1
|
Cellular context shapes cyclic nucleotide signaling in neurons through multiple levels of integration. J Neurosci Methods 2021; 362:109305. [PMID: 34343574 DOI: 10.1016/j.jneumeth.2021.109305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023]
Abstract
Intracellular signaling with cyclic nucleotides are ubiquitous signaling pathways, yet the dynamics of these signals profoundly differ in different cell types. Biosensor imaging experiments, by providing direct measurements in intact cellular environment, reveal which receptors are activated by neuromodulators and how the coincidence of different neuromodulators is integrated at various levels in the signaling cascade. Phosphodiesterases appear as one important determinant of cross-talk between different signaling pathways. Finally, analysis of signal dynamics reveal that striatal medium-sized spiny neuron obey a different logic than other brain regions such as cortex, probably in relation with the function of this brain region which efficiently detects transient dopamine.
Collapse
|
2
|
Döbrössy MD, Ramanathan C, Ashouri Vajari D, Tong Y, Schlaepfer T, Coenen VA. Neuromodulation in Psychiatric disorders: Experimental and Clinical evidence for reward and motivation network Deep Brain Stimulation: Focus on the medial forebrain bundle. Eur J Neurosci 2020; 53:89-113. [PMID: 32931064 DOI: 10.1111/ejn.14975] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 12/28/2022]
Abstract
Deep brain stimulation (DBS) in psychiatric illnesses has been clinically tested over the past 20 years. The clinical application of DBS to the superolateral branch of the medial forebrain bundle in treatment-resistant depressed patients-one of several targets under investigation-has shown to be promising in a number of uncontrolled open label trials. However, there are remain numerous questions that need to be investigated to understand and optimize the clinical use of DBS in depression, including, for example, the relationship between the symptoms, the biological substrates/projections and the stimulation itself. In the context of precision and customized medicine, the current paper focuses on clinical and experimental research of medial forebrain bundle DBS in depression or in animal models of depression, demonstrating how clinical and scientific progress can work in tandem to test the therapeutic value and investigate the mechanisms of this experimental treatment. As one of the hypotheses is that depression engenders changes in the reward and motivational networks, the review looks at how stimulation of the medial forebrain bundle impacts the dopaminergic system.
Collapse
Affiliation(s)
- Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany
| | - Chockalingam Ramanathan
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Danesh Ashouri Vajari
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Yixin Tong
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Thomas Schlaepfer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Interventional Biological Psychiatry, University Hospital Freiburg, Freiburg, Germany
| | - Volker A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Yapo C, Nair AG, Hellgren Kotaleski J, Vincent P, Castro LRV. Switch-like PKA responses in the nucleus of striatal neurons. J Cell Sci 2018; 131:jcs.216556. [DOI: 10.1242/jcs.216556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022] Open
Abstract
Although it is known that Protein Kinase A (PKA) in the nucleus regulates gene expression, the specificities of nuclear PKA signaling remain poorly understood. Here, we combined computational modeling and live-cell imaging of PKA-dependent phosphorylation in mouse brain slices to investigate how transient dopamine signals are translated into nuclear PKA activity in cortical pyramidal neurons and striatal medium spiny neurons. We observed that the nuclear PKA signal in striatal neurons featured an ultrasensitive responsiveness, associated with fast, all or none responses, which is not consistent with the commonly accepted theory of a slow and passive diffusion of catalytic PKA in the nucleus. Our numerical model suggests that a positive feed-forward mechanism inhibiting nuclear phosphatase activity - possibly mediated by DARPP-32 - could be responsible for this non-linear pattern of nuclear PKA response, allowing for a better detection of the transient dopamine signals that are often associated with reward-mediated learning.
Collapse
Affiliation(s)
- Cédric Yapo
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, F-75005 Paris, France
- Member of the Bio-Psy Labex, France
| | - Anu G. Nair
- Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Manipal University, Manipal, India
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
- Department of Neuroscience, Karolinska Institutet, Solna, 17177, Sweden
| | - Pierre Vincent
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, F-75005 Paris, France
- Member of the Bio-Psy Labex, France
| | - Liliana R. V. Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, F-75005 Paris, France
- Member of the Bio-Psy Labex, France
| |
Collapse
|
4
|
Navntoft CA, Dreyer JK. How compensation breaks down in Parkinson's disease: Insights from modeling of denervated striatum. Mov Disord 2016; 31:280-9. [PMID: 26890687 PMCID: PMC4787207 DOI: 10.1002/mds.26579] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 01/13/2016] [Accepted: 01/22/2016] [Indexed: 12/23/2022] Open
Abstract
The bradykinesia and other motor signs of Parkinson's disease (PD) are linked to progressive loss of substantia nigra dopamine (DA) neurons innervating the striatum. However, the emergence of idiopathic PD is likely preceded by a prolonged subclinical phase, which may be masked by a variety of pre‐ and postsynaptic compensatory mechanisms. It is often considered self‐evident that the signs of PD manifest only when nigrostriatal degeneration has proceeded to such an extent that putative compensatory mechanisms fail to accommodate the depletion of striatal DA levels. However, the precise nature of the compensatory mechanisms, and the reason for their ultimate failure, has been elusive. In a recent computational study we modeled the effects of progressive denervation, including changes in the dynamics of interstitial DA and also adaptive or compensatory changes in postsynaptic responsiveness to DA signaling in the course of progressive nigrostriatal degeneration. In particular, we found that failure of DA signaling can occur by different mechanisms at different disease stages. We review these results and discuss their relevance for clinical and translational research, and we draw a number of predictions from our model that might be tested in preclinical experiments. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Jakob Kisbye Dreyer
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Robinson JD, Howard CD, Pastuzyn ED, Byers DL, Keefe KA, Garris PA. Methamphetamine-induced neurotoxicity disrupts pharmacologically evoked dopamine transients in the dorsomedial and dorsolateral striatum. Neurotox Res 2014; 26:152-67. [PMID: 24562969 PMCID: PMC4071119 DOI: 10.1007/s12640-014-9459-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 01/10/2014] [Accepted: 02/04/2014] [Indexed: 11/30/2022]
Abstract
Phasic dopamine (DA) signaling, during which burst firing by DA neurons generates short-lived elevations in extracellular DA in terminal fields called DA transients, is implicated in reinforcement learning. Disrupted phasic DA signaling is proposed to link DA depletions and cognitive-behavioral impairment in methamphetamine (METH)-induced neurotoxicity. Here, we further investigated this disruption by assessing effects of METH pretreatment on DA transients elicited by a drug cocktail of raclopride, a D2 DA receptor antagonist, and nomifensine, an inhibitor of the dopamine transporter (DAT). One advantage of this approach is that pharmacological activation provides a large, high-quality data set of transients elicited by endogenous burst firing of DA neurons for analysis of regional differences and neurotoxicity. These pharmacologically evoked DA transients were measured in the dorsomedial (DM) and dorsolateral (DL) striatum of urethane-anesthetized rats by fast-scan cyclic voltammetry. Electrically evoked DA levels were also recorded to quantify DA release and uptake, and DAT binding was determined by means of autoradiography to index DA denervation. Pharmacologically evoked DA transients in intact animals exhibited a greater amplitude and frequency and shorter duration in the DM compared to the DL striatum, despite similar pre- and post-drug assessments of DA release and uptake in both sub-regions as determined from the electrically evoked DA signals. METH pretreatment reduced transient activity. The most prominent effect of METH pretreatment on transients across striatal sub-region was decreased amplitude, which mirrored decreased DAT binding and was accompanied by decreased DA release. Overall, these results identify marked intrastriatal differences in the activity of DA transients that appear independent of presynaptic mechanisms for DA release and uptake and further support disrupted phasic DA signaling mediated by decreased DA release in rats with METH-induced neurotoxicity.
Collapse
Affiliation(s)
- John D. Robinson
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | | | - Elissa D. Pastuzyn
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Diane L. Byers
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Kristen A. Keefe
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Paul A. Garris
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| |
Collapse
|
6
|
Changes in neural circuitry regulating response-reversal learning and Arc-mediated consolidation of learning in rats with methamphetamine-induced partial monoamine loss. Neuropsychopharmacology 2014; 39:963-72. [PMID: 24150570 PMCID: PMC3924530 DOI: 10.1038/npp.2013.296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/15/2013] [Accepted: 10/18/2013] [Indexed: 11/08/2022]
Abstract
Methamphetamine (METH)-induced neurotoxicity results in long-lasting depletions of monoamines and changes in basal ganglia function. We previously reported that rats with METH-induced neurotoxicity no longer engage dorsomedial striatum during a response-reversal learning task, as their performance is insensitive to acute disruption of dorsomedial striatal function by local infusion of an N-methyl-D-aspartate receptor antagonist or an antisense oligonucleotide against the activity-regulated cytoskeleton-associated (Arc) gene. However, METH-pretreated rats perform the task as well as controls. Therefore, we hypothesized that the neural circuitry involved in the learning had changed in METH-pretreated rats. To test this hypothesis, rats were pretreated with a neurotoxic regimen of METH or with saline. After 3-5 weeks, rats were trained on the reversal-learning task and in situ hybridization for Arc was performed. A significant correlation between Arc expression and performance on the task was found in nucleus accumbens shell of METH-, but not saline-, pretreated rats. Consistent with the idea that the correlation between Arc expression in a brain region and behavioral performance implicates that brain region in the learning, infusion of an antisense oligonucleotide against Arc into the shell impaired consolidation of reversal learning in METH-, but not saline-, pretreated rats. These findings provide novel evidence suggesting that METH-induced neurotoxicity leads to a shift from dorsal to ventral striatal involvement in the reversal-learning task. Such reorganization of neural circuitry underlying learning and memory processes may contribute to impaired cognitive function in individuals with METH-induced neurotoxicity or others with striatal dopamine loss, such as patients with Parkinson's disease.
Collapse
|