1
|
Li Z, Zhang M, Yang L, Fan D, Zhang P, Zhang L, Zhang J, Lu Z. Sophoricoside ameliorates cerebral ischemia-reperfusion injury dependent on activating AMPK. Eur J Pharmacol 2024; 971:176439. [PMID: 38401605 DOI: 10.1016/j.ejphar.2024.176439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
AIMS Ischemic stroke accounts for 87% of all strokes, and its death and disability bring a huge burden to society. Brain injury caused by ischemia-reperfusion (I/R) is also a major difficulty in clinical treatment and prognosis. Sophoricoside (SOP) is an isoflavone glycoside isolated from the seed of medical herb Sophora japonica L. Previously, SOP was found to be effective in anti-inflammation and glucose-lipid metabolism-related diseases. In order to investigate whether SOP has a regulatory effect on cerebral I/R injury, we conducted this study. METHODS Here, by application of SOP into MCAO (transient middle cerebral artery occlusion)-induced mice and OGD/R (oxygen glucose deprivation/reperfusion)-induced primary neurons, the regulation effects of SOP was analyzed by detecting neurological score of post-stroke mice, phenotypes of brains and brain sections, cell viabilities, and apoptosis- and inflammation-regulation. RNA sequencing and molecular biology experiments were performed to explore the mechanism of SOP regulating cerebral I/R injury. RESULTS SOP administration decreased the infarct size, neurological deficit score, neuronal cell injury, inflammation and apoptosis. Mechanistically, SOP exerted its protective effect by activating the AMP-activated protein kinase (AMPK) signaling pathway. CONCLUSION SOP inhibits cerebral I/R injury by promoting the phosphorylation of AMPK.
Collapse
Affiliation(s)
- Zhaoshuo Li
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, China
| | - Mi Zhang
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China
| | - Lixia Yang
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China; Jingmen Clinical Medical College Affiliated to Hubei Minzhu University, Jingmen, Hubei, 448000, China
| | - Ding Fan
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China; Jingmen Clinical Medical College Affiliated to Hubei Minzhu University, Jingmen, Hubei, 448000, China
| | - Peng Zhang
- School of Basic Medical Science, Wuhan University, Wuhan, Hubei, 430071, China
| | - Li Zhang
- Institute of Model Animal of Wuhan University, Wuhan, Hubei, 430071, China
| | - Jianqing Zhang
- Department of Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 445000, China
| | - Zhigang Lu
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China; Jingmen Clinical Medical College Affiliated to Hubei Minzhu University, Jingmen, Hubei, 448000, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, 445000, China.
| |
Collapse
|
2
|
Liu Y, Wu X, An J, Lv W, Geng Y, Lou T, Zhang Y. Glaucocalyxin B protects against oxygen-glucose-deprivation/reperfusion-induced neuronal injury in PC-12 cells. J Cell Biochem 2018; 120:6137-6144. [PMID: 30304556 DOI: 10.1002/jcb.27901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/24/2018] [Indexed: 02/01/2023]
Abstract
Oxidative stress has been implicated in the development of cerebral ischemia/reperfusion (I/R) injury. Glaucocalyxin B (GLB), one of five ent-kauranoid diterpenoids, was reported to possess neuroprotective activity. However, the effect of GLB on oxygen-glucose-deprivation/reperfusion (OGD/R)-induced cell injury in PC-12 cells has not been explored. PC-12 cells was treated with various concentrations of GLB (0, 2.5, 5 and 10 μM), and cell viability was detected using the MTT assay. PC-12 cells were pretreated with the indicated concentration of GLB (2.5-10 μM, 2 hours pretreatment), and were maintained under OGD for 3 hours, followed by 24 hours of reoxygenation. Cell viability was assessed using the MTT assay. The levels of superoxide dismutase, malondialdehyde, and glutathione peroxidase were detected using commercially available ELISA Kits. Intracellular reactive oxygen species level was measured using the fluorescent probe 2',7'-dichlorofluorescein diacetate. The levels of Bcl-2, Bax, p-Akt, Akt, p-mTOR, mTOR were detected using Western blot. Our results revealed that GLB significantly protected PC12 cells against OGD/R-induced cell injury. In addition, GLB efficiently inhibited oxidative stress and cell apoptosis in OGD/R-stimulated PC-12 cells. Mechanistic studies revealed that pretreatment with GLB could induce the activation of Akt/mTOR signaling pathway resulting in protection of OGD-treated PC12 cells. In conclusion, our data indicate for the first time that GLB protects against OGD/R-induced neuronal injury in PC-12 cells. The mechanism of the protective effect of GLB is partially associated with activation of the Akt/mTOR signaling pathway. Thus, GLB may be a potential agent for protection against cerebral I/R injury.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Pharmacy, Huaihe Hospital of Henan University, Kaifeng, China
| | - Xianchuang Wu
- Department of Pharmacy, Huaihe Hospital of Henan University, Kaifeng, China
| | - Jihong An
- Department of Pharmacy, Huaihe Hospital of Henan University, Kaifeng, China
| | - Weiling Lv
- Department of Pharmacy, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yanna Geng
- Department of Pharmacy, Huaihe Hospital of Henan University, Kaifeng, China
| | - Tingting Lou
- Department of Pharmacy, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yongzhou Zhang
- Department of Pharmacy, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
3
|
Functions of Rhotekin, an Effector of Rho GTPase, and Its Binding Partners in Mammals. Int J Mol Sci 2018; 19:ijms19072121. [PMID: 30037057 PMCID: PMC6073136 DOI: 10.3390/ijms19072121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/26/2022] Open
Abstract
Rhotekin is an effector protein for small GTPase Rho. This protein consists of a Rho binding domain (RBD), a pleckstrin homology (PH) domain, two proline-rich regions and a C-terminal PDZ (PSD-95, Discs-large, and ZO-1)-binding motif. We, and other groups, have identified various binding partners for Rhotekin and carried out biochemical and cell biological characterization. However, the physiological functions of Rhotekin, per se, are as of yet largely unknown. In this review, we summarize known features of Rhotekin and its binding partners in neuronal tissues and cancer cells.
Collapse
|
4
|
Li L, Qin JJ, Guo S, Zhang P, Gong J, Zhang XJ, Zheng A, Xia H, Li H. Attenuation of cerebral ischemic injury in interferon regulatory factor 3-deficient rat. J Neurochem 2015; 136:871-883. [PMID: 26617114 DOI: 10.1111/jnc.13448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022]
Abstract
Interferon regulatory factor 3 (IRF3) is a transcription factor that plays a central role in the innate immune response, apoptosis, and oncogenesis. Previous studies have shown that endogenous IRF3 does not affect stroke in mice; however, paradoxically, elevated IRF3 expression was observed in the rat brains following cerebral ischemia/reperfusion (I/R) injury, indicating that IRF3 may have different functions during stroke in rats than in mice. A clear and comprehensive study of the effect of IRF3 on stroke in rats has been hampered by the lack of an IRF3-knockout rat strain. In this study, a novel IRF3 knockout rat strain and a transgenic rat strain with neuronal-specific IRF3 over-expression (IRF3-TG) were created. Subsequently, the generated IRF3-knockout rats, the neuronal-specific IRF3 over-expressing rats and their corresponding controls were subjected to transient middle cerebral artery occlusion and followed by reperfusion, to investigate the exact role of IRF3 in cerebral I/R in rats. In contrast to the results in mice, IRF3 deficiency in rats provided significant protection against cerebral I/R injury and inhibited neuronal apoptosis, inflammation, and oxidative stress after cerebral I/R injury; the opposite patterns were observed in neuronal-specific IRF3 over-expressing rats. Taken together, these data demonstrate that IRF3 plays a negative regulatory role in cerebral I/R in rats, and IRF3 may be an attractive therapeutic target for preventing stroke. In the present study, we discovered that the transcription factor IRF3, which plays a central role in the innate immune response, apoptosis, and oncogenesis, could exacerbate cerebral ischemia/reperfusion (I/R) injury via activating caspase-dependent neuronal apoptosis, inducing inflammation and oxidative stress. These findings suggest that IRF3 may be an attractive therapeutic target for the prevention of stroke.
Collapse
Affiliation(s)
- Lei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China
| | - Sen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China
| | - Peng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China
| | - Jun Gong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China.,College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ankang Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Abstract
UNLABELLED Cell-surface receptors provide potential targets for the translation of bench-side findings into therapeutic strategies; however, this approach for the treatment of stroke is disappointing, at least partially due to an incomplete understanding of the targeted factors. Previous studies of oncostatin M (OSM), a member of the gp130 cytokine family, have been limited, as mouse models alone may not strongly resemble the human condition enough. In addition, the precise function of OSM in the CNS remains unclear. Here, we report that human OSM is neuroprotective in vivo and in vitro by recruiting OSMRβ in the setting of ischemic stroke. Using gain- and loss-of-function approaches, we demonstrated that decreased neuronal OSMRβ expression results in deteriorated stroke outcomes but that OSMRβ overexpression in neurons is cerebroprotective. Moreover, administering recombinant human OSM to mice before the onset of I/R showed that human OSM can be protective in rodent models of ischemic stroke. Mechanistically, OSM/OSMRβ activate the JAK2/STAT3 prosurvival signaling pathway. Collectively, these data support that human OSM may represent a promising drug candidate for stroke treatment. SIGNIFICANCE STATEMENT OSM, a member of the gp130 cytokine family, regulates neuronal function and survival. OSM engages a second receptor, either LIFRα or OSMRβ, before recruiting gp130. However, it is not clear whether OSM/OSMRβ signaling is involved in neuroprotection in the setting of ischemic stroke. Recent studies show that, compared with mouse disease models, the OSM receptor system in rats more closely resembles that in humans. In the present study, we use genetic manipulations of OSMRβ in both mouse and rat stroke models to demonstrate that OSMRβ in neurons is critical for neuronal survival during cerebral ischemic/reperfusion. Interestingly, administration of human OSM also leads to improved stroke outcomes. Therefore, OSM may represent a promising drug candidate for stroke treatment.
Collapse
|