4-induced persistent bladder pain. Neurosci Lett 2024; 818:137563. [PMID: 38036085 PMCID: PMC10929774 DOI: 10.1016/j.neulet.2023.137563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
Repeated intravesical activation of protease-activated receptor-4 (PAR4) in mice results in persistent bladder hyperalgesia (BHA). We investigated spinal proteomic changes associated with persistent BHA. Persistent BHA was induced in female mice by repeated (3x; days 0,2,4; n = 9) intravesical instillation of PAR4 activating peptide (PAR4-AP) while scrambled peptide served as the control (no pain; n = 9) group. The threshold to lower abdominal von Frey stimulation was recorded prior to and during treatment. On day 7, L6-S1 spinal segments were excised and examined for proteomic changes using LC-MS/MS. In-depth, unbiased proteomic tandem-mass tag (TMT) analysis identified and relatively quantified 6739 proteins. We identified significant changes with 29 decreasing and 51 increasing proteins in the persistent BHA group and they were associated with neuroprotection, redox modulation, mitochondrial factors, and neuronal-related proteins. In an additional experiment, decreases in protein levels were confirmed by immunohistochemistry for metallothionein 1/2. Our results show that persistent bladder pain is associated with central (spinal) protein changes. Previous work showed that PAR4-induced bladder pain is mediated, at least in part by spinal MIF. Further functional studies of these top changing proteins may lead to the discovery of novel potential therapeutic targets at the spinal level to modulate persistent bladder pain. Future studies will examine the effect of spinal MIF antagonism on PAR4-induced spinal proteomics associated with persistent bladder pain.
Collapse
Affiliation(s)
- Shaojing Ye
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA
| | - Nilesh M Agalave
- Uppsala University, Department of Medical Sciences, Clinical Chemistry, Uppsala, Sweden
| | - Fei Ma
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA
| | - Dlovan F D Mahmood
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA
| | - Asma Al-Grety
- Uppsala University, Department of Medical Sciences, Clinical Chemistry, Uppsala, Sweden
| | - Payam Emani Khoonsari
- Uppsala University, Department of Medical Sciences, Clinical Chemistry, Uppsala, Sweden
| | - Camila I Svensson
- Karolinska Institutet, Depts of Physiology & Pharmacology Department of Physiology and Pharmacology, Stockholm, Sweden
| | - Kim Kultima
- Uppsala University, Department of Medical Sciences, Clinical Chemistry, Uppsala, Sweden
| | - Pedro L Vera
- Lexington VA Health Care System, Research and Development, Lexington, KY, USA; University of Kentucky, Dept of Physiology Department of Physiology, Lexington, KY, USA
| |
Collapse
|
2
|
Ueda H. Prothymosin α-derived hexapeptide prevents the brain damage and sequelae due to ischemia-hemorrhage. Peptides 2023; 160:170922. [PMID: 36496010 DOI: 10.1016/j.peptides.2022.170922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
ProTα discovered as a necrosis-inhibitor from the conditioned medium of cortical culture also shows a potent survival action in brain and retinal ischemia/reperfusion models. The proposed mechanisms are the initial cell death mode switch from necrosis to apoptosis, which is subsequently inhibited by neurotrophic factors in vivo. It should be noted that ProTα and its derived hexapeptide P6Q completely suppress the cerebral hemorrhage induced by late tPA treatment (4.5 h) after the brain ischemia/reperfusion. Mechanisms underlying their beneficial actions may be related to the fact that ProTα inhibits the production of matrix metalloproteases (MMPs) in microglia and vascular endothelial cells. However, as P6Q inhibits MMPs in vascular endothelial cells, but not in microglia, the suppression of MMP production in endothelial cells seems to play major roles in the late tPA-induced hemorrhage. Although the tPA-treatments could enable the survival of patients with stroke, the post-stroke sequelae are the next clinical issues to be solved. The use of small peptide P6Q revealed the blockade of post-stroke pain, depression and memory-learning deficits in animal models. Furthermore, recent studies also showed that P6Q supplementation increased the viability of human induced pluripotent stem (iPS) cell-derived retinal pigment epithelium cell suspensions during the storage and P6Q attenuated the cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation of Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan; Graduate Institute of Pharmacology, National Defense Medical Center, Neihu, 114201 Taipei, Taiwan
| |
Collapse
|
3
|
Liu J, Zou S, Zhang Y, Lin R, Duan Y, He W, Yang Z. Discovery of Antitumor Active Peptides Derived from Peroxiredoxin 5. ChemMedChem 2021; 16:3477-3483. [PMID: 34313010 DOI: 10.1002/cmdc.202100323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/16/2021] [Indexed: 01/21/2023]
Abstract
The peroxiredoxin 5 (PRDX5) is a member of peroxiredoxins with antitumor activity. However, as a recombinant protein, PRDX5 is restricted in clinic due to high cost and keeping high dose in medication. The alternative way is to explore the antitumor active fragments of PRDX5 for potential of peptide drugs. According to the sequence, crystal structure and enzyme function of PRDX5, seven peptides were designed and named as IMB-P1∼7. The peptide IMB-P1 (AFTPGCSKTHLPGFVEQAEAL) containing critical residue C47 exhibited antitumor activity similar to PRDX5 in vivo. Transcriptome analysis showed peptide IMB-P1 could make influence on expression of multiple genes involved in tumorigenesis and deterioration. Besides, an important discovery is the down-regulation of oxidation-related genes. In CT26 cells, IMB-P1 carried similar antitumor activity with increasing ROS level to intact PRDX5. The results demonstrated that peptide IMB-P1 with easier synthesis from PRDX5 may serve as a promising antitumor candidate.
Collapse
Affiliation(s)
- Juanjuan Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantanxili, Dongcheng District, Beijing, China
| | - Sen Zou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantanxili, Dongcheng District, Beijing, China
| | - Yan Zhang
- Shen Yang Tonglian Group Co., Ltd., Dadong District, Shen Yang, China
| | - Ru Lin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantanxili, Dongcheng District, Beijing, China
| | - Yanbo Duan
- Shen Yang Tonglian Group Co., Ltd., Dadong District, Shen Yang, China
| | - Weiqing He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantanxili, Dongcheng District, Beijing, China
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Tiantanxili, Dongcheng District, Beijing, China
| |
Collapse
|
4
|
Sasaki K, Halder SK, Matsunaga H, Ueda H. Beneficial actions of prothymosin alpha-mimetic hexapeptide on central post-stroke pain, reduced social activity, learning-deficit and depression following cerebral ischemia in mice. Peptides 2020; 126:170265. [PMID: 31982448 DOI: 10.1016/j.peptides.2020.170265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 11/23/2022]
Abstract
Prothymosin alpha (ProTα)-mimetic hexapeptide (amino acid: NEVDQE, P6Q) inhibits cerebral or retinal ischemia-induced behavioral, electrophysiological and histological damage. P6Q also abolishes cerebral hemorrhage induced by ischemia with tissue plasminogen activator (tPA). In the present study we examined the beneficial effects of P6Q on other post-stroke prognostic psychology-related symptoms, which obstruct the motivation toward physical therapy. Intravenous (i.v.) administration with tPA (10 mg/kg) at 6 h after photochemically induced thrombosis (PIT) in mice resulted in bilateral central post-stroke pain in thermal and mechanical nociception tests and loss of social activity in the nest building test, both of which were significantly blocked by P6Q (30 mg/kg, i.v.) given at 5 h after PIT. P6Q (30 mg/kg, i.v.) also improved the memory-learning deficit in the step-through test and depression-like behavior in the tail suspension test when it was given 1 day after bilateral common carotid arteries occlusion (BCCAO) in mice. Thus, these studies suggest that P6Q could be a promising candidate to prevent negative prognostic psychological symptoms following focal and global ischemia.
Collapse
Affiliation(s)
- Keita Sasaki
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Sebok Kumar Halder
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Hayato Matsunaga
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501, Japan.
| |
Collapse
|
5
|
Torigoe K, Obata Y, Torigoe M, Oka S, Yamamoto K, Koji T, Ueda H, Mukae H, Nishino T. Hexapeptide derived from prothymosin alpha attenuates cisplatin-induced acute kidney injury. Clin Exp Nephrol 2020; 24:411-419. [PMID: 31912273 DOI: 10.1007/s10157-019-01843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 12/19/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Prothymosin alpha (ProTα) is a nuclear protein expressed in virtually all mammalian tissues. Previous studies have shown that ProTα exhibits protective effects against ischemia-induced cell death in various cell types. Recently, the 6-residue peptide P6Q (NEVDQE), the modified form of the active 6-residue core (51-56) in ProTα, has also been shown to have protective effects against retinal ischemia. However, it remains to be elucidated whether P6Q is effective against acute kidney injury (AKI). Therefore, we investigated the renoprotective effect of P6Q on cisplatin-induced AKI. METHODS Cultured HK-2 cells were treated with cisplatin for 24 h and pretreatment with ProTα or P6Q was carried out 30 min before cisplatin treatment. Cell viability was evaluated using the MTT assay. In an in vivo study, 8-week-old male Wistar rats were divided into control, cisplatin treated, and cisplatin treated with P6Q injection groups. In the last of these, P6Q was injected intravenously before cisplatin treatment. Then, we evaluated the renoprotective effect of P6Q. RESULTS In the study on cultured cells, pretreatment with ProTα or P6Q prevented cisplatin-induced cell death. In the in vivo study, pretreatment with P6Q significantly attenuated cisplatin-induced increase in serum creatinine and blood urea nitrogen levels, renal tubular cell injury, and apoptosis. Moreover, P6Q attenuated the mitochondrial apoptotic pathway and accelerated Akt phosphorylation after cisplatin-induced renal damage. CONCLUSION Taken together, our findings indicate that P6Q can attenuate cisplatin-induced AKI and suppress the mitochondrial apoptotic pathway via Akt phosphorylation. These data suggest that P6Q has potential as a preventative drug for cisplatin-induced AKI.
Collapse
Affiliation(s)
- Kenta Torigoe
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yoko Obata
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
- Medical Educational Development Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Miki Torigoe
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Satoru Oka
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Kazuo Yamamoto
- Biomedical Research Support Center, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Takehiko Koji
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Tomoya Nishino
- Department of Nephrology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
6
|
Halder SK, Sasaki K, Ueda H. Gγ7-specific prothymosin alpha deletion causes stress- and age-dependent motor dysfunction and anxiety. Biochem Biophys Res Commun 2019; 522:264-269. [PMID: 31759625 DOI: 10.1016/j.bbrc.2019.11.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/16/2019] [Indexed: 01/15/2023]
Abstract
We previously showed that prothymosin alpha (ProTα) improves cerebral ischemia-induced motor dysfunction. Our recent study also demonstrated that heterozygous ProTα deletion exhibited an enhanced anxiety-like behavior in mice. However, it remains elusive which brain regions or cells are related to these phenotypes. Here we generated conditional Gγ7-specific ProTα knockout mice using G protein γ7 subunit gene (Gng7)-cre promoter to see the brain robustness roles of ProTα in the striatum and hippocampus. The younger conditional ProTα (Gng7) knockout mice at the age of 10 weeks showed no significant phenotypes in motor dysfunction in the Rotarod test and locomotor activity in the open-field test, whereas significant motor dysfunction was obtained by 15 min transient middle cerebral artery occlusion (tMCAO)-induced cerebral ischemia. The aged conditional ProTα (Gng7) knockout mice at the age of 20 weeks showed hypolocomotor activity with less center time in the open-field test and impaired motor coordination in the Rotarod test without ischemia. Thus, this study suggests that ProTα has important roles in the maintenance of motor coordination and anxiety-like behavior.
Collapse
Affiliation(s)
- Sebok Kumar Halder
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Keita Sasaki
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan.
| |
Collapse
|
7
|
Ueda H. [Lysophosphatidic Acid Receptor Signaling Underlying Chronic Pain and Neuroprotective Mechanisms through Prothymosin α]. YAKUGAKU ZASSHI 2019; 139:1403-1415. [PMID: 31685737 DOI: 10.1248/yakushi.19-00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For my Ph.D. research topic, I isolated endogenous morphine-like analgesic dipeptide, kyotorphin, which mediates Met-enkephalin release, and discovered kyotorphin synthetase, a putative receptor and antagonist. Furthermore, I succeeded in purifying μ-opioid receptor and functional reconstitution with purified G proteins. After receiving my full professor position at Nagasaki University in 1996, I worked on two topics of research, molecular mechanisms of chronic pain through lysophosphatidic acid (LPA) and identification and characterization of neuroprotective protein, prothymosin α. In a series of studies, we have shown that LPA signaling defines the molecular mechanisms of neuropathic pain and fibromyalgia in terms of development and maintenance. Above all, the discovery of feed-forward system in LPA production and pain memory may contribute to better understanding of chronic pain and future analgesic drug discovery. Regarding prothymosin α, we first discovered it as neuronal necrosis-inhibitory molecule through two independent mechanisms, such as toll-like receptor and F0/F1 ATPase, both which protect neurons through indirect mechanisms. Prothymosin α is released by non-classical and non-vesicular mechanisms on various stresses, such as ischemia, starvation, and heat-shock. Thus it may be called a new type of neuroprotective damage-associated molecular patterns (DAMPs)/Alarmins. Heterozygotic mice showed a defect in memory-learning and neurogenesis as well as anxiogenic behaviors. Small peptide, P6Q derived from prothymosin α retains neuroprotective actions, which include blockade of cerebral hemorrhage caused by late treatment with tissue plasminogen activator in the stroke model in mice.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University, Institute of Biomedical Sciences
| |
Collapse
|
8
|
Halder SK, Matsunaga H, Ueda H. Prothymosin alpha and its mimetic hexapeptide improve delayed tissue plasminogen activator-induced brain damage following cerebral ischemia. J Neurochem 2019; 153:772-789. [PMID: 31454420 DOI: 10.1111/jnc.14858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/13/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022]
Abstract
Tissue plasminogen activator (tPA) administration beyond 4.5 h of stroke symptoms is beneficial for patients but has an increased risk of cerebral hemorrhage. Thus, increasing the therapeutic window of tPA is important for stroke recovery. We previously showed that prothymosin alpha (ProTα) or its mimetic hexapeptide (P6Q) has anti-ischemic activity. Here, we examined the beneficial effects of ProTα or P6Q against delayed tPA-induced brain damage following middle cerebral artery occlusion (MCAO) or photochemically induced thrombosis in mice. Brain hemorrhage was observed by tPA administration during reperfusion at 4.5 and 6 h after MCAO. Co-administration of ProTα with tPA at 4.5 h inhibited hemorrhage and motor dysfunction 2-4 days, but not 7 days after MCAO. ProTα administration at 2 and 4.5 h after MCAO significantly inhibited tPA (4.5 h)-induced motor dysfunction and death more than 7 days. Administration of tPA caused the loss of tight junction proteins, zona occulden-1 and occludin, and up-regulation of matrix metalloproteinase-2/9, in a ProTα-reversible manner. P6Q administration abolished tPA (4.5 h)-induced hemorrhage and reversed tPA (6 h)-induced vascular damage and matrix metalloproteinase-2 and 9 up-regulation. Twice administrations of P6Q at 2 h alone and 6 h with tPA significantly improved motor dysfunction more than 7 days. In photochemically induced thrombosis ischemia, similar vascular leakage and neuronal damage (infarction and motor dysfunction) by late tPA (4.5 or 6 h) were also inhibited by P6Q. Thus, these studies suggest that co-administration with ProTα or P6Q would be beneficial to inhibit delayed tPA-induced hemorrhagic mechanisms in acute ischemic stroke.
Collapse
Affiliation(s)
- Sebok Kumar Halder
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hayato Matsunaga
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
9
|
Matteucci C, Argaw-Denboba A, Balestrieri E, Giovinazzo A, Miele M, D'Agostini C, Pica F, Grelli S, Paci M, Mastino A, Sinibaldi Vallebona P, Garaci E, Tomino C. Deciphering cellular biological processes to clinical application: a new perspective for Tα1 treatment targeting multiple diseases. Expert Opin Biol Ther 2019; 18:23-31. [PMID: 30063863 DOI: 10.1080/14712598.2018.1474198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Thymosin alpha 1 (Tα1) is a well-recognized immune response modulator in a wide range of disorders, particularly infections and cancer. The bioinformatic analysis of public databases allows drug repositioning, predicting a new potential area of clinical intervention. We aimed to decipher the cellular network induced by Tα1 treatment to confirm present use and identify new potential clinical applications. RESEARCH DESIGN AND METHODS We used the transcriptional profile of human peripheral blood mononuclear cells treated in vitro with Tα1 to perform the enrichment network analysis by the Metascape online tools and the disease enrichment analysis by the DAVID online tool. RESULTS Networked cellular responses reflected Tα1 regulated biological processes including immune and metabolic responses, response to compounds and oxidative stress, ion homeostasis, peroxisome biogenesis and drug metabolic process. Beyond cancer and infections, the analysis evidenced the association with disorders such as kidney chronic failure, diabetes, cardiovascular, chronic respiratory, neuropsychiatric, neurodegenerative and autoimmune diseases. CONCLUSIONS In addition to the known ability to promote immune response pathways, the network enrichment analysis demonstrated that Tα1 regulates cellular metabolic processes and oxidative stress response. Notable, the analysis highlighted the association with several diseases, suggesting new translational implication of Tα1 treatment in pathological conditions unexpected until now.
Collapse
Affiliation(s)
- Claudia Matteucci
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Ayele Argaw-Denboba
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Emanuela Balestrieri
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Alessandro Giovinazzo
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Martino Miele
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Cartesio D'Agostini
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Francesca Pica
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Sandro Grelli
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Maurizio Paci
- b Department of Chemical Sciences and Technologies , University of Rome "Tor Vergata" , Rome , Italy
| | - Antonio Mastino
- c Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy.,d National Research Council , Institute of Translational Pharmacology , Rome , Italy
| | - Paola Sinibaldi Vallebona
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy.,d National Research Council , Institute of Translational Pharmacology , Rome , Italy
| | | | - Carlo Tomino
- e Università San Raffaele Pisana , Roma , Italy.,f IRCSS San Raffaele Pisana , Scientific Institute for Research, Hospitalization and Health Care , Roma , Italy
| |
Collapse
|
10
|
Ueda H, Neyama H, Sasaki K, Miyama C, Iwamoto R. Lysophosphatidic acid LPA 1 and LPA 3 receptors play roles in the maintenance of late tissue plasminogen activator-induced central poststroke pain in mice. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2019; 5:100020. [PMID: 31194070 PMCID: PMC6550111 DOI: 10.1016/j.ynpai.2018.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 11/17/2022]
Abstract
We developed a mouse model for central post-stroke pain (CPSP), a centrally-originated neuropathic pain (NeuP). In this mode, mice were first injected with Rose Bengal, followed by photo-irradiation of left middle cerebral artery (MCA) to generate thrombosis. Although the MCA thrombosis was soon dissolved, the reduced blood flow remained for more than 24 h due to subsequent occlusion of microvessels. This photochemically induced thrombosis (PIT) model showed a hypersensitivity to the electrical stimulation of both sides of paw, but did not show any abnormal pain in popular thermal or mechanical nociception tests. When tissue-type plasminogen activator (tPA) was injected 6 h after the PIT stress, tPA-dependent hypersensitivity to the electrical paw stimulation and stable thermal and mechanical hyperalgesia on both sides for more than 17 or 18 days after the PIT treatment. These hyperalgesic effects were abolished in lysophosphatidic acid receptor 1 (LPA1)- and lysophosphatidic acid receptor 3 (LPA3)-deficient mice. When Ki-16425, an LPA1 and LPA3 antagonist was treated twice daily for 6 days consecutively, the thermal and mechanical hyperalgesia at day 17 and 18 were significantly reversed. The liquid chromatography-mass spectrometry (LC-MS/MS) analysis revealed that there is a significant increase in several species of LPA molecules in somatosensory S-I and medial dorsal thalamus (MD), but not in striatum or ventroposterior thalamus. All these results suggest that LPA1 and LPA3 signaling play key roles in the development and maintenance of CPSP.
Collapse
Key Words
- CPSP, central post-stroke pain
- Central poststroke pain
- DMSO, dimethyl sulfoxide
- EPW, electrical stimulation-induced paw withdrawal
- HE, Hematoxylin and Eosin
- LC–MS/MS
- LC–MS/MS, liquid chromatography–mass spectrometry
- LPA1, lysophosphatidic acid receptor 1
- LPA1-KO, LPA1-deficient
- LPA3, lysophosphatidic acid receptor 3
- Lysophosphatidic acid
- MCA, middle cerebral artery
- MD, medial dorsal thalamus
- MRM, multiple reaction monitoring
- NeuP, neuropathic pain
- PFA, paraformaldehyde
- PIT, photochemically induced thrombosis
- PWL, paw withdrawal latency
- Photochemically induced thrombosis
- RB, Rose Bengal
- S-I, sensory cortex
- TTC, 2,3,5-triphenyltetrazolium chloride
- i.v., intravenously
- pSNL, partial sciatic nerve ligation
- tMCAO, transient middle cerebral artery occlusion
- tPA
- tPA, tissue-type plasminogen activator
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University, Institute of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | | | | | | | | |
Collapse
|
11
|
MIF Inhibitor ISO-1 Protects Photoreceptors and Reduces Gliosis in Experimental Retinal Detachment. Sci Rep 2017; 7:14336. [PMID: 29084983 PMCID: PMC5662618 DOI: 10.1038/s41598-017-14298-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/06/2017] [Indexed: 01/16/2023] Open
Abstract
Photoreceptor death and retinal gliosis underlie the majority of vision threatening retinal diseases including retinal detachment (RD). Although the underlying pathobiology of vision limiting processes in RD is not fully understood, inflammation is known to play a critical role. We conducted an iTRAQ proteomic screen of up- and down-regulated proteins in a murine model of RD to identify potential targetable candidates. Macrophage migration inhibitory factor (MIF) was identified and evaluated for neurotoxic and pro-gliotic effects during RD. Systemic administration of the MIF inhibitor ISO-1 significantly blocked photoreceptor apoptosis, outer nuclear layer (ONL) thinning, and retinal gliosis. ISO-1 and MIF knockout (MIFKO) had greater accumulation of Müller glia pERK expression in the detached retina, suggesting that Müller survival pathways might underlie the neuroprotective response. Our data show the feasibility of the MIF-inhibitor ISO-1 to block pathological damage responses in retinal detachment and provide a rationale to explore MIF inhibition as a potential therapeutic option for RD.
Collapse
|
12
|
Hayashi H, Takagi N. Endogenous Neuroprotective Molecules and Their Mechanisms in the Central Nervous System. Biol Pharm Bull 2016; 38:1104-8. [PMID: 26235573 DOI: 10.1248/bpb.b15-00361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functions of the central nervous system (CNS) are based on a complex neural network. It is believed that the CNS has several neuroprotective mechanisms operated by neurons, glia and other types of cells against various types of neuronal damage. Since mature, differentiated neurons are not able to divide, it is important to protect neurons from damage prior to death. The neuroprotective effects of a number of pharmaceutical agents and natural products against necrosis and apoptosis of the CNS neurons have been reported, thus this review will mainly discuss several endogenous neuroprotectants and their mechanisms.
Collapse
Affiliation(s)
- Hideki Hayashi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | |
Collapse
|
13
|
Retinal Cell Degeneration in Animal Models. Int J Mol Sci 2016; 17:ijms17010110. [PMID: 26784179 PMCID: PMC4730351 DOI: 10.3390/ijms17010110] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/25/2015] [Accepted: 01/08/2016] [Indexed: 01/01/2023] Open
Abstract
The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage.
Collapse
|
14
|
Ueda H, Halder SK, Matsunaga H, Sasaki K, Maeda S. Neuroprotective impact of prothymosin alpha-derived hexapeptide against retinal ischemia-reperfusion. Neuroscience 2016; 318:206-18. [PMID: 26779836 DOI: 10.1016/j.neuroscience.2016.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/17/2015] [Accepted: 01/05/2016] [Indexed: 01/13/2023]
Abstract
Prothymosin alpha (ProTα) has robustness roles against brain and retinal ischemia or serum-starvation stress. In the ProTα sequence, the active core 30-amino acid peptide/P30 (a.a.49-78) is necessary for the original neuroprotective actions against ischemia. Moreover, the 9-amino acid peptide sequence/P9 (a.a.52-60) in P30 still shows neuroprotective activity against brain and retinal ischemia, though P9 is less potent than P30. As the previous structure-activity relationship study for ProTα may not be enough, the possibility still exists that any sequence smaller than P9 retains potent neuroprotective activity. When different P9- and P30-related peptides were intravitreally injected 24h after retinal ischemia in mice, the 6-amino acid peptide/P6 (NEVDEE, a.a.51-56) showed potent protective effects against ischemia-induced retinal functional deficits, which are equipotent to the level of P30 peptide in electroretinography (ERG) and histological damage in Hematoxylin and Eosin (HE) staining. Further studies using ERG and HE staining suggested that intravitreal or intravenous (i.v.) injection with modified P6 peptide/P6Q (NEVDQE) potently inhibited retinal ischemia-induced functional and histological damage. In an immunohistochemical analysis, the ischemia-induced loss of retinal ganglion, bipolar, amacrine and photoreceptor cells were inhibited by a systemic administration with P6Q peptide 24h after the ischemic stress. In addition, systemic post-treatment with P6Q peptide significantly inhibited retinal ischemia-induced microglia and astrocyte activation in terms of increased ionized calcium-binding adaptor molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP) intensity, respectively, as well as their morphological changes, increased number and migration. Thus, this study demonstrates the therapeutic significance of modified P6 peptide P6Q (NEVDQE) derived from 6-amino acid peptide (P6) in ProTα against ischemic damage.
Collapse
Affiliation(s)
- H Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan.
| | - S K Halder
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - H Matsunaga
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - K Sasaki
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - S Maeda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| |
Collapse
|
15
|
Teixeira A, Yen B, Gusella GL, Thomas AG, Mullen MP, Aberg J, Chen X, Hoshida Y, van Bakel H, Schadt E, Basler CF, García-Sastre A, Mosoian A. Prothymosin α variants isolated from CD8+ T cells and cervicovaginal fluid suppress HIV-1 replication through type I interferon induction. J Infect Dis 2015; 211:1467-75. [PMID: 25404520 PMCID: PMC4425839 DOI: 10.1093/infdis/jiu643] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/07/2014] [Indexed: 12/14/2022] Open
Abstract
Soluble factors from CD8(+) T cells and cervicovaginal mucosa of women are recognized as important in controlling human immunodeficiency virus type 1 (HIV-1) infection and transmission. Previously, we have shown the strong anti-HIV-1 activity of prothymosin α (ProTα) derived from CD8(+) T cells. ProTα is a small acidic protein with wide cell distribution, to which several functions have been ascribed, depending on its intracellular or extracellular localization. To date, activities of ProTα have been attributed to a single protein known as isoform 2. Here we report the isolation and identification of 2 new ProTα variants from CD8(+) T cells and cervicovaginal lavage with potent anti-HIV-1 activity. The first is a splice variant of the ProTα gene, known as isoform CRA_b, and the second is the product of a ProTα gene, thus far classified as a pseudogene 7. Native or recombinant ProTα variants potently restrict HIV-1 replication in macrophages through the induction of type I interferon. The baseline expression of interferon-responsive genes in primary human cervical tissues positively correlate with high levels of intracellular ProTα, and the knockdown of ProTα variants by small interfering RNA leads to downregulation of interferon target genes. Overall, these findings suggest that ProTα variants are innate immune mediators involved in immune surveillance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Harm van Bakel
- Department of Genetics and Genomics Sciences
- Icahn Institute for Genomics and Multiscale Biology
| | - Eric Schadt
- Department of Genetics and Genomics Sciences
- Icahn Institute for Genomics and Multiscale Biology
| | | | - Adolfo García-Sastre
- Department of Medicine
- Department of Microbiology
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | |
Collapse
|
16
|
Omotuyi O, Matsunaga H, Ueda H. Evidence for ProTα-TLR4/MD-2 binding: molecular dynamics and gravimetric assay studies. Expert Opin Biol Ther 2015; 15 Suppl 1:S223-9. [PMID: 25604147 DOI: 10.1517/14712598.2015.1005597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE During preconditioning, lipopolysaccharide (LPS) selectively activates TLR4/MD-2/Toll/IL-1 receptor-domain-containing adaptor inducing IFN-β (TRIF) pathway instead of pro-inflammatory myeloid differentiation protein-88 (MyD88)/MyD88-adaptor-like protein (MAL) pathway. Extracellular prothymosin alpha (ProTα) is also known to selectively activate the TLR4/MD2/TRIF-IRF3 pathway in certain diseased conditions. In the current study, biophysical evidence for ProTα/TLR4/MD-2 complex formation and its interaction dynamics have been studied. RESEARCH DESIGN AND METHODS Gravimetric assay was used to investigate ProTα/TLR4/MD-2 complex formation while molecular dynamics (MD) simulation was used to study its interaction dynamics. RESULTS Through electrostatic interaction, full-length ProTα (F-ProTα) C-terminal peptide (aa 91 - 111) superficially interacts with similar TLR4/MD-2 (KD = 273.36 nm vs 16.07 μg/ml [LPS]) conformation with LPS at an overlapping three-dimensional space while F-ProTα is hinged to the TLR4 scaffold by one-amino acid shift-Mosoian domain (aa-51 - 90). Comparatively, F-ProTα better stabilizes MD-2 metastable states transition and mediates higher TLR4/MD-2 interaction than LPS. CONCLUSIONS ProTα via its C-terminal peptide (aa 91 - 111) exhibits in vitro biophysical contact with TLR4/MD-2 complex conformation recognized by LPS at overlapping LPS-binding positions.
Collapse
Affiliation(s)
- Olaposi Omotuyi
- Nagasaki University Graduate School of Biomedical Sciences, Department of Pharmacology and Therapeutic Innovation , 1-14 Bunkyo-machi, Nagasaki 852-8521 , Japan +81 95 819 2421; +81 95 819 2420;
| | | | | |
Collapse
|
17
|
Effects of a conventional photocoagulator and a 3-ns pulse laser on preconditioning responses and retinal ganglion cell survival after optic nerve crush. Exp Eye Res 2014; 127:77-90. [DOI: 10.1016/j.exer.2014.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/07/2014] [Accepted: 07/10/2014] [Indexed: 11/22/2022]
|
18
|
Halder SK, Matsunaga H, Ishii KJ, Akira S, Miyake K, Ueda H. Retinal cell type-specific prevention of ischemia-induced damages by LPS-TLR4 signaling through microglia. J Neurochem 2013; 126:243-60. [DOI: 10.1111/jnc.12262] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Sebok K. Halder
- Department of Molecular Pharmacology and Neuroscience; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Hayato Matsunaga
- Department of Molecular Pharmacology and Neuroscience; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Ken J. Ishii
- Laboratory of Vaccine Science; WPI Immunology Frontier Research Center; Osaka University, Osaka Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center; Department of Host Defense; Research Institute for Microbial Diseases; Osaka University; Osaka Japan
| | - Kensuke Miyake
- Division of Innate Immunity; The Institute of Medical Science; University of Tokyo; Tokyo Japan
| | - Hiroshi Ueda
- Department of Molecular Pharmacology and Neuroscience; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| |
Collapse
|
19
|
Halder SK, Sugimoto J, Matsunaga H, Ueda H. Therapeutic benefits of 9-amino acid peptide derived from prothymosin alpha against ischemic damages. Peptides 2013; 43:68-75. [PMID: 23499560 DOI: 10.1016/j.peptides.2013.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 12/11/2022]
Abstract
Prothymosin alpha (ProTα), a nuclear protein, plays multiple functions including cell survival. Most recently, we demonstrated that the active 30-amino acid peptide sequence/P30 (amino acids 49-78) in ProTα retains its substantial activity in neuroprotection in vitro and in vivo as well as in the inhibition of cerebral blood vessel damages by the ischemic stress in retina and brain. But, it has remained to identify the minimum peptide sequence in ProTα that retains neuroprotective activity. The present study using the experiments of alanine scanning suggested that any amino acid in 9-amino acid peptide sequence/P9 (amino acids 52-60) of P30 peptide is necessary for its survival activity of cultured rat cortical neurons against the ischemic stress. In the retinal ischemia-perfusion model, intravitreous injection of P9 24h after ischemia significantly inhibited the cellular and functional damages at day 7. On the other hand, 2,3,5-triphenyltetrazolium chloride (TTC) staining and electroretinogram assessment showed that systemic delivery with P9 1h after the cerebral ischemia (1h tMCAO) significantly blocks the ischemia-induced brain damages. In addition, systemic P9 delivery markedly inhibited the cerebral ischemia (tMCAO)-induced disruption of blood vessels in brain. Taken together, the present study provides a therapeutic importance of 9-amino acid peptide sequence against ischemic damages.
Collapse
Affiliation(s)
- Sebok Kumar Halder
- Department of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | | | | | | |
Collapse
|