1
|
Ma KT, Wu YJ, Yang YX, Wu T, Chen C, Peng F, Du JR, Peng C. A novel phthalein component ameliorates neuroinflammation and cognitive dysfunction by suppressing the CXCL12/CXCR4 axis in rats with vascular dementia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118117. [PMID: 38548120 DOI: 10.1016/j.jep.2024.118117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chuanxiong, a plant of the Umbelliferae family, is a genuine medicinal herb from Sichuan Province. Phthalides are one of its main active components and exhibit good protective effect against cerebrovascular diseases. However, the mechanism by which phthalides exert neuroprotective effects is still largely unclear. AIM OF THE STUDY In this study, we extracted a phthalein component (named as QBT) from Ligusticum Chuanxiong, and investigated its neuroprotective effects against vascular dementia (VaD) rats and the underlying mechanism, focusing on the chemokine 12 (CXCL12)/chemokine (C-X-C motif) receptor 4 (CXCR4) axis. METHODS A rat model of VaD was established, and treated with QBT. Cognitive dysfunction in VaD rats was assessed using the Y-maze, new object recognition, and Morris water maze tests. Neuronal damage and inflammatory response in VaD rats were examined through Nissl staining, immunofluorescence, enzyme-linked immunospecific assay, and western blotting analysis. Furthermore, the effects of QBT on CXCL12/CXCR4 axis and its downstream signaling pathways, Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/nuclear factor-κB (NF-κB), were investigated in VaD rats and BV2 microglial cells exposed to oxygen glucose deprivation. RESULTS QBT significantly alleviated cognitive dysfunction and neuronal damage in VaD rats, along with inhibition of VaD-induced over-activation of microglia and astrocytes and inflammatory response. Moreover, QBT exhibited anti-inflammatory effects by inhibiting the CXCL12/CXCR4 axis and its downstream JAK2/STAT3 and PI3K/AKT/NF-κB pathways, thereby attenuating the neuroinflammatory response both in vivo and in vitro. CONCLUSION QBT effectively mitigated neuronal damage and cognitive dysfunction in VaD rats, exerting neuroprotective effects by suppressing neuroinflammatory response through inhibition of the CXCL12/CXCR4 axis.
Collapse
Affiliation(s)
- Kai-Ting Ma
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yi-Jin Wu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Xin Yang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Wu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Chu Chen
- Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Rong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Pawlik K, Mika J. Targeting Members of the Chemokine Family as a Novel Approach to Treating Neuropathic Pain. Molecules 2023; 28:5766. [PMID: 37570736 PMCID: PMC10421203 DOI: 10.3390/molecules28155766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Neuropathic pain is a debilitating condition that affects millions of people worldwide. Numerous studies indicate that this type of pain is a chronic condition with a complex mechanism that tends to worsen over time, leading to a significant deterioration in patients' quality of life and issues like depression, disability, and disturbed sleep. Presently used analgesics are not effective enough in neuropathy treatment and may cause many side effects due to the high doses needed. In recent years, many researchers have pointed to the important role of chemokines not only in the development and maintenance of neuropathy but also in the effectiveness of analgesic drugs. Currently, approximately 50 chemokines are known to act through 20 different seven-transmembrane G-protein-coupled receptors located on the surface of neuronal, glial, and immune cells. Data from recent years clearly indicate that more chemokines than initially thought (CCL1/2/3/5/7/8/9/11, CXCL3/9/10/12/13/14/17; XCL1, CX3CL1) have pronociceptive properties; therefore, blocking their action by using neutralizing antibodies, inhibiting their synthesis, or blocking their receptors brings neuropathic pain relief. Several of them (CCL1/2/3/7/9/XCL1) have been shown to be able to reduce opioid drug effectiveness in neuropathy, and neutralizing antibodies against them can restore morphine and/or buprenorphine analgesia. The latest research provides irrefutable evidence that chemokine receptors are promising targets for pharmacotherapy; chemokine receptor antagonists can relieve pain of different etiologies, and most of them are able to enhance opioid analgesia, for example, the blockade of CCR1 (J113863), CCR2 (RS504393), CCR3 (SB328437), CCR4 (C021), CCR5 (maraviroc/AZD5672/TAK-220), CXCR2 (NVPCXCR220/SB225002), CXCR3 (NBI-74330/AMG487), CXCR4 (AMD3100/AMD3465), and XCR1 (vMIP-II). Recent research has shown that multitarget antagonists of chemokine receptors, such as CCR2/5 (cenicriviroc), CXCR1/2 (reparixin), and CCR2/CCR5/CCR8 (RAP-103), are also very effective painkillers. A multidirectional strategy based on the modulation of neuronal-glial-immune interactions by changing the activity of the chemokine family can significantly improve the quality of life of patients suffering from neuropathic pain. However, members of the chemokine family are still underestimated pharmacological targets for pain treatment. In this article, we review the literature and provide new insights into the role of chemokines and their receptors in neuropathic pain.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Cracow, Poland;
| |
Collapse
|
3
|
Guo HM, Zhang Y, Zhang Y, Jiao PF, Fan XC, Kong CL, Wang T, Li XX, Zhang HW, Zhang LR, Ma MY, Bu HL. Spinal Ninjurin2 contributes to the neuropathic pain via NF-κB-mediated neuroinflammation in the spared sciatic nerve injury rats. Int Immunopharmacol 2021; 99:107918. [PMID: 34320458 DOI: 10.1016/j.intimp.2021.107918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
OBJECT Ninjurin2 (nerve injury induced protein 2, NINJ2) is a molecule which mediates cell-to-cell and cell-to-extracellular matrix interactions in the nervous system. Clinical study shows NINJ2 is associated with the development of postherpetic neuralgia. However, it is lack of direct evidence that NINJ2 participated in neuropathic pain. In this study, we aim to investigate the role of NINJ2 in the development of neuropathic pain in spared sciatic nerve injury rats and the underlying mechanism. METHOD Spared sciatic nerve injury (SNI) models were established. The level of NINJ2 and p-p65 (a NF-κB family member) were measured in SNI rats by western blots and immunofluorescent staining. Lentivirus encoding small interfering RNA targeting NINJ2 (RNAi) was intrathecally injected into rats. Then the change of pain behavior of rats induced by NINJ2 RNAi was tested by Von-Frey hairs. The change of p-p65 in the spinal cord in rats after NINJ2 RNAi treatment was also measured by western blots. inhibitor of p-p65-induced change of TNF-α, IL-1β, and IL-6 levels were measured by ELISA. RESULTS NINJ2 and p-p65 were increased in the spinal cord of SNI rats on the 3, 7, 14th days after modeling. NINJ2 were mainly expressed in neurons, and co-located with p-p65 in the spinal dorsal horn. When down regulating the level of NINJ2 by RNAi, the development of pain in SNI rats was partially blocked. Phosphorylation of p65 was also inhibited by NINJ2 RNAi. Blocking the phosphorylation of NF-κB pathway could inhibit the increase of TNF-α, IL-1β, and IL-6 in the spinal cord of SNI rats. CONCLUSION NINJ2 protein was increased in the spinal cord of SNI rats. It participated in the development of nerve injury-induced neuropathic pain by activating neuroinflammation in the spinal cord via NF-κB pathway. This study provides a new target to investigate the mechanism of neuropathic pain.
Collapse
Affiliation(s)
- Hai-Ming Guo
- Department of Anesthesiology, the First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Yu Zhang
- Department of Pain Management, the First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China; Department of Anesthesiology, the Third Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Yan Zhang
- Department of Pain Management, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China
| | - Peng-Fei Jiao
- Department of Pain Management, the First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Xiao-Chong Fan
- Department of Pain Management, the First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Cun-Long Kong
- Department of Pain Management, the First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Tao Wang
- Department of Pain Management, the First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Xin-Xin Li
- Department of Pain Management, the First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Hong-Wei Zhang
- School of Basic Medical Sciences, Zhengzhou University, 450000 Zhengzhou, China
| | - Li-Rong Zhang
- School of Basic Medical Sciences, Zhengzhou University, 450000 Zhengzhou, China
| | - Min-Yu Ma
- Department of Pain Management, the First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China.
| | - Hui-Lian Bu
- Department of Pain Management, the First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China.
| |
Collapse
|
4
|
Xu H, Peng C, Chen XT, Yao YY, Chen LP, Yin Q, Shen W. Chemokine receptor CXCR4 activates the RhoA/ROCK2 pathway in spinal neurons that induces bone cancer pain. Mol Pain 2021; 16:1744806920919568. [PMID: 32349612 PMCID: PMC7227150 DOI: 10.1177/1744806920919568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Chemokine receptor CXCR4 has been found to be associated with spinal neuron and glial cell activation during bone cancer pain. However, the underlying mechanism remains unknown. Furthermore, the RhoA/ROCK2 pathway serves as a downstream pathway activated by CXCR4 during bone cancer pain. We first validated the increase in the expressions of CXCR4, p-RhoA, and p-ROCK2 in the spinal dorsal horn of a well-characterized tumor cell implantation-induced cancer pain rat model and how these expressions contributed to the pain behavior in tumor cell implantation rats. We hypothesized that spinal blockade of the CXCR4-RhoA/ROCK2 pathway is a potential analgesic therapy for cancer pain management. Methods Adult female Sprague–Dawley rats (body weight of 180–220 g) and six- to seven-week old female Sprague–Dawley rats (body weight of 80–90 g) were taken. Ascitic cancer cells were extracted from the rats (body weight of 80–90 g) with intraperitoneally implanted Walker 256 mammary gland carcinoma cells. Walker 256 rat mammary gland carcinoma cells were then injected (tumor cell implantation) into the intramedullary space of the tibia to establish a rat model of bone cancer pain. Results We found increased expressions of CXCR4, p-RhoA, and p-ROCK2 in the neurons in the spinal cord. p-RhoA and p-ROCK2 were co-expressed in the neurons and promoted by overexpressed CXCR4. Intrathecal delivery of CXCR4 inhibitor Plerixafor (AMD3100) or ROCK2 inhibitor Fasudil abrogated tumor cell implantation-induced pain hypersensitivity and tumor cell implantation-induced increase in p-RhoA and p-ROCK2 expressions. Intrathecal injection of stromal-derived factor-1, the principal ligand for CXCR4, accelerated p-RhoA expression in naive rats, which was prevented by postadministration of CXCR4 inhibitor Plerixafor (AMD3100) or ROCK2 inhibitor Fasudil. Conclusions Collectively, the spinal RhoA/ROCK2 pathway could be a critical downstream target for CXCR4-mediated neuronal sensitization and pain hypersensitivity in bone cancer pain, and it may serve as a potent therapeutic target for pain treatment.
Collapse
Affiliation(s)
- Heng Xu
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chong Peng
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xue-Tai Chen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying-Ying Yao
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Anesthesiology, Xuzhou First People's Hospital, Xuzhou, Jiangsu, China
| | - Li-Ping Chen
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qin Yin
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wen Shen
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
5
|
Gavriel Y, Rabinovich-Nikitin I, Ezra A, Barbiro B, Solomon B. Subcutaneous Administration of AMD3100 into Mice Models of Alzheimer's Disease Ameliorated Cognitive Impairment, Reduced Neuroinflammation, and Improved Pathophysiological Markers. J Alzheimers Dis 2021; 78:653-671. [PMID: 33016905 DOI: 10.3233/jad-200506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD), the prevalent dementia in the elderly, involves many related and interdependent pathologies that manifest simultaneously, leading to cognitive impairment and death. Amyloid-β (Aβ) accumulation in the brain triggers the onset of AD, accompanied by neuroinflammatory response and pathological changes. The CXCR4/CXCL12 (SDF1) axis is one of the major signal transduction cascades involved in the inflammation process and regulation of homing of hematopoietic stem cells (HSCs) within the bone marrow niche. Inhibition of the axis with AMD3100, a reversible antagonist of CXCR4 mobilizes endogenous HSCs from the bone marrow into the periphery, facilitating the recruitment of bone marrow-derived microglia-like cells into the brain, attenuates the neuroinflammation process that involves release of excitotoxic markers such as TNFα, intracellular Ca2 +, and glutamate and upregulates monocarboxylate transporter 1, the major L-lactate transporter in the brain. OBJECTIVE Herein, we investigate if administration of a combination of AMD3100 and L-lactate may have beneficial effects in the treatment of AD. METHODS We tested the feasibility of the combined treatment for short- and long-term efficacy for inducing endogenous stem cells' mobilization and attenuation of neuroinflammation in two distinct amyloid-β-induced AD mouse models. RESULTS The combined treatment did not demonstrate any adverse effects on the mice, and resulted in a significant improvement in cognitive/memory functions, attenuated neuroinflammation, and alleviated AD pathologies compared to each treatment alone. CONCLUSION This study showed AMD3100's beneficial effect in ameliorating AD pathogenesis, suggesting an alternative to the multistep procedures of transplantation of stem cells in the treatment of AD.
Collapse
Affiliation(s)
- Yuval Gavriel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inna Rabinovich-Nikitin
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Assaf Ezra
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Becki Barbiro
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Beka Solomon
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Conditioned medium-preconditioned EPCs enhanced the ability in oligovascular repair in cerebral ischemia neonatal rats. Stem Cell Res Ther 2021; 12:118. [PMID: 33579354 PMCID: PMC7881622 DOI: 10.1186/s13287-021-02157-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/11/2021] [Indexed: 11/30/2022] Open
Abstract
Background Oligovascular niche mediates interactions between cerebral endothelial cells and oligodendrocyte precursor cells (OPCs). Disruption of OPC-endothelium trophic coupling may aggravate the progress of cerebral white matter injury (WMI) because endothelial cells could not provide sufficient support under diseased conditions. Endothelial progenitor cells (EPCs) have been reported to ameliorate WMI in the adult brain by boosting oligovascular remodeling. It is necessary to clarify the role of the conditioned medium from hypoxic endothelial cells preconditioned EPCs (EC-pEPCs) in WMI since EPCs usually were recruited and play important roles under blood-brain barrier disruption. Here, we investigated the effects of EC-pEPCs on oligovascular remodeling in a neonatal rat model of WMI. Methods In vitro, OPC apoptosis induced by the conditioned medium from oxygen-glucose deprivation-injured brain microvascular endothelial cells (OGD-EC-CM) was analyzed by TUNEL and FACS. The effects of EPCs on EC damage and the expression of cytomokine C-X-C motif ligand 12 (CXCL12) were examined by western blot and FACS. The effect of the CM from EC-pEPCs against OPC apoptosis was also verified by western blot and silencing RNA. In vivo, P3 rat pups were subjected to right common carotid artery ligation and hypoxia and treated with EPCs or EC-pEPCs at P7, and then angiogenesis and myelination together with cognitive outcome were evaluated at the 6th week. Results In vitro, EPCs enhanced endothelial function and decreased OPC apoptosis. Meanwhile, it was confirmed that OGD-EC-CM induced an increase of CXCL12 in EPCs, and CXCL12-CXCR4 axis is a key signaling since CXCR4 knockdown alleviated the anti-apoptosis effect of EPCs on OPCs. In vivo, the number of EPCs and CXCL12 protein level markedly increased in the WMI rats. Compared to the EPCs, EC-pEPCs significantly decreased OPC apoptosis, increased vascular density and myelination in the corpus callosum, and improved learning and memory deficits in the neonatal rat WMI model. Conclusions EC-pEPCs more effectively promote oligovascular remodeling and myelination via CXCL12-CXCR4 axis in the neonatal rat WMI model. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02157-4.
Collapse
|
7
|
Tu H, Chu H, Guan S, Hao F, Xu N, Zhao Z, Liang Y. The role of the M1/M2 microglia in the process from cancer pain to morphine tolerance. Tissue Cell 2020; 68:101438. [PMID: 33220596 DOI: 10.1016/j.tice.2020.101438] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022]
Abstract
Cancer pain, especially bone cancer pain, is a pain state often caused by inflammation or dysfunctional nerves. Moreover, in the management of cancer pain, opioid especially morphine is widely used, however, it also brings severe side effects such as morphine tolerance to the patient (Deandrea et al., 2008). A growing body of literatures demonstrated that neuroinflammation is mediated by microglia. As the macrophages like immune cells, microglia play an important role in the pathogenesis of cancer pain and morphine tolerance. Microglia acquire different activation states to regulate the function of these cells. As to M1 phenotype, microglia release pro-inflammatory cytokines and neurotoxic molecules that promote inflammation and cytotoxic reactions. Conversely, when microglia represent M2 phenotypes secreting anti-inflammatory cytokines and nutrient factors that promote the function of repair, regeneration and restore homeostasis. A better understanding of microglia activation in cancer pain and morphine tolerance is crucial for the development of hypothesized neuroprotective drugs. Targeting microglia different polarization states by the inhibition of their deleterious pro-inflammatory neurotoxicity and/or enhancing their beneficial anti-inflammatory protective function seems to be an effective treatment for cancer pain and morphine tolerance.
Collapse
Affiliation(s)
- Houan Tu
- Department of Anesthesiology, Women's and Children's Hospital Affiliated to Qingdao University, 6 Tongfu Road, Qingdao, Shandong 266034, China
| | - Haichen Chu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, 59 Hai Er Road, Qingdao, Shandong 266061, China
| | - Sen Guan
- Department of Anesthesiology, Women's and Children's Hospital Affiliated to Qingdao University, 6 Tongfu Road, Qingdao, Shandong 266034, China
| | - Fengxi Hao
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, 59 Hai Er Road, Qingdao, Shandong 266061, China
| | - Na Xu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, 59 Hai Er Road, Qingdao, Shandong 266061, China
| | - Zhiping Zhao
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, 59 Hai Er Road, Qingdao, Shandong 266061, China
| | - Yongxin Liang
- Department of Anesthesiology, Women's and Children's Hospital Affiliated to Qingdao University, 6 Tongfu Road, Qingdao, Shandong 266034, China.
| |
Collapse
|
8
|
Zhao F, Wang X, Wang Y, Zhang J, Lai R, Zhang B, Zhou X. The function of uterine UDP-glucuronosyltransferase 1A8 (UGT1A8) and UDP-glucuronosyltransferase 2B7 (UGT2B7) is involved in endometrial cancer based on estrogen metabolism regulation. Hormones (Athens) 2020; 19:403-412. [PMID: 32592099 DOI: 10.1007/s42000-020-00213-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/20/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND The progression of endometrial cancer (EC) is closely related to estrogen levels. UDP-glucuronosyltransferases (UGTs) are an essential class of phase II metabolizing enzymes that play a pivotal role in detoxifying steroid hormone. PURPOSE In this study, we aimed to uncover the role of UGTs in estrogen metabolism and the pathogenesis of EC. METHODS A total of 100 unrelated EC patients (mean age 52.15 ± 10.04 y) and 100 healthy subjects (mean age 50.26 ± 8.80 y) were recruited for analysis of the UGT gene polymorphism and estrogen level. In six cases of EC, EC-adjacent tissues and cancer tissues were collected for detection of UGT expression. RESULTS Our results showed that the estrogen homeostasis profile was disturbed in EC patients, with carcinogenic catechol estrogens (4-OHE1, 2-OHE1, 2-OHE2) significantly accumulated in the serum of these patients. Also, levels of estrogen-glucuronides were decreased significantly, and the expression of UGT1A8 and UGT2B7 in uterine tissues was downregulated in EC patients. Consistent with this, we observed that the distribution of genotypes and allele frequencies in UGT1A8 rs1042597 and UGT2B7 rs7439366 was significantly different between EC patients and healthy volunteers. CONCLUSION These results indicated that UGT1A8 and UGT2B7 may contribute to the estrogen signaling pathway and the pathogenesis of EC.
Collapse
Affiliation(s)
- Feng Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Xi Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yan Wang
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jingbo Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Ran Lai
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| |
Collapse
|
9
|
Jiang BC, Liu T, Gao YJ. Chemokines in chronic pain: cellular and molecular mechanisms and therapeutic potential. Pharmacol Ther 2020; 212:107581. [DOI: 10.1016/j.pharmthera.2020.107581] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
|
10
|
miRNA-20a suppressed lipopolysaccharide‐induced HK‐2 cells injury via NFκB and ERK1/2 signaling by targeting CXCL12. Mol Immunol 2020; 118:117-123. [DOI: 10.1016/j.molimm.2019.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/26/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023]
|
11
|
Thakur V, Sadanandan J, Chattopadhyay M. High-Mobility Group Box 1 Protein Signaling in Painful Diabetic Neuropathy. Int J Mol Sci 2020; 21:ijms21030881. [PMID: 32019145 PMCID: PMC7036925 DOI: 10.3390/ijms21030881] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/15/2020] [Accepted: 01/25/2020] [Indexed: 12/27/2022] Open
Abstract
Diabetes is a global epidemic and more than 50% diabetic patients are also diagnosed with neuropathy, which greatly affects the quality of life of the patients. Available treatments are not always successful due to the limited efficacy and complications, such as addiction and dependency. Studies have implicated that high mobility group box1 (HMGB1) protein plays a crucial role in neuroinflammation and the development of neuropathic conditions. HMGB1 is a proinflammatory cytokine that can be released from necrotic cells in passive form or in response to inflammatory signals as an active form. HMGB1 is the ligand for the receptor for advanced glycation end products (RAGE), and toll-like receptors, (TLR)-2 and TLR4, which also indirectly activates C-X-C chemokine receptor type 4 (CXCR4). We investigated whether blocking of HMGB1 can reduce pain and inflammation in diabetic neuropathic animals to further understand the role of HMGB1 in diabetic neuropathy. Type 2 diabetic rats and mice were treated with natural inhibitor of HMGB1, glycyrrhizin (GLC) for five days/week for four weeks at a dose of 50 mg/kg per day by intraperitoneal injection. The animals were divided into three categories: naïve control, diabetic alone, diabetic with GLC treatment. All of the behavioral analyses were conducted before and after the treatment. The expression of inflammatory markers and changes in histone acetylation in the peripheral nervous system were measured by immunohistochemistry and Western blot analysis after the completion of the treatment. Our study revealed that TLR4, HMGB1, CXCR4, and Nod-like receptor protein 3 (NLRP3) levels were increased in the spinal and dorsal root ganglia (DRG) neurons of Type 2 diabetic mice and rats with painful neuropathy. GLC treatment inhibited the increases in TLR4, NLRP3, and CXCR4 expressions and improved the mechanical and thermal pain threshold in these animals. Immunohistochemical studies revealed that hyperglycemia mediated inflammation influenced HMGB1 acetylation and its release from the neurons. It also altered histone 3 acetylation in the microglial cells. The inhibition of HMGB1 by GLC prevented the release of HMGB1 as well as H3K9 acetylation. These findings indicate that the interruption of HMGB1 mediated inflammation could ameliorate diabetic neuropathy and might exhibit a unique target for the treatment.
Collapse
|
12
|
Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2019; 217:91-115. [PMID: 31747563 DOI: 10.1016/j.imlet.2019.11.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
Chemokines are small molecules called "chemotactic cytokines" and regulate many processes like leukocyte trafficking, homing of immune cells, maturation, cytoskeletal rearrangement, physiology, migration during development, and host immune responses. These proteins bind to their corresponding 7-membrane G-protein-coupled receptors. Chemokines and their receptors are anti-inflammatory factors in autoimmune conditions, so consider as potential targets for neutralization in such diseases. They also express by cancer cells and function as angiogenic factors, and/or survival/growth factors that enhance tumor angiogenesis and development. Among chemokines, the CXCL12/CXCR4 axis has significantly been studied in numerous cancers and autoimmune diseases. CXCL12 is a homeostatic chemokine, which is acts as an anti-inflammatory chemokine during autoimmune inflammatory responses. In cancer cells, CXCL12 acts as an angiogenic, proliferative agent and regulates tumor cell apoptosis as well. CXCR4 has a role in leukocyte chemotaxis in inflammatory situations in numerous autoimmune diseases, as well as the high levels of CXCR4, observed in different types of human cancers. These findings suggest CXCL12/CXCR4 as a potential therapeutic target for therapy of autoimmune diseases and open a new approach to targeted-therapy of cancers by neutralizing CXCL12 and CXCR4. In this paper, we reviewed the current understanding of the role of the CXCL12/CXCR4 axis in disease pathology and cancer biology, and discuss its therapeutic implications in cancer and diseases.
Collapse
|
13
|
The endocannabinoid system: Novel targets for treating cancer induced bone pain. Biomed Pharmacother 2019; 120:109504. [PMID: 31627091 DOI: 10.1016/j.biopha.2019.109504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/16/2019] [Accepted: 09/26/2019] [Indexed: 02/08/2023] Open
Abstract
Treating Cancer-induced bone pain (CIBP) continues to be a major clinical challenge and underlying mechanisms of CIBP remain unclear. Recently, emerging body of evidence suggested the endocannabinoid system (ECS) may play essential roles in CIBP. Here, we summarized the current understanding of the antinociceptive mechanisms of endocannabinoids in CIBP and discussed the beneficial effects of endocannabinoid for CIBP treatment. Targeting non-selective cannabinoid 1 receptors or selective cannabinoid 2 receptors, and modulation of peripheral AEA and 2-AG, as well as the inhibition the function of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have produced analgesic effects in animal models of CIBP. Management of ECS therefore appears to be a promising way for the treatment of CIBP in terms of efficacy and safety. Further clinical studies are encouraged to confirm the possible translation to humans of the very promising results already obtained in the preclinical studies.
Collapse
|
14
|
HOXD9 promotes the growth, invasion and metastasis of gastric cancer cells by transcriptional activation of RUFY3. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:412. [PMID: 31547840 PMCID: PMC6755711 DOI: 10.1186/s13046-019-1399-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
Background The transcription factor HOXD9 is one of the members of the HOX family, which plays an important role in neoplastic processes. However, the role of HOXD9 in the growth and metastasis of gastric cancer (GC) remains to be elucidated. Methods In vitro functional role of HOXD9 and RURY3 in GC cells was determined using the TMA-based immunohistochemistry, western blot, EdU incorporation, gelatin zymography, luciferase, chromatin Immunoprecipitation (ChIP) and cell invasion assays. In vivo tumor growth and metastasis were conducted in nude mice. Results HOXD9 is overexpressed in GC cells and tissues. The high expression of HOXD9 was correlated with poor survival in GC patients. Functionally, HOXD9 expression significantly promoted the proliferation, invasion and migration of GC cells. Mechanically, HOXD9 directly associated with the RUFY3 promoter to increase the transcriptional activity of RUFY3. Inhibition of RUFY3 attenuated the proliferation, migration and invasiveness of HOXD9-overexpressing GC cells in vitro and in vivo. Moreover, both HOXD9 and RUFY3 were highly expressed in cancer cells but not in normal gastric tissues, with their expressions being positively correlated. Conclusions The evidence presented here suggests that the HOXD9-RUFY3 axis promotes the development and progression of human GC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1399-1) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Zhong Y, Chen J, Chen J, Chen Y, Li L, Xie Y. Crosstalk between Cdk5/p35 and ERK1/2 signalling mediates spinal astrocyte activity via the PPARγ pathway in a rat model of chronic constriction injury. J Neurochem 2019; 151:166-184. [PMID: 31314915 DOI: 10.1111/jnc.14827] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/07/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022]
Abstract
The specific mechanisms underlying cyclin-dependent kinase 5 (Cdk5)-mediated neuropathic pain at the spinal cord level remain elusive. The aim of the present study was to explore the role of crosstalk between Cdk5/p35 and extracellular signal-regulated kinase 1/2 (ERK1/2) signalling in mediating spinal astrocyte activity via the PPARγ pathway in a rat model of chronic constriction injury (CCI). Here, we quantified pain behaviour after CCI; detected the localization of p35, Cdk5, phosphorylated ERK1/2 (pERK1/2), phosphorylated peroxisome proliferator-activated receptor γ (pPPARγ), neuronal nuclei (a neuronal marker), glial fibrillary acidic protein (GFAP, an activated astrocyte marker) and ionized calcium binding adaptor molecule 1 (a microglial marker) in the dorsal horn using immunofluorescence; measured the protein levels of Cdk5, p35, pERK1/2, pPPARγ and GFAP using western blot analysis; and gauged the enzyme activity of Cdk5/p35 kinase using a Cdk5/p35 kinase activity assay kit. Tumour necrosis factor-α, interleukin (IL)-1β and IL-6 levels were measured using enzyme-linked immunosorbent assay (ELISA). Ligation of the right sciatic nerve induced mechanical allodynia; thermal hyperalgesia; and the time-dependent upregulation of p35, pERK1/2 and GFAP and downregulation of pPPARγ. p35 colocalized with Cdk5, pERK1/2, pPPARγ, neurons and astrocytes but not microglia. Meanwhile, intrathecal injection of the Cdk5 inhibitor roscovitine, the mitogen-activated ERK kinase (MEK) inhibitor U0126 and the PPARγ agonist pioglitazone prevented or reversed behavioural allodynia, increased pPPARγ expression, inhibited astrocyte activation and alleviated proinflammatory cytokine (tumour necrosis factor-α, IL-1β, and IL-6) release from activated astrocytes. Furthermore, crosstalk between the Cdk5/p35 and ERK1/2 pathways was observed with CCI. Blockade of either Cdk5/p35 or ERK1/2 inhibited Cdk5 activity. These findings indicate that spinal crosstalk between the Cdk5/p35 and ERK1/2 pathways mediates astrocyte activity via the PPARγ pathway in CCI rats and that targeting this crosstalk could be an effective strategy to attenuate CCI and astrocyte-derived neuroinflammation.
Collapse
Affiliation(s)
- Yu Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Jialin Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Jing Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yanhua Chen
- Department of Anesthesiology, Cardiovascular Institute, Nanning, Guangxi, P. R. China
| | - Li Li
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| |
Collapse
|
16
|
Liu S, Liu X, Xiong H, Wang W, Liu Y, Yin L, Tu C, Wang H, Xiang X, Xu J, Duan B, Tao A, Zhao Z, Mei Z. CXCL13/CXCR5 signaling contributes to diabetes-induced tactile allodynia via activating pERK, pSTAT3, pAKT pathways and pro-inflammatory cytokines production in the spinal cord of male mice. Brain Behav Immun 2019; 80:711-724. [PMID: 31100371 DOI: 10.1016/j.bbi.2019.05.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Painful diabetic neuropathy (PDN) is a severely debilitating chronic pain syndrome. Spinal chemokine CXCL13 and its receptor CXCR5 were recently demonstrated to play a pivotal role in the pathogenesis of chronic pain induced by peripheral tissue inflammation or nerve injury. In this study we investigated whether CXCL13/CXCR5 mediates PDN and the underlying spinal mechanisms. We used the db/db type 2 diabetes mice, which showed obvious hyperglycemia and obese, long-term mechanical allodynia, and increased expression of CXCL13, CXCR5 as well as pro-inflammatory cytokines TNF-α and IL-6 in the spinal cord. Furthermore, in the spinal cord of db/db mice there is significantly increased gliosis and upregulated phosphorylation of cell signaling kinases, including pERK, pAKT and pSTAT3. Mechanical allodynia and upregulated pERK, pAKT and pSTAT3 as well as production of TNF-α and IL-6 were all attenuated by the noncompetitive NMDA receptor antagonist MK-801. If spinal giving U0126 (a selective MEK inhibitor) or AG490 (a Janus kinase (JAK)-STAT inhibitor) to db/db mice, both of them can decrease the mechanical allodynia, but only inhibit pERK (by U0126) or pSTAT3 (by AG490) respectively. Acute administration of CXCL13 in C57BL/6J mice resulted in exacerbated thermal hyperalgesia and mechanical allodynia, activation of the pERK, pAKT and pSTAT3 pathways and increased production of pro-inflammatory cytokines (IL-1β, TNF-α and IL-6), which were all attenuated by knocking out of Cxcr5. In all, our work showed that chemokine CXCL13 and its receptor CXCR5 in spinal cord contribute to the pathogenesis of PDN and may help develop potential novel therapeutic approaches for patients afflicted with PDN.
Collapse
Affiliation(s)
- Sisi Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xueting Liu
- The Second Afliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Hui Xiong
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wen Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yutong Liu
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Liang Yin
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Chuyue Tu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hua Wang
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Xuechuan Xiang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jinhong Xu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bailu Duan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ailin Tao
- The Second Afliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Zhongqiu Zhao
- Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States; Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.
| |
Collapse
|
17
|
Ni H, Wang Y, An K, Liu Q, Xu L, Zhu C, Deng H, He Q, Wang T, Xu M, Zheng Y, Huang B, Fang J, Yao M. Crosstalk between NFκB-dependent astrocytic CXCL1 and neuron CXCR2 plays a role in descending pain facilitation. J Neuroinflammation 2019; 16:1. [PMID: 30606213 PMCID: PMC6317220 DOI: 10.1186/s12974-018-1391-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite accumulating evidence on the role of glial cells and their associated chemicals in mechanisms of pain, few studies have addressed the potential role of chemokines in the descending facilitation of chronic pain. We aimed to study the hypothesis that CXCL1/CXCR2 axis in the periaqueductal gray (PAG), a co-restructure of the descending nociceptive system, is involved in descending pain facilitation. METHODS Intramedullary injection of Walker 256 mammary gland carcinoma cells of adult female Sprague Dawley rats was used to establish a bone cancer pain (BCP) model. RT-PCR, Western blot, and immunohistochemistry were performed to detect pNfkb, Cxcl1, and Cxcr2 and their protein expression in the ventrolateral PAG (vlPAG). Immunohistochemical co-staining with NeuN, GFAP, and CD11 were used to examine the cellular location of pNFκB, CXCL1, and CXCR2. The effects of NFκB and CXCR2 antagonists and CXCL1 neutralizing antibody on pain hypersensitivity were evaluated by behavioral testing. RESULTS BCP induced cortical bone damage and persistent mechanical allodynia and increased the expression of pNFκB, CXCL1, and CXCR2 in vlPAG. The induced phosphorylation of NFκB was co-localized with GFAP and NeuN, but not with CD11. Micro-injection of BAY11-7082 attenuated BCP and reduced CXCL1 increase in the spinal cord. The expression level of CXCL1 in vlPAG showed co-localization with GFAP, but not with CD11 and NeuN. Micro-administration of CXCL1 neutralizing antibody from 6 to 9 days after inoculation attenuated mechanical allodynia. Furthermore, vlPAG application of CXCL1 elicited pain hypersensitivity in normal rats. Interestingly, CXCR2 was upregulated in vlPAG neurons (not with CD11 and GFAP) after BCP. CXCR2 antagonist SB225002 completely blocked the CXCL1-induced mechanical allodynia and attenuated BCP-induced pain hypersensitivity. CONCLUSION The NFκB-dependent CXCL1-CXCR2 signaling cascade played a role in glial-neuron interactions and in descending facilitation of BCP.
Collapse
Affiliation(s)
- Huadong Ni
- Department of Anesthesiology and Pain Research center, The First Affiliated Hospital of Jiaxing University, Jiaxing, 314001 China
| | - Yungong Wang
- Department of Anesthesiology, Zhuzhou Central Hospital, Zhuzhou, 412000 China
| | - Kang An
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210004 China
| | - Qianying Liu
- Department of Anesthesiology and Pain Research center, The First Affiliated Hospital of Jiaxing University, Jiaxing, 314001 China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research center, The First Affiliated Hospital of Jiaxing University, Jiaxing, 314001 China
| | - Chunyan Zhu
- Department of Anesthesiology and Pain Research center, The First Affiliated Hospital of Jiaxing University, Jiaxing, 314001 China
| | - Housheng Deng
- Department of Anesthesiology and Pain Research center, The First Affiliated Hospital of Jiaxing University, Jiaxing, 314001 China
| | - Qiuli He
- Department of Anesthesiology and Pain Research center, The First Affiliated Hospital of Jiaxing University, Jiaxing, 314001 China
| | - Tingting Wang
- Department of Anesthesiology and Pain Research center, The First Affiliated Hospital of Jiaxing University, Jiaxing, 314001 China
| | - Miao Xu
- Department of Anesthesiology and Pain Research center, The First Affiliated Hospital of Jiaxing University, Jiaxing, 314001 China
| | - Ying Zheng
- Department of Anesthesiology and Pain Research center, The First Affiliated Hospital of Jiaxing University, Jiaxing, 314001 China
| | - Bing Huang
- Department of Anesthesiology and Pain Research center, The First Affiliated Hospital of Jiaxing University, Jiaxing, 314001 China
| | - Jianqiao Fang
- Zhejiang Chinese Medicine University, Hangzhou, 310053 China
| | - Ming Yao
- Department of Anesthesiology and Pain Research center, The First Affiliated Hospital of Jiaxing University, Jiaxing, 314001 China
| |
Collapse
|
18
|
Huang X, Li J, Xie J, Li Y, Gao Y, Li X, Xu X, Shi R, Yao W, Ke C. Neuronal complement cascade drives bone cancer pain via C3R mediated microglial activation. Brain Res 2018; 1698:81-88. [PMID: 29909203 DOI: 10.1016/j.brainres.2018.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 11/17/2022]
Abstract
Activation of spinal cord microglia is crucial for the development of bone cancer pain (BCP). The essential signal between neuronal excitability and microglial activation is not fully understood. In the present study, carcinoma implantation into tibia was used to induce BCP and RNAi-lentivirus was injected into spinal cord to knock down C1, C2 or C3 of complement cascade. We showed that C1, C2 and C3 co-localized in the same neurons and increased in cancer-bearing rats along with microglial activation. Knocked down of C1, C2 or C3 inhibited microglial activation and prevented the development of cancer-induced bone pain. Intrathecal administration of either minocycline (an inhibitor of microglial activity) to inhibit the activation of microglia or compstatin (a C3-targeted complement inhibitor) to block the complement cascade reversed cancer induced bone pain. Further study indicated that neuronal complement promoted the activation of microglia via complement 3 receptor (C3R). In the in vitro experiments, the proliferation of microglia was enhanced by the activation product of C3 (iC3b), but was inhibited by compstatin. These results indicated that neuronal complement pathway promoted the activation of microglia via C3R and contributed to the development of BCP.
Collapse
Affiliation(s)
- Xiaoxia Huang
- Department of Nephrology, Taihe Hospital, Hubei University of Medicine, Shiyan City 442000, Hubei Province, China
| | - Jinyuan Li
- Department of Emergency, Taihe Hospital, Hubei University of Medicine, Shiyan City 442000, Hubei Province, China
| | - Jin Xie
- Institute of Anesthesiology & Pain (IAP), PET-CT, Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City 442000, Hubei Province, China
| | - Yang Li
- Institute of Anesthesiology & Pain (IAP), PET-CT, Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City 442000, Hubei Province, China
| | - Yan Gao
- Institute of Anesthesiology & Pain (IAP), PET-CT, Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City 442000, Hubei Province, China
| | - Xiaohui Li
- Institute of Anesthesiology & Pain (IAP), PET-CT, Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City 442000, Hubei Province, China
| | - Xueqin Xu
- Institute of Anesthesiology & Pain (IAP), PET-CT, Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City 442000, Hubei Province, China
| | - Ruoshi Shi
- Institute of Anesthesiology & Pain (IAP), PET-CT, Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City 442000, Hubei Province, China
| | - Wanjun Yao
- Institute of Anesthesiology & Pain (IAP), PET-CT, Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City 442000, Hubei Province, China
| | - Changbin Ke
- Institute of Anesthesiology & Pain (IAP), PET-CT, Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City 442000, Hubei Province, China.
| |
Collapse
|
19
|
Huo W, Zhang Y, Liu Y, Lei Y, Sun R, Zhang W, Huang Y, Mao Y, Wang C, Ma Z, Gu X. Dehydrocorydaline attenuates bone cancer pain by shifting microglial M1/M2 polarization toward the M2 phenotype. Mol Pain 2018; 14:1744806918781733. [PMID: 29882480 PMCID: PMC6009085 DOI: 10.1177/1744806918781733] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bone cancer pain remains a major challenge in patients with primary or metastatic bone cancer due to a lack of understanding the mechanisms. Previous studies have revealed the two distinct functional polarization states of microglia (classically activated M1 and alternatively activated M2) in the spinal cord in nerve injury–induced neuropathic pain. However, whether microglia in the spinal cord polarize to M1 and M2 phenotypes and contribute to the development of bone cancer pain remains unclear. In this study, we used a mouse model with bone cancer to characterize the M1/M2 polarization of microglia in the spinal cord during the development of bone cancer pain, and investigated the antinociceptive effects of dehydrocorydaline, an alkaloidal component isolated from Rhizoma corydalis on bone cancer pain. Our results show that microglia in the spinal cord presented increased M1 polarization and decreased M2 polarization, while overproduction of IL-1β and inhibited expression of IL-10 was detected during bone cancer pain development. Intraperitoneal administration of dehydrocorydaline (10 mg/kg) had significant antinociceptive effects on day 14 after osteosarcoma cell implantation, accompanied by suppressed M1 phenotype and upregulated M2 phenotype of microglia in the spinal cord, while alleviated inflammatory response was observed then. These results suggest that the imbalanced polarization of microglia toward the M1 phenotype in the spinal cord may contribute to the development of bone cancer pain, while dehydrocorydaline helps to attenuate bone cancer pain, with microglial polarization shifting toward the M2 phenotype in the spinal cord.
Collapse
Affiliation(s)
- Wenwen Huo
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Ying Zhang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Yue Liu
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Yishan Lei
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Rao Sun
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Wei Zhang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Yulin Huang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Yanting Mao
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Chenchen Wang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Zhengliang Ma
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Xiaoping Gu
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| |
Collapse
|
20
|
Zhu YF, Kwiecien JM, Dabrowski W, Ungard R, Zhu KL, Huizinga JD, Henry JL, Singh G. Cancer pain and neuropathic pain are associated with A β sensory neuronal plasticity in dorsal root ganglia and abnormal sprouting in lumbar spinal cord. Mol Pain 2018; 14:1744806918810099. [PMID: 30324862 PMCID: PMC6243409 DOI: 10.1177/1744806918810099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Evidence suggests that there are both nociceptive and neuropathic components of cancer-induced pain. We have observed that changes in intrinsic membrane properties and excitability of normally non-nociceptive Aβ sensory neurons are consistent in rat models of peripheral neuropathic pain and cancer-induced pain. This has prompted a comparative investigation of the intracellular electrophysiological characteristics of sensory neurons and of the ultrastructural morphology of the dorsal horn in rat models of neuropathic pain and cancer-induced pain. Neuropathic pain model rats were induced with a polyethylene cuff implanted around a sciatic nerve. Cancer-induced pain model rats were induced with mammary rat metastasis tumour-1 rat breast cancer or MATLyLu rat prostate cancer cells implanted into the distal epiphysis of a femur. Behavioural evidence of nociception was detected using von Frey tactile assessment. Aβ-fibre low threshold mechanoreceptor neurons in both cancer-induced pain and neuropathic pain models exhibited slower dynamics of action potential genesis, including a wider action potential duration and lower action potential amplitude compared to those in control animals. Enhanced excitability of Aβ-fibre low threshold mechanoreceptor neurons was also observed in cancer-induced pain and neuropathic pain models. Furthermore, both cancer-induced pain and neuropathic pain models showed abundant abnormal axonal sprouting in bundles of myelinated axons in the ipsilateral spinal laminae IV and V. The patterns of changes show consistency between rat models of cancer-induced pain and neuropathic pain. These findings add to the body of evidence that animal models of cancer-induced pain and neuropathic pain share features that may contribute to the peripheral and central sensitization and tactile hypersensitivity in both pain states.
Collapse
Affiliation(s)
- Yong Fang Zhu
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jacek M Kwiecien
- 2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,3 Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland
| | - Wojciech Dabrowski
- 4 Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
| | - Robert Ungard
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Kan Lun Zhu
- 2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jan D Huizinga
- 5 Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - James L Henry
- 6 Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Gurmit Singh
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
21
|
Kwiatkowski K, Mika J. The importance of chemokines in neuropathic pain development and opioid analgesic potency. Pharmacol Rep 2018; 70:821-830. [PMID: 30122168 DOI: 10.1016/j.pharep.2018.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/22/2018] [Indexed: 12/30/2022]
Abstract
The treatment of neuropathic pain resulting from nervous system malfunction remains a challenging problem for doctors and scientists. The lower effectiveness of conventionally used analgesics in neuropathic pain is associated with complex and not fully understood mechanisms of its development. Undoubtedly, interactions between immune and nervous system are crucial for maintenance of painful neuropathy. Nerve injury induces glial cell activation and thus enhances the production of numerous pronociceptive factors by these cells, including interleukins and chemokines. Increased release of those factors reduces the analgesic efficacy of opioids, which is significantly lower in neuropathic pain than in other painful conditions. This review discusses the role of chemokines from all four subfamilies as essential mediators of neuron-glia interactions occurring under neuropathic pain conditions. Based on available data, we analyse the influence of chemokines on opioid properties. Finally, we identify new direct and indirect pharmacological targets whose modulation may result in effective therapy of neuropathic pain, possibly in combination with opioids.
Collapse
Affiliation(s)
- Klaudia Kwiatkowski
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Kraków, Poland.
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Kraków, Poland.
| |
Collapse
|
22
|
Lin CP, Lu DH. Role of Neuroinflammation in Opioid Tolerance: Translational Evidence from Human-to-Rodent Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1099:125-139. [DOI: 10.1007/978-981-13-1756-9_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Wang B, Fan B, Dai Q, Xu X, Jiang P, Zhu L, Dai H, Yao Z, Xu Z, Liu X. Fascin-1 Contributes to Neuropathic Pain by Promoting Inflammation in Rat Spinal Cord. Neurochem Res 2017; 43:287-296. [PMID: 29052088 DOI: 10.1007/s11064-017-2420-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/17/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022]
Abstract
Neuropathic pain is a complicated clinical syndrome caused by heterogeneous etiology. Despite the fact that the underlying mechanisms remain elusive, it is well accepted that neuroinflammation plays a critical role in the development of neuropathic pain. Fascin-1, an actin-bundling protein, has been proved to be involved in the processing of diverse biological events including cellular development, immunity, and tumor invasion etc. Recent studies have shown that Fascin-1 participates in antigen presentation and the regulation of pro-inflammatory agents. However, whether Fascin-1 is involved in neuropathic pain has not been reported. In the present study we examined the potential role of Fascin-1 by using a rodent model of chronic constriction injury (CCI). Our results showed that Fascin-1 increased rapidly in dorsal root ganglions (DRG) and spinal cord (SC) after CCI. The increased Fascin-1 widely expressed in DRG, however, it localized predominantly in microglia, seldom in neuron, and hardly in astrocyte in the SC. Intrathecal injection of Fascin-1 siRNA not only suppressed the activation of microglia and the release of pro-inflammatory mediators, but also attenuated the mechanical allodynia and thermal hyperalgesia induced by CCI.
Collapse
Affiliation(s)
- Binbin Wang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Bingbing Fan
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Department of Medical Imaging, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qijun Dai
- Nanjing University of Traditional Chinese Medicine Hanlin College Affiliated Hai'an Chinese Medicine Hospital, Nanjing University of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Xingguo Xu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Peipei Jiang
- Nanjing University of Traditional Chinese Medicine Hanlin College Affiliated Hai'an Chinese Medicine Hospital, Nanjing University of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Lin Zhu
- Nanjing University of Traditional Chinese Medicine Hanlin College Affiliated Hai'an Chinese Medicine Hospital, Nanjing University of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Haifeng Dai
- Nanjing University of Traditional Chinese Medicine Hanlin College Affiliated Hai'an Chinese Medicine Hospital, Nanjing University of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Zhigang Yao
- Nanjing University of Traditional Chinese Medicine Hanlin College Affiliated Hai'an Chinese Medicine Hospital, Nanjing University of Traditional Chinese Medicine, Haian, Jiangsu, China
| | - Zhongling Xu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, 2266001, Jiangsu, China.
| |
Collapse
|
24
|
Zhang ZJ, Jiang BC, Gao YJ. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain. Cell Mol Life Sci 2017; 74:3275-3291. [PMID: 28389721 PMCID: PMC11107618 DOI: 10.1007/s00018-017-2513-1] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022]
Abstract
Neuropathic pain resulting from damage or dysfunction of the nervous system is a highly debilitating chronic pain state and is often resistant to currently available treatments. It has become clear that neuroinflammation, mainly mediated by proinflammatory cytokines and chemokines, plays an important role in the establishment and maintenance of neuropathic pain. Chemokines were originally identified as regulators of peripheral immune cell trafficking and were also expressed in neurons and glial cells in the central nervous system. In recent years, accumulating studies have revealed the expression, distribution and function of chemokines in the spinal cord under chronic pain conditions. In this review, we provide evidence showing that several chemokines are upregulated after peripheral nerve injury and contribute to the pathogenesis of neuropathic pain via different forms of neuron-glia interaction in the spinal cord. First, chemokine CX3CL1 is expressed in primary afferents and spinal neurons and induces microglial activation via its microglial receptor CX3CR1 (neuron-to-microglia signaling). Second, CCL2 and CXCL1 are expressed in spinal astrocytes and act on CCR2 and CXCR2 in spinal neurons to increase excitatory synaptic transmission (astrocyte-to-neuron signaling). Third, we recently identified that CXCL13 is highly upregulated in spinal neurons after spinal nerve ligation and induces spinal astrocyte activation via receptor CXCR5 (neuron-to-astrocyte signaling). Strategies that target chemokine-mediated neuron-glia interactions may lead to novel therapies for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Zhi-Jun Zhang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, Jiangsu, 226001, China
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong, Jiangsu, 226001, China
| | - Bao-Chun Jiang
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong, Jiangsu, 226001, China
| | - Yong-Jing Gao
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong, Jiangsu, 226001, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
25
|
Peng Y, Guo G, Shu B, Liu D, Su P, Zhang X, Gao F. Spinal CX3CL1/CX3CR1 May Not Directly Participate in the Development of Morphine Tolerance in Rats. Neurochem Res 2017; 42:3254-3267. [PMID: 28776289 DOI: 10.1007/s11064-017-2364-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/28/2017] [Accepted: 07/21/2017] [Indexed: 12/26/2022]
Abstract
CX3CL1 (fractalkine), the sole member of chemokine CX3C family, is implicated in inflammatory and neuropathic pain via activating its receptor CX3CR1 on neural cells in spinal cord. However, it has not been fully elucidated whether CX3CL1 or CX3CR1 contributes to the development of morphine tolerance. In this study, we found that chronic morphine exposure did not alter the expressions of CX3CL1 and CX3CR1 in spinal cord. And neither exogenous CX3CL1 nor CX3CR1 inhibitor could affect the development of morphine tolerance. The cellular localizations of spinal CX3CL1 and CX3CR1 changed from neuron and microglia, respectively, to all the neural cells during the development of morphine tolerance. A microarray profiling revealed that 15 members of chemokine family excluding CX3CL1 and CX3CR1 were up-regulated in morphine-treated rats. Our study provides evidence that spinal CX3CL1 and CX3CR1 may not be involved in the development of morphine tolerance directly.
Collapse
Affiliation(s)
- Yawen Peng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Genhua Guo
- Department of Anesthesiology, The Central People's Hospital of Ji'an City, 106 Jinggangshan Road, Ji'an, 343000, People's Republic of China
| | - Bin Shu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Daiqiang Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Peng Su
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Xuming Zhang
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
26
|
Yang F, Luo WJ, Sun W, Wang Y, Wang JL, Yang F, Li CL, Wei N, Wang XL, Guan SM, Chen J. SDF1-CXCR4 Signaling Maintains Central Post-Stroke Pain through Mediation of Glial-Neuronal Interactions. Front Mol Neurosci 2017; 10:226. [PMID: 28785202 PMCID: PMC5519565 DOI: 10.3389/fnmol.2017.00226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022] Open
Abstract
Central post-stroke pain (CPSP) is an intractable central neuropathic pain that has been poorly studied mechanistically. Here we showed that stromal cell-derived factor 1 (SDF1 or CXCL12), a member of the CXC chemokine family, and its receptor CXCR4 played a key role in the development and maintenance of thalamic hemorrhagic CPSP through hypoxia inducible factor 1α (HIF-1α) mediated microglial-astrocytic-neuronal interactions. First, both intra-thalamic collagenase (ITC) and SDF1 injections could induce CPSP that was blockable and reversible by intra-thalamic administration of both AMD3100 (a selective CXCR4 antagonist) and inhibitors of microglial or astrocytic activation. Second, long-term increased-expression of SDF1 and CXCR4 that was accompanied by activations of both microglia and astrocytes following ITC could be blocked by both AMD-3100 and YC-1, a selective inhibitor of HIF-1α. AMD-3100 could also inhibit release of proinflammatory mediators (TNFα, IL1β and IL-6). Increased-expression of HIF-1α, SDF1, CXCR4, Iba1 and GFAP proteins could be induced by both ITC and intra-thalamic CoCl2, an inducer of HIF-1α that was blockable by both HIF-1α inhibition and CXCR4 antagonism. Finally, inhibition of HIF-1α was only effective in prevention, but not in treatment of ITC-induced CPSP. Taken together, the present study demonstrated that in the initial process of thalamic hemorrhagic state HIF-1α up-regulated SDF1-CXCR4 signaling, while in the late process SDF1-CXCR4 signaling-mediated positive feedback plays more important role in glial-glial and glial-neuronal interactions and might be a novel promising molecular target for treatment of CPSP in clinic.
Collapse
Affiliation(s)
- Fei Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China
| | - Wen-Jun Luo
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China
| | - Jiang-Lin Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China
| | - Fan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China
| | - Na Wei
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China
| | - Su-Min Guan
- School of Stomatology, The Fourth Military Medical UniversityXi'an, China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical UniversityXi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army (PLA)Xi'an, China.,Beijing Institute for Brain DisordersBeijing, China
| |
Collapse
|
27
|
Lin CP, Kang KH, Tu HJ, Wu MY, Lin TH, Liou HC, Sun WZ, Fu WM. CXCL12/CXCR4 Signaling Contributes to the Pathogenesis of Opioid Tolerance: A Translational Study. Anesth Analg 2017; 124:972-979. [PMID: 28212183 DOI: 10.1213/ane.0000000000001480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Long-term opioid therapy for chronic pain may lead to analgesic tolerance, especially when administered intrathecally, thus preventing adequate pain relief. Discovering drug targets to treat opioid tolerance using a mechanism-based approach targeting opioid-induced neuroinflammation provides new therapeutic opportunities. In this study, we provide translational evidence that CXCL12/CXCR4 signaling contributes to the pathogenesis of opioid tolerance. METHODS The CXCL12 levels in the cerebrospinal fluid of opioid-tolerant patients were compared with those of opioid-naive subjects. For further investigation, a rodent translational study was designed using 2 clinically relevant opioid delivery paradigms: daily intraperitoneal morphine injections and continuous intrathecal morphine infusion. We measured rats' tail flick responses and calculated the percentage of maximum possible effects (%MPE) to demonstrate opioid acute antinociception and the development of analgesic tolerance. The effects of exogenous CXCL12, CXCL12 neutralizing antibody, and receptor antagonist AMD3100 were investigated by intrathecal administration. Data were presented as mean ± SEM. RESULTS CXCL12 was significantly upregulated in the cerebrospinal fluid of opioid-tolerant patients for 892 ± 34 pg/mL (n = 27) versus 755 ± 33 pg/mL (n = 10) in naive control subjects (P = .03). Furthermore, after 2 and 5 days of intrathecal morphine infusion, rat lumbar spinal cord dorsal horn CXCL12 messenger RNA levels were significantly upregulated by 3.2 ± 0.7 (P = .016) and 3.4 ± 0.3 (P = .003) fold, respectively. Results from the daily intraperitoneal morphine injection experiments revealed that administering an intrathecal infusion of CXCL12 for 24 hours before the first morphine injection did not decrease antinociception efficacy on day 1 but accelerated tolerance after day 2 (%MPE 49.5% vs 88.1%, P = .0003). In the intrathecal morphine coinfusion experiments, CXCL12 accelerated tolerance development (%MPE 9.4% vs 43.4% on day 1, P < .0001), whereas coadministration with CXCL12 neutralizing antibody attenuated tolerance (72.5% vs 43.4% on day 1, P < .0001; 47.6% vs 17.5% on day 2, P < .0001). Coadministration of receptor antagonist AMD 3100 can persistently preserve morphine analgesic effects throughout the study period (27.9% ± 4.1% vs 0.9% ± 1.6% on day 5, P = .03). CONCLUSIONS The CXCL12/CXCR4 pathway contributes to the pathogenesis of opioid tolerance. Our study indicates that intervening with CXCL12/CXCR4 signaling has therapeutic potential for opioid tolerance.
Collapse
Affiliation(s)
- Chih-Peng Lin
- From the *Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan; †Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; ‡Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan; and §Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Microglial Inhibition Influences XCL1/XCR1 Expression and Causes Analgesic Effects in a Mouse Model of Diabetic Neuropathy. Anesthesiology 2017; 125:573-89. [PMID: 27387353 DOI: 10.1097/aln.0000000000001219] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent studies indicated the involvement of some chemokines in the development of diabetic neuropathy; however, participation of the chemokine-C-motif ligand (XCL) subfamily remains unknown. The goal of this study was to examine how microglial inhibition by minocycline hydrochloride (MC) influences chemokine-C-motif ligand 1 (XCL1)-chemokine-C-motif receptor 1 (XCR1)/G protein-coupled receptor 5 expression and the development of allodynia/hyperalgesia in streptozotocin-induced diabetic neuropathy. METHODS The studies were performed on streptozotocin (200 mg/kg, intraperitoneally)-induced mouse diabetic neuropathic pain model and primary glial cell cultures. The MC (30 mg/kg, intraperitoneally) was injected two times daily until day 21. XCL1 and its neutralizing antibody were injected intrathecally, and behavior was evaluated with von Frey and cold plate tests. Quantitative analysis of protein expression of glial markers, XCL1, and/or XCR1 was performed by Western blot and visualized by immunofluorescence. RESULTS MC treatment diminished allodynia (0.9 ± 0.1 g; n = 7 vs. 3.8 ± 0.7 g; n = 7) and hyperalgesia (6.5 ± 0.6 s; n = 7 vs. 16.5 ± 1 s; n = 7) in the streptozotocin-induced diabetes. Repeated MC administration prevented microglial activation and inhibited the up-regulation of the XCL1/XCR1 levels. XCL1 administration (10 to 500 ng/5 μl; n = 9) in naive mice enhanced nociceptive transmission, and injections of neutralizing XCL1 (4 to 8 μg/5 μl; n = 10) antibody into the mice with diabetic neuropathic pain diminished allodynia/hyperalgesia. Microglia activation evoked in primary microglial cell cultures resulted in enhanced XCL1 release and XCR1 expression. Additionally, double immunofluorescence indicated the widespread coexpression of XCR1-expressing cells with spinal neurons. CONCLUSIONS In diabetic neuropathy, declining levels of XCL1 evoked by microglia inhibition result in the cause of analgesia. The putative mechanism corroborating this finding can be related to lower spinal expression of XCR1 together with the lack of stimulation of these XCR1 receptors, which are localized on neurons.
Collapse
|
29
|
Guo G, Peng Y, Xiong B, Liu D, Bu H, Tian X, Yang H, Wu Z, Cao F, Gao F. Involvement of chemokine CXCL11 in the development of morphine tolerance in rats with cancer-induced bone pain. J Neurochem 2017; 141:553-564. [PMID: 27926984 DOI: 10.1111/jnc.13919] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/14/2016] [Accepted: 11/18/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Genhua Guo
- Department of Anesthesiology; Tongji Hospital; Tongji Medical College; Huazhong University of Science & Technology; Wuhan China
- Department of Anesthesiology; The Central People's Hospital of Ji'an City; Ji'an China
| | - Yawen Peng
- Department of Anesthesiology; Tongji Hospital; Tongji Medical College; Huazhong University of Science & Technology; Wuhan China
| | - Bingrui Xiong
- Department of Anesthesiology; Tongji Hospital; Tongji Medical College; Huazhong University of Science & Technology; Wuhan China
| | - Daiqiang Liu
- Department of Anesthesiology; Tongji Hospital; Tongji Medical College; Huazhong University of Science & Technology; Wuhan China
| | - Huilian Bu
- Department of Anesthesiology; The first affiliated hospital of Zhengzhou University; Zhengzhou China
| | - Xuebi Tian
- Department of Anesthesiology; Tongji Hospital; Tongji Medical College; Huazhong University of Science & Technology; Wuhan China
| | - Hui Yang
- Department of Anesthesiology; Tongji Hospital; Tongji Medical College; Huazhong University of Science & Technology; Wuhan China
| | - Zhen Wu
- Department of Anesthesiology; Tongji Hospital; Tongji Medical College; Huazhong University of Science & Technology; Wuhan China
| | - Fei Cao
- Department of Psychiatry and Behavioral Science; UT Health Medical School; Houston Texas USA
| | - Feng Gao
- Department of Anesthesiology; Tongji Hospital; Tongji Medical College; Huazhong University of Science & Technology; Wuhan China
| |
Collapse
|
30
|
Jurga AM, Piotrowska A, Makuch W, Przewlocka B, Mika J. Blockade of P2X4 Receptors Inhibits Neuropathic Pain-Related Behavior by Preventing MMP-9 Activation and, Consequently, Pronociceptive Interleukin Release in a Rat Model. Front Pharmacol 2017; 8:48. [PMID: 28275350 PMCID: PMC5321202 DOI: 10.3389/fphar.2017.00048] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/23/2017] [Indexed: 12/19/2022] Open
Abstract
Neuropathic pain is still an extremely important problem in today's medicine because opioids, which are commonly used to reduce pain, have limited efficacy in this type of pathology. Therefore, complementary therapy is needed. Our experiments were performed in rats to evaluate the contribution of the purinergic system, especially P2X4 receptor (P2X4R), in the modulation of glia activation and, consequently, the levels of nociceptive interleukins after chronic constriction injury (CCI) of the right sciatic nerve, a rat model of neuropathic pain. Moreover, we studied how intrathecal (ith.) injection of a P2X4R antagonist Tricarbonyldichlororuthenium (II) dimer (CORM-2) modulates nociceptive transmission and opioid effectiveness in the CCI model. Our results demonstrate that repeated ith. administration of CORM-2 once daily (20 μg/5 μl, 16 and 1 h before CCI and then daily) for eight consecutive days significantly reduced pain-related behavior and activation of both spinal microglia and/or astroglia induced by CCI. Moreover, even a single administration of CORM-2 on day 7 after CCI attenuated mechanical and thermal hypersensitivity as efficiently as morphine and buprenorphine. In addition, using Western blot, we have shown that repeated ith. administration of CORM-2 lowers the CCI-elevated level of MMP-9 and pronociceptive interleukins (IL-1β, IL-18, IL-6) in the dorsal L4-L6 spinal cord and/or DRG. Furthermore, in parallel, CORM-2 upregulates spinal IL-1Ra; however, it does not influence other antinociceptive factors, IL-10 and IL-18BP. Additionally, based on our biochemical results, we hypothesize that p38MAPK, ERK1/2 and PI3K/Akt but not the NLRP3/Caspase-1 pathway are partly involved in the CORM-2 analgesic effects in rat neuropathic pain. Our data provide new evidence that P2X4R may indeed play a significant role in neuropathic pain development by modulating neuroimmune interactions in the spinal cord and DRG, suggesting that its blockade may have potential therapeutic utility.
Collapse
Affiliation(s)
- Agnieszka M Jurga
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| | - Anna Piotrowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| | - Wioletta Makuch
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| | - Barbara Przewlocka
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| |
Collapse
|
31
|
Abstract
Most cancer patients experience severe pain during their disease course, and the management of cancer pain is a major challenge for patients and the healthcare team. Many diverse translational models of cancer pain in recent years have improved our understanding of cancer-related pain. Cancer and associated cells in the cancer microenvironment may release various peripheral mediators, including ATP, formaldehyde, protons, proteases, endothelin, bradykinin, TNF and NGF, that result in the activation and/or sensitization of peripheral and central neurons, that contribute to the clinical manifestations of cancer-related pain. Identification of these mediators and the peripheral and central mechanisms by which they contribute to cancer-related pain may provide novel therapeutic targets to alleviate cancer patient suffering.
Collapse
Affiliation(s)
- David K Lam
- Oral & Maxillofacial Surgery, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
- Dental Oncology, Maxillofacial & Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Wasser Pain Management Centre, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
32
|
Guo CH, Bai L, Wu HH, Yang J, Cai GH, Wang X, Wu SX, Ma W. The analgesic effect of rolipram is associated with the inhibition of the activation of the spinal astrocytic JNK/CCL2 pathway in bone cancer pain. Int J Mol Med 2016; 38:1433-1442. [PMID: 28025994 PMCID: PMC5065302 DOI: 10.3892/ijmm.2016.2763] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022] Open
Abstract
Bone cancer pain (BCP) is one of the most difficult and intractable tasks for pain management, which is associated with spinal 'neuron-astrocytic' activation. The activation of the c-Jun N-terminal kinase (JNK)/chemokine (C-C motif) ligand (CCL2) signaling pathway has been reported to be critical for neuropathic pain. Rolipram (ROL), a selective phosphodiesterase 4 inhibitor, possesses potent anti-inflammatory and anti-nociceptive activities. The present study aimed to investigate whether the intrathecal administration of ROL has an analgesic effect on BCP in rats, and to assess whether the inhibition of spinal JNK/CCL2 pathway and astrocytic activation are involved in the analgesic effects of ROL. The analgesic effects of ROL were evaluated using the Von Frey and Hargreaves tests. Immunofluorescence staining was used to determine the number of c-Fos immunoreactive neurons, and the expression of spinal astrocytes and microglial activation on day 14 after tumor cell inoculation. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α] and chemokines (CCL2), and western blot analysis was then used to examine the spinal phosphodiesterase 4 (PDE4), ionized calcium binding adapter molecule-1 (IBA-1) and JNK levels on day 14 after tumor cell inoculation. The results revealed that ROL exerted a short-term analgesic effect in a dose-dependent manner, and consecutive daily injections of ROL exerted continuous analgesic effects. In addition, spinal 'neuron-astrocytic' activation was suppressed and was associated with the downregulation of spinal IL-1β, IL-6 and TNF-α expression, and the inhibition of PDE4B and JNK levels in the spine was also observed. In addition, the level of CCL2 was decreased in the rats with BCP. The JNK inhibitor, SP600125, decreased CCL2 expression and attenuated pain behavior. Following co-treatment with ROL and SP600125, no significant increases in thermal hyperalgesia and CCL2 expression were observed compared with the ROL group. Thus, our findings suggest that the analgesic effects of ROL in BCP are mainly mediated through the inhibition of 'neuron-astrocytic' activation, which occurs via the suppression of spinal JNK/CCL2 signaling.
Collapse
Affiliation(s)
- Chi-Hua Guo
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lu Bai
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huang-Hui Wu
- Department of Anesthesiology, Fuzhou General Hospital of Nanjing Military Region, Fuzhou, Fujian 350025, P.R. China
| | - Jing Yang
- Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Guo-Hong Cai
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xin Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Sheng-Xi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Ma
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
33
|
Shenoy PA, Kuo A, Vetter I, Smith MT. The Walker 256 Breast Cancer Cell- Induced Bone Pain Model in Rats. Front Pharmacol 2016; 7:286. [PMID: 27630567 PMCID: PMC5005431 DOI: 10.3389/fphar.2016.00286] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022] Open
Abstract
The majority of patients with terminal breast cancer show signs of bone metastasis, the most common cause of pain in cancer. Clinically available drug treatment options for the relief of cancer-associated bone pain are limited due to either inadequate pain relief and/or dose-limiting side-effects. One of the major hurdles in understanding the mechanism by which breast cancer causes pain after metastasis to the bones is the lack of suitable preclinical models. Until the late twentieth century, all animal models of cancer induced bone pain involved systemic injection of cancer cells into animals, which caused severe deterioration of animal health due to widespread metastasis. In this mini-review we have discussed details of a recently developed and highly efficient preclinical model of breast cancer induced bone pain: Walker 256 cancer cell- induced bone pain in rats. The model involves direct localized injection of cancer cells into a single tibia in rats, which avoids widespread metastasis of cancer cells and hence animals maintain good health throughout the experimental period. This model closely mimics the human pathophysiology of breast cancer induced bone pain and has great potential to aid in the process of drug discovery for treating this intractable pain condition.
Collapse
Affiliation(s)
- Priyank A Shenoy
- School of Biomedical Sciences, The University of QueenslandBrisbane, QLD, Australia; Centre for Integrated Preclinical Drug Development, The University of QueenslandBrisbane, QLD, Australia
| | - Andy Kuo
- Centre for Integrated Preclinical Drug Development, The University of Queensland Brisbane, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of QueenslandBrisbane, QLD, Australia; School of Pharmacy, The University of QueenslandBrisbane, QLD, Australia
| | - Maree T Smith
- Centre for Integrated Preclinical Drug Development, The University of QueenslandBrisbane, QLD, Australia; School of Pharmacy, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
34
|
Zhou YQ, Liu Z, Liu HQ, Liu DQ, Chen SP, Ye DW, Tian YK. Targeting glia for bone cancer pain. Expert Opin Ther Targets 2016; 20:1365-1374. [PMID: 27428617 DOI: 10.1080/14728222.2016.1214716] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Bone cancer pain (BCP) remains to be a clinical challenge with limited pharmaceutical interventions. Therefore, novel therapeutic targets for the management of BCP are in desperate need. Recently, a growing body of evidence has suggested that glial cells may play a pivotal role in the pathogenesis of BCP. Areas covered: This review summarizes the recent progress in the understanding of glia in BCP and reveals the potential therapeutic targets in glia for BCP treatment. Expert opinion: Pharmacological interventions inhibiting the activation of glial cells, suppressing glia-derived proinflammatory cytokines, cell surface receptors, and the intracellular signaling pathways may be beneficial for the pain management of advanced cancer patients. However, these pharmacological interventions should not disrupt the normal function of glia cells since they play a vital supportive and protective role in the central nervous system.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Zheng Liu
- c Department of Urology , Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology , Wuhan , China
| | - Hui-Quan Liu
- d Cancer Center, Tongji Hospital, Tongji Medical college , Huazhong University of Science and Technology , Wuhan , China
| | - Dai-Qiang Liu
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Shu-Ping Chen
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Da-Wei Ye
- d Cancer Center, Tongji Hospital, Tongji Medical college , Huazhong University of Science and Technology , Wuhan , China
| | - Yu-Ke Tian
- a Research Center for Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
35
|
Guedon JMG, Longo G, Majuta LA, Thomspon ML, Fealk MN, Mantyh PW. Dissociation between the relief of skeletal pain behaviors and skin hypersensitivity in a model of bone cancer pain. Pain 2016; 157:1239-1247. [PMID: 27186713 PMCID: PMC5142607 DOI: 10.1097/j.pain.0000000000000514] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies have suggested that in humans and animals with significant skeletal pain, changes in the mechanical hypersensitivity of the skin can be detected. However, whether measuring changes in skin hypersensitivity can be a reliable surrogate for measuring skeletal pain itself remains unclear. To explore this question, we generated skeletal pain by injecting and confining GFP-transfected NCTC 2472 osteosarcoma cells unilaterally to the femur of C3H male mice. Beginning at day 7 post-tumor injection, animals were administered vehicle, an antibody to the P2X3 receptor (anti-P2X3) or anti-NGF antibody. Pain and analgesic efficacy were then measured on days 21, 28, and 35 post-tumor injection using a battery of skeletal pain-related behaviors and von Frey assessment of mechanical hypersensitivity on the plantar surface of the hind paw. Animals with bone cancer pain treated with anti-P2X3 showed a reduction in skin hypersensitivity but no attenuation of skeletal pain behaviors, whereas animals with bone cancer pain treated with anti-NGF showed a reduction in both skin hypersensitivity and skeletal pain behaviors. These results suggest that although bone cancer can induce significant skeletal pain-related behaviors and hypersensitivity of the skin, relief of hypersensitivity of the skin is not always accompanied by attenuation of skeletal pain. Understanding the relationship between skeletal and skin pain may provide insight into how pain is processed and integrated and help define the preclinical measures of skeletal pain that are predictive end points for clinical trials.
Collapse
Affiliation(s)
| | - Geraldine Longo
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | - Lisa A. Majuta
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | | | | | - Patrick W. Mantyh
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
- Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
36
|
Demir IE, Tieftrunk E, Schorn S, Saricaoglu ÖC, Pfitzinger PL, Teller S, Wang K, Waldbaur C, Kurkowski MU, Wörmann SM, Shaw VE, Kehl T, Laschinger M, Costello E, Algül H, Friess H, Ceyhan GO. Activated Schwann cells in pancreatic cancer are linked to analgesia via suppression of spinal astroglia and microglia. Gut 2016; 65:1001-14. [PMID: 26762195 DOI: 10.1136/gutjnl-2015-309784] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 12/10/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The impact of glia cells during GI carcinogenesis and in cancer pain is unknown. Here, we demonstrate a novel mechanism how Schwann cells (SCs) become activated in the pancreatic cancer (PCa) microenvironment and influence spinal activity and pain sensation. DESIGN Human SCs were exposed to hypoxia, to pancreatic cancer cells (PCCs) and/or to T-lymphocytes. Both SC and intrapancreatic nerves of patients with PCa with known pain severity were assessed for glial intermediate filament and hypoxia marker expression, proliferation and for transcriptional alterations of pain-related targets. In conditional PCa mouse models with selective in vivo blockade of interleukin (IL)-6 signalling (Ptf1a-Cre;LSL-Kras(G12D)/KC interbred with IL6(-/-) or sgp130(tg) mice), SC reactivity, abdominal mechanosensitivity and spinal glial/neuronal activity were quantified. RESULTS Tumour hypoxia, PCC and/or T-lymphocytes activated SC via IL-6-signalling in vitro. Blockade of the IL-6-signalling suppressed SC activation around PCa precursor lesions (pancreatic intraepithelial neoplasia (PanIN)) in KC;IL6(-/-) (32.06%±5.25% of PanINs) and KC;sgp130(tg) (55.84%±5.51%) mouse models compared with KC mice (78.27%±3.91%). Activated SCs were associated with less pain in human PCa and with decreased abdominal mechanosensitivity in KC mice (von Frey score of KC: 3.9±0.5 vs KC;IL6(-/-) mice: 5.9±0.9; and KC;sgp130(tg): 10.21±1.4) parallel to attenuation of spinal astroglial and/or microglial activity. Activated SC exhibited a transcriptomic profile with anti-inflammatory and anti-nociceptive features. CONCLUSIONS Activated SC in PCa recapitulate the hallmarks of 'reactive gliosis' and contribute to analgesia due to suppression of spinal glia. Our findings propose a mechanism for how cancer might remain pain-free via the SC-central glia interplay during cancer progression.
Collapse
Affiliation(s)
- Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Elke Tieftrunk
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephan Schorn
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ömer Cemil Saricaoglu
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Paulo L Pfitzinger
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Steffen Teller
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Kun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepatic, Biliary & Pancreatic Surgery, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, China
| | - Christine Waldbaur
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Magdalena U Kurkowski
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sonja Maria Wörmann
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Victoria E Shaw
- Department of Molecular and Clinical Cancer Medicine, The Liverpool Cancer Research UK Centre, Liverpool, UK
| | - Timo Kehl
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Melanie Laschinger
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, The Liverpool Cancer Research UK Centre, Liverpool, UK Liverpool NIHR Pancreas Biomedical Research Unit, Liverpool, UK
| | - Hana Algül
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
37
|
Xie F, Wang Y, Li X, Chao YC, Yue Y. Early Repeated Administration of CXCR4 Antagonist AMD3100 Dose-Dependently Improves Neuropathic Pain in Rats After L5 Spinal Nerve Ligation. Neurochem Res 2016; 41:2289-99. [PMID: 27168326 DOI: 10.1007/s11064-016-1943-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/29/2016] [Accepted: 04/30/2016] [Indexed: 01/10/2023]
Abstract
AMD3100 is a specific C-X-C chemokine receptor type 4 (CXCR4) antagonist which blocks the interaction between CXCR4 and CXCL12. Multiple lines of evidence suggest that AMD3100 has analgesic effects on many pathological pain states, including peripheral neuropathic pain. However, little is known about the underlying mechanisms. In the current study, we investigated the effect of different doses of AMD3100 on neuropathic pain in rats after L5 spinal nerve ligation. We used naloxone methiodide (NLXM) to further determine whether AMD3100-mediated analgesic effect was opioid-dependent. Behavioral study showed that early repeated administration of AMD3100 (2 and 5 mg/kg, i.p.) dose-dependently alleviates peripheral neuropathic pain. Flow cytometry, immunofluorescence and NLXM experiments showed that AMD3100 alleviates neuropathic pain partially by augmenting leukocyte-derived endogenous opioid secretion. Furthermore, we found that pro-inflammatory cytokines were down-regulated by AMD3100 using Enzyme-linked Immunosorbent Assay. Our data indicate that AMD3100 dose-dependently alleviates neuropathic pain partially by augmenting leukocyte-derived endogenous opioid secretion. This finding suggests that AMD3100 may be a viable pharmacotherapeutic strategy for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Fang Xie
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Chaoyang District, Beijing, 100020, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Chaoyang District, Beijing, 100020, China
| | - Xueyang Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Chaoyang District, Beijing, 100020, China
| | - Yu-Chieh Chao
- Department of Anesthesiology, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, Beijing, 102218, China
| | - Yun Yue
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
38
|
Wu JX, Yuan XM, Wang Q, Wei W, Xu MY. Rho/ROCK acts downstream of lysophosphatidic acid receptor 1 in modulating P2X3 receptor-mediated bone cancer pain in rats. Mol Pain 2016; 12:12/0/1744806916644929. [PMID: 27094551 PMCID: PMC4956381 DOI: 10.1177/1744806916644929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/20/2016] [Indexed: 12/27/2022] Open
Abstract
Background Lysophosphatidic acid receptor 1 and Rho/ROCK signaling is implicated in bone cancer pain development. However, it remains unknown whether the two signaling pathways function together in P2X3 receptor-mediated bone cancer pain. Results In this study, using a rat model of bone cancer, we examined the expression of P2X3 and lysophosphatidic acid receptor 1 in rat dorsal root ganglion neurons and further dissected whether lysophosphatidic acid receptor 1 and Rho/ROCK-mediated pathways interacted in modulating rat pain behavior. Bone cancer was established by inoculating Walker 256 cells into the left tibia of female Wistar rats. We observed a gradual and yet significant decline in mean paw withdrawal threshold in rats with bone cancer, but not in control rats. Our immunohistochemical staining revealed that the number of P2X3- and lysophosphatidic acid receptor 1-positive dorsal root ganglion neurons was significantly greater in rats with bone cancer than control rats. Lysophosphatidic acid receptor 1 blockade with VPC32183 significantly attenuated decline in mean paw withdrawal threshold. Flinching behavior test further showed that lysophosphatidic acid receptor 1 inhibition with VPC32183 transiently but significantly attenuated α,β-meATP-induced increase in paw lift time per minute. Rho inhibition by intrathecal BoTXC3 caused a rapid reversal in decline in mean paw withdrawal threshold of rats with bone cancer. Flinching behavior test showed that BoTXC3 transiently and significantly attenuated α,β-meATP-induced increase in paw lift time per minute. Similar findings were observed with ROCK inhibition by intrathecal Y27632. Furthermore, VPC32183 and BoTXC3 effectively aborted the appearance of lysophosphatidic acid-induced calcium influx peak. Conclusions Lysophosphatidic acid and its receptor LPAR1, acting through the Rho-ROCK pathway, regulate P2X3 receptor in the development of both mechanical and spontaneous pain in bone cancer.
Collapse
Affiliation(s)
- Jing-Xiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiao-Min Yuan
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qiong Wang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Wang Wei
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Mei-Ying Xu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
39
|
SDF1-CXCR4 Signaling Contributes to the Transition from Acute to Chronic Pain State. Mol Neurobiol 2016; 54:2763-2775. [PMID: 27011380 DOI: 10.1007/s12035-016-9875-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022]
Abstract
Emerging evidence has demonstrated the involvement of stromal cell-derived factor 1 (SDF1, also known as CXCL12)-CXCR4 signaling in a variety of pain state. However, the underlying mechanisms of SDF1-CXCR4 signaling leading to the maintenance of chronic pain states are poorly understood. In the present study, we sought to explore the role of SDF1-CXCR4 signaling in the forming of neuroplasticity by applying a model of the transition from acute to chronic pain state, named as hyperalgesic priming. Utilizing intraplantar bee venom (BV) injection, we successfully established hyperalgesic priming state and found that peripheral treating with AMD3100, a CXCR4 antagonist, or knocking down CXCR4 by intraganglionar CXCR4 small interfering RNA (siRNA) injection could prevent BV-induced primary mechanical hyperalgesia and hyperalgesic priming. Moreover, we showed that single intraplantar active SDF1 protein injection is sufficient to induce acute mechanical hyperalgesia and hyperalgesic priming through CXC4. Intraplantar coinjection of ERK inhibitor, U0126, and PI3K inhibitor, LY294002, as well as two protein translation inhibitors, temsirolimus and cordycepin, prevented the development of SDF1-induced acute mechanical hyperalgesia and hyperalgesic priming. Finally, on the models of complete Freund's adjuvant (CFA)-induced chronic inflammatory pain and spared nerve injury (SNI)-induced chronic neuropathic pain, we observed that knock-down of CXCR4 could both prevent the development and reverse the maintenance of chronic pain state. In conclusion, our present data suggested that through regulating ERK and PI3K-AKT pathways-mediated protein translation SDF1-CXCR4 signaling mediates the transition from acute pain to chronic pain state and finally contributes to the development and maintenance of chronic pain.
Collapse
|
40
|
Zhang Z, Chen H, Xu C, Song L, Huang L, Lai Y, Wang Y, Chen H, Gu D, Ren L, Yao Q. Curcumin inhibits tumor epithelial‑mesenchymal transition by downregulating the Wnt signaling pathway and upregulating NKD2 expression in colon cancer cells. Oncol Rep 2016; 35:2615-23. [PMID: 26985708 PMCID: PMC4811403 DOI: 10.3892/or.2016.4669] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/10/2016] [Indexed: 01/08/2023] Open
Abstract
Tumor invasion and metastasis are closely associated with epithelial-mesenchymal transition (EMT). EMT refers to epithelial cells under physiological and pathological conditions that are specific to mesenchymal transition. Curcumin inhibits EMT progression via Wnt signaling. The Wnt signaling pathway is a conservative EMT-related signaling pathway that is involved in the development of various tumors. In the present study, MTS assays were employed to analyze the proliferation of curcumin-treated cells. Naked cuticle homolog 2 (NKD2), chemokine receptor 4 (CXCR4) and antibodies associated with EMT were examined in SW620 colorectal cancer cell lines using western blot analysis and real-time qPCR. NKD2 small-interfering RNA (siRNA) and CXCR4 expression plasmid was synthesized and transfected into the colorectal cancer cell lines, and NKD2 and CXCR4 expression levels were detected. The results showed that curcumin significantly inhibited the proliferation of colorectal cancer cells and upregulated the expression of NKD2 in SW620 colorectal cancer cells and in the xenograft, resulting in the downregulation of key markers in the Wnt signaling. In addition, the progression of ETM was inhibited due to the overexpression of E-cadherin as well as the downregulation of vimentin. Curcumin also inhibited tumor metastasis by downregulating the expression of CXCR4 significantly. The results suggested involvement of the NKD2-Wnt-CXCR4 signaling pathway in colorectal cancer cells. In addition, curcumin is inhibit this signaling and the development of colorectal cancer.
Collapse
Affiliation(s)
- Zewei Zhang
- Department of Abdominal Surgical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Haitao Chen
- Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Chao Xu
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Lu Song
- Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Lulu Huang
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yuebiao Lai
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yuqi Wang
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Hanlu Chen
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Danlin Gu
- Department of Integrated Traditional Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Lili Ren
- Department of Integrated Traditional Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Qinghua Yao
- Department of Abdominal Surgical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
41
|
Luo X, Tai WL, Sun L, Pan Z, Xia Z, Chung SK, Cheung CW. Crosstalk between astrocytic CXCL12 and microglial CXCR4 contributes to the development of neuropathic pain. Mol Pain 2016; 12:12/0/1744806916636385. [PMID: 27030717 PMCID: PMC4956184 DOI: 10.1177/1744806916636385] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/22/2016] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Chemokine axis chemokine C-X-C motif ligand 12/C-X-C chemokine receptor type 4 (CXCL12/CXCR4) is an emerging pain modulator, but mechanisms for its involvement in neuropathic pain remain unclear. Here, we aimed to study whether CXCL12/CXCR4 axis modulated the development of neuropathic pain via glial mechanisms. In this study, two mouse models of neuropathic pain, namely partial sciatic nerve ligation (pSNL) model and chronic post-ischemia pain (CPIP) model, were used. RESULTS In the dorsal horn of L3-L5 segment of spinal cord, CXCL12 and CXCR4 were expressed in both astrocyte and microglia in normal mice. In the pSNL or CPIP model, the expression level of CXCL12 in the ipsilateral L3-L5 segment of mice spinal cord was increased in an astrocyte-dependent manner on post-operative day (POD) 3. Intrathecal administration of CXCL12 with AMD3100 (CXCR4 antagonist) or minocycline (microglia activation inhibitor), but not fluorocitrate (astrocyte activation inhibitor), reversed CXCL12-indued mechanical allodynia in naïve mice. In these models, AMD3100 and AMD3465 (CXCR4 antagonist), administered daily from 1 h before surgery and up to POD 3, attenuated the development of mechanical allodynia. Moreover, AMD3100 administered daily from 1 h before surgery and up to POD 3 downregulated mRNA levels of tumor necrosis factor alpha, interleukin 1β, and interleukin 6 in the ipsilateral L3-L5 segment of spinal cord in the pSNL and CPIP models on POD 3. CONCLUSION This study demonstrates the crosstalk between astrocytic CXCL12 and microglial CXCR4 in the pathogenesis of neuropathic pain using pSNL and CPIP models. Our results offer insights for the future research on CXCL12/CXCR4 axis and neuropathic pain therapy.
Collapse
Affiliation(s)
- Xin Luo
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Wai L Tai
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Liting Sun
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Zhiqiang Pan
- Department of Anesthesiology, Xuzhou Medical University, Jiangsu Province, China
| | - Zhengyuan Xia
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, HKSAR, China
| | - Sookja K Chung
- Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, HKSAR, China Department of Anatomy, The University of Hong Kong, HKSAR, China
| | - Chi Wai Cheung
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, HKSAR, China Department of Anatomy, The University of Hong Kong, HKSAR, China
| |
Collapse
|
42
|
Connexin 43 Mediates CXCL12 Production from Spinal Dorsal Horn to Maintain Bone Cancer Pain in Rats. Neurochem Res 2015; 41:1200-8. [DOI: 10.1007/s11064-015-1815-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/11/2015] [Accepted: 12/21/2015] [Indexed: 01/28/2023]
|
43
|
O'Brien EE, Smeester BA, Michlitsch KS, Lee JH, Beitz AJ. Colocalization of aromatase in spinal cord astrocytes: differences in expression and relationship to mechanical and thermal hyperalgesia in murine models of a painful and a non-painful bone tumor. Neuroscience 2015; 301:235-45. [PMID: 26071956 DOI: 10.1016/j.neuroscience.2015.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/14/2022]
Abstract
While spinal cord astrocytes play a key role in the generation of cancer pain, there have been no studies that have examined the relationship of tumor-induced astrocyte activation and aromatase expression during the development of cancer pain. Here, we examined tumor-induced mechanical hyperalgesia and cold allodynia, and changes in Glial fibrillary acid protein (GFAP) and aromatase expression in murine models of painful and non-painful bone cancer. We demonstrate that implantation of fibrosarcoma cells, but not melanoma cells, produces robust mechanical hyperalgesia and cold allodynia in tumor-bearing mice compared to saline-injected controls. Secondly, this increase in mechanical hyperalgesia and cold allodynia is mirrored by significant increases in both spinal astrocyte activity and aromatase expression in the dorsal horn of fibrosarcoma-bearing mice. Importantly, we show that aromatase is only found within a subset of astrocytes and not in neurons in the lumbar spinal cord. Finally, administration of an aromatase inhibitor reduced tumor-induced hyperalgesia in fibrosarcoma-bearing animals. We conclude that a painful fibrosarcoma tumor induces a significant increase in spinal astrocyte activation and aromatase expression and that the up-regulation of aromatase plays a role in the development of bone tumor-induced hyperalgesia. Since spinal aromatase is also upregulated, but to a lesser extent, in non-painful melanoma bone tumors, it may also be neuroprotective and responsive to the changing tumor environment.
Collapse
Affiliation(s)
- E E O'Brien
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - B A Smeester
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - K S Michlitsch
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - J-H Lee
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - A J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| |
Collapse
|
44
|
Corrigendum. J Neurochem 2015; 132:487. [DOI: 10.1111/jnc.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|