1
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
2
|
Kim HY, Lee JY, Hsieh CJ, Taylor M, Luedtke RR, Mach RH. Design and Synthesis of Conformationally Flexible Scaffold as Bitopic Ligands for Potent D 3-Selective Antagonists. Int J Mol Sci 2022; 24:432. [PMID: 36613875 PMCID: PMC9820167 DOI: 10.3390/ijms24010432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Previous studies have confirmed that the binding of D3 receptor antagonists is competitively inhibited by endogenous dopamine despite excellent binding affinity for D3 receptors. This result urges the development of an alternative scaffold that is capable of competing with dopamine for binding to the D3 receptor. Herein, an SAR study was conducted on metoclopramide that incorporated a flexible scaffold for interaction with the secondary binding site of the D3 receptor. The alteration of benzamide substituents and secondary binding fragments with aryl carboxamides resulted in excellent D3 receptor affinities (Ki = 0.8-13.2 nM) with subtype selectivity to the D2 receptor ranging from 22- to 180-fold. The β-arrestin recruitment assay revealed that 21c with 4-(pyridine-4-yl)benzamide can compete well against dopamine with the highest potency (IC50 = 1.3 nM). Computational studies demonstrated that the high potency of 21c and its analogs was the result of interactions with the secondary binding site of the D3 receptor. These compounds also displayed minimal effects for other GPCRs except moderate affinity for 5-HT3 receptors and TSPO. The results of this study revealed that a new class of selective D3 receptor antagonists should be useful in behavioral pharmacology studies and as lead compounds for PET radiotracer development.
Collapse
Affiliation(s)
- Ho Young Kim
- Vagelos Laboratories, Department of Radiology, University of Pennsylvania, 1012, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Ji Youn Lee
- Vagelos Laboratories, Department of Radiology, University of Pennsylvania, 1012, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Chia-Ju Hsieh
- Vagelos Laboratories, Department of Radiology, University of Pennsylvania, 1012, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert H. Mach
- Vagelos Laboratories, Department of Radiology, University of Pennsylvania, 1012, 231 S. 34th Street, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Kumar B, Kumar N, Thakur A, Kumar V, Kumar R, Kumar V. A Review on the Arylpiperazine Derivatives as Potential Therapeutics for the Treatment of Various Neurological Disorders. Curr Drug Targets 2022; 23:729-751. [DOI: 10.2174/1389450123666220117104038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023]
Abstract
Abstract:
Neurological disorders are disease conditions related to the neurons and central nervous system (CNS). Any kind of structural, electrical, biochemical and functional abnormalities in neurons can lead to various types of disorders like Alzheimer’s disease (AD), depression, Parkinson’s disease (PD), epilepsy, stroke, etc. Currently available medicines are symptomatic and do not treat the disease state. Thus, novel CNS active agents with the potential of complete treatment of an illness are highly desired. A range of small organic molecules are being explored as potential drug candidates for the cure of different neurological disorders. In this context, arylpiperazine has been found to be a versatile scaffold and indispensable pharmacophore in many CNS active agents. A number of molecules with arylpiperazine nucleus have been developed as potent leads for the treatment of AD, PD, depression and other disorders. The arylpiperazine nucleus can be optionally substituted at different chemical structures and offer flexibility for the synthesis of large number of derivatives. In the current review article, we have explored the role of various arylpiperazine containing scaffolds against different neurological disorders, including AD, PD, and depression. The structure-activity relationship studies were conducted for recognizing potent lead compounds. This review article may provide important clues on the structural requirements for the design and synthesis of effective molecules as curative agents for different neurological disorders.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| | - Naveen Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| | - Amandeep Thakur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| | - Vijay Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| | | | - Vinod Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India-151401
| |
Collapse
|
4
|
D3 Receptors and PET Imaging. Curr Top Behav Neurosci 2022; 60:251-275. [PMID: 35711027 DOI: 10.1007/7854_2022_374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This chapter encapsulates a short introduction to positron emission tomography (PET) imaging and the information gained by using this technology to detect changes of the dopamine 3 receptor (D3R) at the molecular level in vivo. We will discuss available D3R radiotracers, emphasizing [11C]PHNO. The focus, however, will be on PET findings in conditions including substance abuse, obesity, traumatic brain injury, schizophrenia, Parkinson's disease, and aging. Finally, there is a discussion about progress in producing next-generation selective D3R radiotracers.
Collapse
|
5
|
Lee B, Taylor M, Griffin SA, McInnis T, Sumien N, Mach RH, Luedtke RR. Evaluation of Substituted N-Phenylpiperazine Analogs as D3 vs. D2 Dopamine Receptor Subtype Selective Ligands. Molecules 2021; 26:molecules26113182. [PMID: 34073405 PMCID: PMC8198181 DOI: 10.3390/molecules26113182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
N-phenylpiperazine analogs can bind selectively to the D3 versus the D2 dopamine receptor subtype despite the fact that these two D2-like dopamine receptor subtypes exhibit substantial amino acid sequence homology. The binding for a number of these receptor subtype selective compounds was found to be consistent with their ability to bind at the D3 dopamine receptor subtype in a bitopic manner. In this study, a series of the 3-thiophenephenyl and 4-thiazolylphenyl fluoride substituted N-phenylpiperazine analogs were evaluated. Compound 6a was found to bind at the human D3 receptor with nanomolar affinity with substantial D3 vs. D2 binding selectivity (approximately 500-fold). Compound 6a was also tested for activity in two in-vivo assays: (1) a hallucinogenic-dependent head twitch response inhibition assay using DBA/2J mice and (2) an L-dopa-dependent abnormal involuntary movement (AIM) inhibition assay using unilateral 6-hydroxydopamine lesioned (hemiparkinsonian) rats. Compound 6a was found to be active in both assays. This compound could lead to a better understanding of how a bitopic D3 dopamine receptor selective ligand might lead to the development of pharmacotherapeutics for the treatment of levodopa-induced dyskinesia (LID) in patients with Parkinson’s disease.
Collapse
Affiliation(s)
- Boeun Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.L.); (R.H.M.)
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Suzy A. Griffin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Tamara McInnis
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.L.); (R.H.M.)
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
- Correspondence:
| |
Collapse
|
6
|
Hayatshahi HS, Luedtke RR, Taylor M, Chen PJ, Blass BE, Liu J. Factors Governing Selectivity of Dopamine Receptor Binding Compounds for D2R and D3R Subtypes. J Chem Inf Model 2021; 61:2829-2843. [PMID: 33988991 DOI: 10.1021/acs.jcim.1c00036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeting the D3 dopamine receptor (D3R) is a promising pharmacotherapeutic strategy for the treatment of many disorders. The structure of the D3R is similar to the D2 dopamine receptor (D2R), especially in the transmembrane spanning regions that form the orthosteric binding site, making it difficult to identify D3R selective pharmacotherapeutic agents. Here, we examine the molecular basis for the high affinity D3R binding and D3R vs D2R binding selectivity of substituted phenylpiperazine thiopheneamides. We show that removing the thiophenearylamide portion of the ligand consistently decreases the affinity of these ligands at D3R, while not affecting their affinity at the D2R. Our long (>10 μs) molecular dynamics simulations demonstrated that both dopamine receptor subtypes adopt two major conformations that we refer to as closed or open conformations, with D3R sampling the open conformation more frequently than D2R. The binding of ligands with conjoined orthosteric-allosteric binding moieties causes the closed conformation to populate more often in the trajectories. Also, significant differences were observed in the extracellular loops (ECL) of these two receptor subtypes leading to the identification of several residues that contribute differently to the ligand binding for the two receptors that could potentially contribute to ligand binding selectivity. Our observations also suggest that the displacement of ordered water in the binding pocket of D3R contributes to the affinity of the compounds containing an allosteric binding motif. These studies provide a better understanding of how a bitopic mode of engagement can determine ligands that bind selectively to D2 and D3 dopamine receptor subtypes.
Collapse
Affiliation(s)
- Hamed S Hayatshahi
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| | - Robert R Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| | - Peng-Jen Chen
- Moulder Center for Drug Discovery Research, Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Benjamin E Blass
- Moulder Center for Drug Discovery Research, Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, Texas 76107, United States
| |
Collapse
|
7
|
Interaction of Ligands for PET with the Dopamine D3 Receptor: In Silico and In Vitro Methods. Biomolecules 2021; 11:biom11040529. [PMID: 33918451 PMCID: PMC8065765 DOI: 10.3390/biom11040529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/28/2022] Open
Abstract
[18F]Fallypride and [18F]Fluortriopride (FTP) are two different PET radiotracers that bind with sub-nanomolar affinity to the dopamine D3 receptor (D3R). In spite of their similar D3 affinities, the two PET ligands display very different properties for labeling the D3R in vivo: [18F]Fallypride is capable of binding to D3R under "baseline" conditions, whereas [18F]FTP requires the depletion of synaptic dopamine in order to image the receptor in vivo. These data suggest that [18F]Fallypride is able to compete with synaptic dopamine for binding to the D3R, whereas [18F]FTP is not. The goal of this study was to conduct a series of docking and molecular dynamic simulation studies to identify differences in the ability of each molecule to interact with the D3R that could explain these differences with respect to competition with synaptic dopamine. Competition studies measuring the ability of each ligand to compete with dopamine in the β-arrestin assay were also conducted. The results of the in silico studies indicate that FTP has a weaker interaction with the orthosteric binding site of the D3R versus that of Fallypride. The results of the in silico studies were also consistent with the IC50 values of each compound in the dopamine β-arrestin competition assays. The results of this study indicate that in silico methods may be able to predict the ability of a small molecule to compete with synaptic dopamine for binding to the D3R.
Collapse
|
8
|
Hayatshahi HS, Xu K, Griffin SA, Taylor M, Mach RH, Liu J, Luedtke RR. Analogues of Arylamide Phenylpiperazine Ligands To Investigate the Factors Influencing D3 Dopamine Receptor Bitropic Binding and Receptor Subtype Selectivity. ACS Chem Neurosci 2018; 9:2972-2983. [PMID: 30010318 DOI: 10.1021/acschemneuro.8b00142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have previously reported on the ability of arylamide phenylpiperazines to bind selectively to the D3 versus the D2 dopamine receptor subtype. For these studies, we used LS-3-134 as the prototypic arylamide phenylpiperazine ligand because it binds with high affinity at D3 dopamine receptor (0.17 nM) and exhibits >150-fold D3 vs D2 receptor binding selectivity. Our goal was to investigate how the composition and size of the nonaromatic ring structure at the piperazine position of substituted phenylpiperazine analogues might influence binding affinity at the human D2 and D3 dopamine receptors. Two factors were identified as being important for determining the binding affinity of bitropic arylamide phenylpiperazines at the dopamine D3 receptor subtype. One factor was the strength of the salt bridge between the highly conserved residue Asp3.32 with the protonated nitrogen of the nonaromatic ring at the piperazine position. The second factor was the configuration of the unbound ligand in an aqueous solution. These two factors were found to be related to the logarithm of the affinities using a simple correlation model, which could be useful when designing high affinity subtype selective bitropic ligands. While this model is based upon the interaction of arylamide phenylpiperazines with the D2 and D3 D2-like dopamine receptor subtypes, it provides insights into the complexity of the factors that define a bitropic mode of the binding at GPCRs.
Collapse
Affiliation(s)
- Hamed S. Hayatshahi
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Kuiying Xu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Suzy A. Griffin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| |
Collapse
|
9
|
Shalgunov V, van Waarde A, Booij J, Michel MC, Dierckx RAJO, Elsinga PH. Hunting for the high-affinity state of G-protein-coupled receptors with agonist tracers: Theoretical and practical considerations for positron emission tomography imaging. Med Res Rev 2018; 39:1014-1052. [PMID: 30450619 PMCID: PMC6587759 DOI: 10.1002/med.21552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
The concept of the high‐affinity state postulates that a certain subset of G‐protein‐coupled receptors is primarily responsible for receptor signaling in the living brain. Assessing the abundance of this subset is thus potentially highly relevant for studies concerning the responses of neurotransmission to pharmacological or physiological stimuli and the dysregulation of neurotransmission in neurological or psychiatric disorders. The high‐affinity state is preferentially recognized by agonists in vitro. For this reason, agonist tracers have been developed as tools for the noninvasive imaging of the high‐affinity state with positron emission tomography (PET). This review provides an overview of agonist tracers that have been developed for PET imaging of the brain, and the experimental paradigms that have been developed for the estimation of the relative abundance of receptors configured in the high‐affinity state. Agonist tracers appear to be more sensitive to endogenous neurotransmitter challenge than antagonists, as was originally expected. However, other expectations regarding agonist tracers have not been fulfilled. Potential reasons for difficulties in detecting the high‐affinity state in vivo are discussed.
Collapse
Affiliation(s)
- Vladimir Shalgunov
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine, Ghent University, University Hospital, Ghent, Belgium
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Dopamine D3 receptor partial agonist LS-3-134 attenuates cocaine-motivated behaviors. Pharmacol Biochem Behav 2018; 175:123-129. [PMID: 30308214 DOI: 10.1016/j.pbb.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 01/09/2023]
Abstract
AIMS The dopamine D3 receptor (D3R) is a pharmacotherapeutic target for drug dependence. We have successfully imaged human D3Rs using radiolabeled LS-3-134, an arylamide phenylpiperazine with moderate selectivity for the D3R over D2R and low efficacy at the D2 and D3R. In this study, we screened for effects of LS-3-134 as a potential anti-cocaine therapeutic. METHODS Male rats were pretreated with LS-3-134 (0, 1.0, 3.2, or 5.6 mg/kg, IP) 15 min prior to tests for its effects on spontaneous and cocaine-induced locomotion. We next investigated the effects of LS-3-134 (0, 1.0, 3.2, 5.6, or 10.0 mg/kg, IP) on operant responding on a multiple variable-interval (VI) 60-second schedule with alternating cocaine (0.375 mg/kg, IV) and sucrose (45 mg) reinforcer components. Additionally, we tested LS-3-134 (5.6 mg/kg, IP) effects on a progressive ratio (PR) schedule of cocaine reinforcement, on extinction of cocaine-seeking behavior, and on reinstatement of extinguished cocaine-seeking behavior by cocaine-associated light/tone cues. RESULTS LS-3-134 did not alter spontaneous locomotion, but reduced cocaine-induced locomotion, break points on the high-effort progressive ratio schedule of reinforcement, and responding during extinction and cue reinstatement. In contrast, LS-3-134 did not alter cocaine or sucrose reinforcement on the low-effort multiple VI 60-second schedule. CONCLUSIONS The effects of LS-3-134 are similar to other dopamine D3 low efficacy partial agonists and antagonists in attenuating cocaine intake under high effort schedules of reinforcement and in attenuating cocaine-seeking behavior elicited by cocaine-associated cues. These findings are consistent with the anti-craving profile of other dopamine D3 drugs.
Collapse
|
11
|
Powell GL, Bonadonna JP, Vannan A, Xu K, Mach RH, Luedtke RR, Neisewander JL. Dopamine D3 receptor partial agonist LS-3-134 attenuates cocaine-motivated behaviors. Pharmacol Biochem Behav 2018; 171:46-53. [PMID: 29807065 DOI: 10.1016/j.pbb.2018.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/01/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022]
Abstract
AIMS The dopamine D3 receptor (D3R) is a pharmacotherapeutic target for drug dependence. We have successfully imaged human D3Rs using radiolabeled LS-3-134, an arylamide phenylpiperazine with moderate selectivity for the D3R over D2R and low efficacy at the D2 and D3R. In this study, we screened for effects of LS-3-134 as a potential anti-cocaine therapeutic. METHODS Male rats were pretreated with LS-3-134 (0, 1.0, 3.2, or 5.6 mg/kg, IP) 15 min prior to tests for its effects on spontaneous and cocaine-induced locomotion. We next investigated the effects of LS-3-134 (0, 1.0, 3.2, 5.6, or 10.0 mg/kg, IP) on operant responding on a multiple variable-interval (VI) 60-second schedule with alternating cocaine (0.375 mg/kg, IV) and sucrose (45 mg) reinforcer components. Additionally, we tested LS-3-134 (5.6 mg/kg, IP) effects on a progressive ratio (PR) schedule of cocaine reinforcement, on extinction of cocaine-seeking behavior, and on reinstatement of extinguished cocaine-seeking behavior by cocaine-associated light/tone cues. RESULTS LS-3-134 did not alter spontaneous locomotion, but at 5.6 mg/kg, it reduced cocaine-induced locomotion, break points on the high-effort progressive ratio schedule of reinforcement, and responding during extinction and cue reinstatement. In contrast, LS-3-134 did not alter cocaine or sucrose reinforcement on the low-effort multiple VI 60-second schedule. CONCLUSIONS The effects of LS-3-134 are similar to other dopamine D3 low efficacy partial agonists and antagonists in attenuating cocaine intake under high effort schedules of reinforcement and in attenuating cocaine-seeking behavior elicited by cocaine-associated cues. These findings are consistent with the anti-craving profile of other dopamine D3 drugs.
Collapse
Affiliation(s)
- Gregory L Powell
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Annika Vannan
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Kuiying Xu
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Robert R Luedtke
- University of North Texas Health Science Center, the Department of Pharmacology and Neuroscience, Fort Worth, TX, United States
| | | |
Collapse
|
12
|
Abstract
Dopamine D3 receptors have key roles in behavioral reward, addiction, Parkinson's disease, and schizophrenia, and there is interest in studying their role in these disorders using PET. However, current PET radiotracers for studying D3 receptors in humans all bind to both D2 and D3 due to similarities between the two receptors. Selective D2 and D3 radioligands would aid investigation of the differences between D2 and D3 circuitry in the central nervous system. While there are currently in vitro measures of ligand D3/D2 selectivity, there is a need for an in vivo PET measure of D3/D2 selectivity. This review discusses current PET imaging of dopamine D2/D3 receptors and proposes methodology for quantitating in vivo selectivity of probes for PET imaging of dopamine D3 receptors.
Collapse
Affiliation(s)
- Robert K Doot
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyle J Labban
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Mach RH, Luedtke RR. Challenges in the development of dopamine D2- and D3-selective radiotracers for PET imaging studies. J Labelled Comp Radiopharm 2017; 61:291-298. [PMID: 28857231 DOI: 10.1002/jlcr.3558] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
The dopamine D2-like receptors (ie, D2/3 receptors) have been the most extensively studied CNS receptor with Positron Emission Tomography (PET). The 3 different radiotracers that have been used in these studies are [11 C]raclopride, [18 F]fallypride, and [11 C]PHNO. Because these radiotracers have a high affinity for both dopamine D2 and D3 receptors, the density of dopamine receptors in the CNS is reported as the D2/3 binding potential, which reflects a measure of the density of both receptor subtypes. Although the development of D2- and D3-selective PET radiotracers has been an active area of research for many years, this by and large presents an unmet need in the area of translational PET imaging studies. This article discusses some of the challenges that have inhibited progress in this area of research and the current status of the development of subtype selective radiotracers for imaging D3 and D2 dopamine receptors with PET.
Collapse
Affiliation(s)
- Robert H Mach
- Department of Radiology, Perelman School Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert R Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX, USA
| |
Collapse
|
14
|
Mach RH. Small Molecule Receptor Ligands for PET Studies of the Central Nervous System-Focus on G Protein Coupled Receptors. Semin Nucl Med 2017; 47:524-535. [PMID: 28826524 DOI: 10.1053/j.semnuclmed.2017.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
G protein-coupled receptors (GPRCs) are a class of proteins that are expressed in high abundance and are responsible for numerous signal transduction pathways in the central nervous system. Consequently, alterations in GPRC function have been associated with a wide variety of neurologic and neuropsychiatric disorders. The development of PET probes for imaging GPRCs has served as a major emphasis of PET radiotracer development and PET imaging studies over the past 30 years. In this review, a basic description of the biology of G proteins and GPRCs is provided. This includes recent evidence of the existence of dimeric and multimeric species of GPRCs that have been termed "receptor mosaics," with an emphasis on the different GPRCs that form complexes with the dopamine D2 receptor. An overview of the different PET radiotracers for imaging the component GPRC within these different multimeric complexes of the D2 receptor is also provided.
Collapse
Affiliation(s)
- Robert H Mach
- Department of Radiology, Perelman School Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
15
|
Leggio GM, Bucolo C, Platania CBM, Salomone S, Drago F. Current drug treatments targeting dopamine D3 receptor. Pharmacol Ther 2016; 165:164-77. [DOI: 10.1016/j.pharmthera.2016.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/08/2016] [Indexed: 12/29/2022]
|
16
|
Mukherjee J, Constantinescu CC, Hoang AT, Jerjian T, Majji D, Pan ML. Dopamine D3 receptor binding of (18)F-fallypride: Evaluation using in vitro and in vivo PET imaging studies. Synapse 2015; 69:577-91. [PMID: 26422464 DOI: 10.1002/syn.21867] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/25/2015] [Accepted: 09/19/2015] [Indexed: 12/17/2022]
Abstract
Identification of dopamine D3 receptors (D3R) in vivo is important to understand several brain functions related to addiction. The goal of this work was to identify D3R binding of the dopamine D2 receptor (D2R)/D3R imaging agent, (18)F-fallypride. Brain slices from male Sprague-Dawley rats (n = 6) and New Zealand White rabbits (n = 6) were incubated with (18)F-fallypride and D3R selective agonist (R)-7-OH-DPAT (98-fold D3R selective). Rat slices were also treated with BP 897 (68-fold D3R selective partial agonist) and NGB 2904 (56-fold D3R selective antagonist). In vivo rat studies (n = 6) were done on Inveon PET using 18-37 MBq (18)F-fallypride and drug-induced displacement by (R)-7-OH-DPAT, BP 897 and NGB 2904. PET/CT imaging of wild type (WT, n = 2) and D2R knock-out (KO, n = 2) mice were carried out with (18)F-fallypride. (R)-7-OH-DPAT displaced binding of (18)F-fallypride, both in vitro and in vivo. In vitro, at 10 nM (R)-7-OH-DPAT, (18)F-fallypride binding in the rat ventral striatum (VST) and dorsal striatum (DST) and rabbit nucleus accumbens were reduced by ∼10-15%. At 10 μM (R)-7-OH-DPAT all regions in rat and rabbit were reduced by ≥85%. In vivo reductions for DST and VST before and after (R)-7-OH-DPAT were: low-dose (0.015 mg kg(-1)) DST -22%, VST -29%; high-dose (1.88 mg kg(-1)) DST -58%, VST -77%, suggesting D3R/D2R displacement. BP 897 and NGB 2904 competed with (18)F-fallypride in vitro, but unlike BP 897, NGB 2904 did not displace (18)F-fallypride in vivo. The D2R KO mice lacked (18)F-fallypride binding in the DST. In summary, our findings suggest that up to 20% of (18)F-fallypride may be bound to D3R sites in vivo.
Collapse
Affiliation(s)
- Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging, University of California, Irvine, California, 92697
| | - Cristian C Constantinescu
- Department of Radiological Sciences, Preclinical Imaging, University of California, Irvine, California, 92697
| | - Angela T Hoang
- Department of Radiological Sciences, Preclinical Imaging, University of California, Irvine, California, 92697
| | - Taleen Jerjian
- Department of Radiological Sciences, Preclinical Imaging, University of California, Irvine, California, 92697
| | - Divya Majji
- Department of Radiological Sciences, Preclinical Imaging, University of California, Irvine, California, 92697
| | - Min-Liang Pan
- Department of Radiological Sciences, Preclinical Imaging, University of California, Irvine, California, 92697
| |
Collapse
|
17
|
Keck TM, John WS, Czoty PW, Nader MA, Newman AH. Identifying Medication Targets for Psychostimulant Addiction: Unraveling the Dopamine D3 Receptor Hypothesis. J Med Chem 2015; 58:5361-80. [PMID: 25826710 PMCID: PMC4516313 DOI: 10.1021/jm501512b] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The dopamine D3 receptor (D3R) is a target for developing medications to treat substance use disorders. D3R-selective compounds with high affinity and varying efficacies have been discovered, providing critical research tools for cell-based studies that have been translated to in vivo models of drug abuse. D3R antagonists and partial agonists have shown especially promising results in rodent models of relapse-like behavior, including stress-, drug-, and cue-induced reinstatement of drug seeking. However, to date, translation to human studies has been limited. Herein, we present an overview and illustrate some of the pitfalls and challenges of developing novel D3R-selective compounds toward clinical utility, especially for treatment of cocaine abuse. Future research and development of D3R-selective antagonists and partial agonists for substance abuse remains critically important but will also require further evaluation and development of translational animal models to determine the best time in the addiction cycle to target D3Rs for optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Thomas M Keck
- †Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - William S John
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Paul W Czoty
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Michael A Nader
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Amy Hauck Newman
- †Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|