1
|
Crocetti L, Guerrini G, Melani F, Mascia MP, Giovannoni MP. 3,8-Disubstituted Pyrazolo[1,5-a]quinazoline as GABA A Receptor Modulators: Synthesis, Electrophysiological Assays, and Molecular Modelling Studies. Int J Mol Sci 2024; 25:10840. [PMID: 39409169 PMCID: PMC11477267 DOI: 10.3390/ijms251910840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
As a continuation of our study in the field of GABAA receptor modulators, we report the design and synthesis of new pyrazolo[1,5-a]quinazoline (PQ) bearing at the 8-position an oxygen or nitrogen function. All the final compounds and some intermediates, showing the three different forms of the pyrazolo[1,5-a]quinazoline scaffold (5-oxo-4,5-dihydro, -4,5-dihydro, and heteroaromatic form), have been screened with an electrophysiological technique on recombinant GABAAR (α1β2γ2-GABAAR), expressed in Xenopus laevis oocytes, by evaluating the variation in produced chlorine current, and permitting us to identify some interesting compounds (6d, 8a, 8b, and 14) on which further functional assays were performed. Molecular modelling studies (docking, minimization of complex ligand-receptor, and MD model) and a statistical analysis by a Hierarchical Cluster Analysis (HCA) have collocated these ligands in the class corresponding to their pharmacological profile. The HCA results are coherent with the model we recently published (Proximity Frequencies), identifying the residues γThr142 and αHis102 as discriminant for the agonist and antagonist profile.
Collapse
Affiliation(s)
- Letizia Crocetti
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (L.C.); (F.M.); (M.P.G.)
| | - Gabriella Guerrini
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (L.C.); (F.M.); (M.P.G.)
| | - Fabrizio Melani
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (L.C.); (F.M.); (M.P.G.)
| | - Maria Paola Mascia
- CNR-Institute of Neuroscience, Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy;
| | - Maria Paola Giovannoni
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (L.C.); (F.M.); (M.P.G.)
| |
Collapse
|
2
|
Mohamad FH, Mohamad Jamali MA, Che Has AT. Structure-function Studies of GABA (A) Receptors and Related computer-aided Studies. J Mol Neurosci 2023; 73:804-817. [PMID: 37750966 DOI: 10.1007/s12031-023-02158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
The γ-aminobutyric acid type A receptor (GABA (A) receptor) is a membrane protein activated by the neurotransmitter GABA. Structurally, this major inhibitory neurotransmitter receptor in the human central nervous system is a pentamer that can be built from a selection of 19 subunits consisting of α(1,2,3,4,5 or 6), β (1,2 or 3), γ (1,2 or 3), ρ (1,2 or 3), and δ, π, θ, and ε. This creates several possible pentameric arrangements, which also influence the pharmacological and physiological properties of the receptor. The complexity and heterogeneity of the receptors are further increased by the addition of short and long splice variants in several subunits and the existence of multiple allosteric binding sites and expansive ligands that can bind to the receptors. Therefore, a comprehensive understanding of the structure and function of the receptors is required to gain novel insights into the consequences of receptor dysfunction and subsequent drug development studies. Notably, advancements in computational-aided studies have facilitated the elucidation of residual interactions and exploring energy binding, which may otherwise be challenging to investigate. In this review, we aim to summarize the current understanding of the structure and function of GABA (A) receptors obtained from advancements in computational-aided applications.
Collapse
Affiliation(s)
- Fatin H Mohamad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| | - Muhamad Arif Mohamad Jamali
- Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia.
| |
Collapse
|
3
|
Draskovits M, Catorci D, Wimmer L, Rehman S, Siebert DCB, Ernst M, Schnürch M, Mihovilovic MD. Novel synthetic procedures for C2 substituted imidazoquinolines as ligands for the α/β-interface of the GABAA-receptor. MONATSHEFTE FUR CHEMIE 2022; 154:1391-1404. [PMID: 38020487 PMCID: PMC10667396 DOI: 10.1007/s00706-022-02988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/18/2022] [Indexed: 11/25/2022]
Abstract
A series of substituted imidazoquinolines, a structurally related chemotype to pyrazoloquinolinones, a well-known class of GABAA ligands, was prepared via two synthetic procedures and the efficiency of these procedures were compared. One method relies on classical heterocyclic synthesis, the other one aims at late-stage decoration of a truncated scaffold via direct C-H functionalization. A pharmacological evaluation disclosed that one of the synthesized derivatives showed interesting activity on a α1β3 containing receptor subtype. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s00706-022-02988-8.
Collapse
Affiliation(s)
- Markus Draskovits
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Daniele Catorci
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Laurin Wimmer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Sabah Rehman
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | | | - Margot Ernst
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Marko D. Mihovilovic
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| |
Collapse
|
4
|
Gascoigne DA, Drobyshevsky A, Aksenov DP. The Contribution of Dysfunctional Chloride Channels to Neurovascular Deficiency and Neurodegeneration. Front Pharmacol 2021; 12:754743. [PMID: 34671264 PMCID: PMC8520995 DOI: 10.3389/fphar.2021.754743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/21/2021] [Indexed: 01/11/2023] Open
Affiliation(s)
- David A. Gascoigne
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, United States
| | - Daniil P. Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States,Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL, United States,*Correspondence: Daniil P. Aksenov,
| |
Collapse
|
5
|
Fabjan J, Koniuszewski F, Schaar B, Ernst M. Structure-Guided Computational Methods Predict Multiple Distinct Binding Modes for Pyrazoloquinolinones in GABA A Receptors. Front Neurosci 2021; 14:611953. [PMID: 33519364 PMCID: PMC7844064 DOI: 10.3389/fnins.2020.611953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
Pyrazoloquinolinones (PQs) are a versatile class of GABAA receptor ligands. It has been demonstrated that high functional selectivity for certain receptor subtypes can be obtained by specific substitution patterns, but so far, no clear SAR rules emerge from the studies. As is the case for many GABAA receptor targeting chemotypes, PQs can interact with distinct binding sites on a given receptor pentamer. In pentamers of αβγ composition, such as the most abundant α1β2γ2 subtype, many PQs are high affinity binders of the benzodiazepine binding site at the extracellular α+/γ2- interfaces. There they display a functionally near silent, flumazenil-like allosteric activity. More recently, interactions with extracellular α+/β- interfaces have been investigated, where strong positive modulation can be steered toward interesting subtype preferences. The most prominent examples are functionally α6-selective PQs. Similar to benzodiazepines, PQs also seem to interact with sites in the transmembrane domain, mainly the sites used by etomidate and barbiturates. This promiscuity leads to potential contributions from multiple sites to net modulation. Developing ligands that interact exclusively with the extracellular α+/β- interfaces would be desired. Correlating functional profiles with binding sites usage is hampered by scarce and heterogeneous experimental data, as shown in our meta-analysis of aggregated published data. In the absence of experimental structures, bound states can be predicted with pharmacophore matching methods and with computational docking. We thus performed pharmacophore matching studies for the unwanted sites, and computational docking for the extracellular α1,6+/β3- interfaces. The results suggest that PQs interact with their binding sites with diverse binding modes. As such, rational design of improved ligands needs to take a complex structure-activity landscape with branches between sub-series of derivatives into account. We present a workflow, which is suitable to identify and explore potential branching points on the structure-activity landscape of any small molecule chemotype.
Collapse
Affiliation(s)
| | | | | | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Blom AEM, Su JY, Repka LM, Reisman SE, Dougherty DA. Synthesis and Biological Evaluation of Pyrroloindolines as Positive Allosteric Modulators of the α1β2γ2 GABA A Receptor. ACS Med Chem Lett 2020; 11:2204-2211. [PMID: 33214830 DOI: 10.1021/acsmedchemlett.0c00340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022] Open
Abstract
γ-Aminobutyric acid type A (GABAA) receptors are key mediators of central inhibitory neurotransmission and have been implicated in several disorders of the central nervous system. Some positive allosteric modulators (PAMs) of this receptor provide great therapeutic benefits to patients. However, adverse effects remain a challenge. Selective targeting of GABAA receptors could mitigate this problem. Here, we describe the synthesis and functional evaluation of a novel series of pyrroloindolines that display significant modulation of the GABAA receptor, acting as PAMs. We found that halogen incorporation at the C5 position greatly increased the PAM potency relative to the parent ligand, while substitutions at other positions generally decreased potency. Mutagenesis studies suggest that the binding site lies at the top of the transmembrane domain.
Collapse
Affiliation(s)
- Annet E M Blom
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Justin Y Su
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Lindsay M Repka
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sarah E Reisman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
7
|
Benkherouf AY, Logrén N, Somborac T, Kortesniemi M, Soini SL, Yang B, Salo-Ahen OMH, Laaksonen O, Uusi-Oukari M. Hops compounds modulatory effects and 6-prenylnaringenin dual mode of action on GABA A receptors. Eur J Pharmacol 2020; 873:172962. [PMID: 32001220 DOI: 10.1016/j.ejphar.2020.172962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/17/2019] [Accepted: 01/24/2020] [Indexed: 02/05/2023]
Abstract
Hops (Humulus lupulus L.), a major component of beer, contain potentially neuroactive compounds that made it useful in traditional medicine as a sleeping aid. The present study aims to investigate the individual components in hops acting as allosteric modulators in GABAA receptors and bring further insight into the mode of action behind the sedative properties of hops. GABA-potentiating effects were measured using [3H]ethynylbicycloorthobenzoate (EBOB) radioligand binding assay in native GABAA receptors. Flumazenil sensitivity of GABA-potentiating effects, [3H]Ro 15-4513, and [3H]flunitrazepam binding assays were used to examine the binding to the classical benzodiazepines site. Humulone (alpha acid) and 6-prenylnaringenin (prenylflavonoid) were the most potent compounds displaying a modulatory activity at low micromolar concentrations. Humulone and 6-prenylnaringenin potentiated GABA-induced displacement of [3H]EBOB binding in a concentration-dependent manner where the IC50 values for this potentiation in native GABAA receptors were 3.2 μM and 3.7 μM, respectively. Flumazenil had no significant effects on humulone- or 6-prenylnaringenin-induced displacement of [3H]EBOB binding. [3H]Ro 15-4513 and [3H]flunitrazepam displacements were only minor with humulone but surprisingly prominent with 6-prenylnaringenin despite its flumazenil-insensitive modulatory activity. Thus, we applied molecular docking methods to investigate putative binding sites and poses of 6-prenylnaringenin at the GABAA receptor α1β2γ2 isoform. Radioligand binding and docking results suggest a dual mode of action by 6-prenylnaringenin on GABAA receptors where it may act as a positive allosteric modulator at α+β- binding interface as well as a null modulator at the flumazenil-sensitive α+γ2- binding interface.
Collapse
Affiliation(s)
- Ali Y Benkherouf
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Nora Logrén
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | - Tamara Somborac
- Pharmaceutical Sciences Laboratory and Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Maaria Kortesniemi
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | - Sanna L Soini
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | - Outi M H Salo-Ahen
- Pharmaceutical Sciences Laboratory and Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | - Mikko Uusi-Oukari
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland.
| |
Collapse
|
8
|
GABA A Receptor Ligands Often Interact with Binding Sites in the Transmembrane Domain and in the Extracellular Domain-Can the Promiscuity Code Be Cracked? Int J Mol Sci 2020; 21:ijms21010334. [PMID: 31947863 PMCID: PMC6982053 DOI: 10.3390/ijms21010334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 01/06/2023] Open
Abstract
Many allosteric binding sites that modulate gamma aminobutyric acid (GABA) effects have been described in heteropentameric GABA type A (GABAA) receptors, among them sites for benzodiazepines, pyrazoloquinolinones and etomidate. Diazepam not only binds at the high affinity extracellular “canonical” site, but also at sites in the transmembrane domain. Many ligands of the benzodiazepine binding site interact also with homologous sites in the extracellular domain, among them the pyrazoloquinolinones that exert modulation at extracellular α+/β− sites. Additional interaction of this chemotype with the sites for etomidate has also been described. We have recently described a new indole-based scaffold with pharmacophore features highly similar to pyrazoloquinolinones as a novel class of GABAA receptor modulators. Contrary to what the pharmacophore overlap suggests, the ligand presented here behaves very differently from the identically substituted pyrazoloquinolinone. Structural evidence demonstrates that small changes in pharmacophore features can induce radical changes in ligand binding properties. Analysis of published data reveals that many chemotypes display a strong tendency to interact promiscuously with binding sites in the transmembrane domain and others in the extracellular domain of the same receptor. Further structural investigations of this phenomenon should enable a more targeted path to less promiscuous ligands, potentially reducing side effect liabilities.
Collapse
|
9
|
Limon A, Delbruck E, Yassine A, Pandya D, Myers RM, Barchas JD, Lee F, Schatzberg, Watson SJ, Akil H, Bunney WE, Vawter MP, Sequeira A. Electrophysiological evaluation of extracellular spermine and alkaline pH on synaptic human GABA A receptors. Transl Psychiatry 2019; 9:218. [PMID: 31488811 PMCID: PMC6728327 DOI: 10.1038/s41398-019-0551-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 01/25/2023] Open
Abstract
Polyamines have fundamental roles in brain homeostasis as key modulators of cellular excitability. Several studies have suggested alterations in polyamine metabolism in stress related disorders, suicide, depression, and neurodegeneration, making the pharmacological modulation of polyamines a highly appealing therapeutic strategy. Polyamines are small aliphatic molecules that can modulate cationic channels involved in neuronal excitability. Previous indirect evidence has suggested that polyamines can modulate anionic GABAA receptors (GABAARs), which mediate inhibitory signaling and provide a direct route to reduce hyperexcitability. Here, we attempted to characterize the effect that spermine, the polyamine with the strongest reported effect on GABAARs, has on human postmortem native GABAARs. We microtransplanted human synaptic membranes from the dorsolateral prefrontal cortex of four cases with no history of mental or neurological disorders, and directly recorded spermine effects on ionic GABAARs responses on microtransplanted oocytes. We show that in human synapses, inhibition of GABAARs by spermine was better explained by alkalization of the extracellular solution. Additionally, spermine had no effect on the potentiation of GABA-currents by diazepam, indicating that even if diazepam binding is enhanced by spermine, it does not translate to changes in functional activity. Our results clearly demonstrate that while extracellular spermine does not have direct effects on human native synaptic GABAARs, spermine-mediated shifts of pH inhibit GABAARs. Potential spermine-mediated increase of pH in synapses in vivo may therefore participate in increased neuronal activity observed during physiological and pathological states, and during metabolic alterations that increase the release of spermine to the extracellular milieu.
Collapse
Affiliation(s)
- A. Limon
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA ,0000 0001 1547 9964grid.176731.5Department of Neurology, Mitchel Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, USA
| | - E. Delbruck
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| | - A. Yassine
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| | - D. Pandya
- 0000 0001 1547 9964grid.176731.5Department of Neurology, Mitchel Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, USA
| | - R. M. Myers
- 0000 0004 0408 3720grid.417691.cHudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - J. D. Barchas
- 000000041936877Xgrid.5386.8Department of Psychiatry, Weill Cornell Medical College, New York, NY USA
| | - F. Lee
- 000000041936877Xgrid.5386.8Department of Psychiatry, Weill Cornell Medical College, New York, NY USA
| | - Schatzberg
- 0000000419368956grid.168010.eDepartment of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA USA
| | - S. J. Watson
- 0000000086837370grid.214458.eMolecular and Behavioral Neurosciences Institute, University of Michigan, Ann Arbor, MI USA
| | - H. Akil
- 0000000086837370grid.214458.eMolecular and Behavioral Neurosciences Institute, University of Michigan, Ann Arbor, MI USA
| | - W. E. Bunney
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| | - M. P. Vawter
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| | - A. Sequeira
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| |
Collapse
|
10
|
Simeone X, Iorio M, Siebert D, Rehman S, Schnürch M, Mihovilovic M, Ernst M. Defined concatenated α6α1β3γ2 GABAA receptor constructs reveal dual action of pyrazoloquinolinone allosteric modulators. Bioorg Med Chem 2019; 27:3167-3178. [DOI: 10.1016/j.bmc.2019.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/08/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022]
|
11
|
Synthesis of New GABA A Receptor Modulator with Pyrazolo[1,5-a]quinazoline (PQ) Scaffold. Int J Mol Sci 2019; 20:ijms20061438. [PMID: 30901916 PMCID: PMC6470557 DOI: 10.3390/ijms20061438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 12/17/2022] Open
Abstract
We previously published a series of 8-methoxypirazolo[1,5-a]quinazolines (PQs) and their 4,5-dihydro derivatives (4,5(H)PQ) bearing the (hetero)arylalkylester group at position 3 as ligands at the γ-aminobutyric type A (GABAA) subtype receptor. Continuing the study in this field, we report here the design and synthesis of 3-(hetero)arylpyrazolo[1,5-a]quinazoline and 3-(hetero)aroylpyrazolo[1,5-a]quinazoline 8-methoxy substituted as interesting analogs of the above (hetero)arylalkylester, in which the shortening or the removal of the linker between the 3-(hetero)aryl ring and the PQ was performed. Only compounds that are able to inhibit radioligand binding by more than 80% at 10 μM have been selected for electrophysiological studies on recombinant α1β2γ2L GABAA receptors. Some compounds show a promising profile. For example, compounds 6a and 6b are able to modulate the GABAAR in an opposite manner, since 6b enhances and 6a reduces the variation of the chlorine current, suggesting that they act as a partial agonist and an inverse partial agonist, respectively. The most potent derivative was 3-(4-methoxyphenylcarbonyl)-8-methoxy-4,5-dihydropyrazolo[1,5-a] quinazoline 11d, which reaches a maximal activity at 1 μM (+54%), and it enhances the chlorine current at ≥0.01 μM. Finally, compound 6g, acting as a null modulator at α1β2γ2L, shows the ability to antagonize the full agonist diazepam and the potentiation of CGS 9895 on the new α+/β− ‘non-traditional’ benzodiazepine site.
Collapse
|
12
|
Hernandez CC, Macdonald RL. A structural look at GABA A receptor mutations linked to epilepsy syndromes. Brain Res 2019; 1714:234-247. [PMID: 30851244 DOI: 10.1016/j.brainres.2019.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
Understanding the genetic variation in GABAA receptor subunit genes (GABRs), GABRA1-6, GABRB1-3, GABRG1-3 and GABRD, in individuals affected by epilepsy may improve the diagnosis and treatment of epilepsy syndromes through identification of disease-associated variants. However, the lack of functional analysis and validation of many novel and previously reported familial and de novo mutations have made it challenging to address meaningful gene associations with epilepsy syndromes. GABAA receptors belong to the Cys-loop receptor family. Even though GABAA receptor mutant residues are widespread among different GABRs, their frequent occurrence in important structural domains that share common functional features suggests associations between structure and function.
Collapse
Affiliation(s)
- Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
13
|
Olsen RW. GABA A receptor: Positive and negative allosteric modulators. Neuropharmacology 2018; 136:10-22. [PMID: 29407219 PMCID: PMC6027637 DOI: 10.1016/j.neuropharm.2018.01.036] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/11/2022]
Abstract
gamma-Aminobutyric acid (GABA)-mediated inhibitory neurotransmission and the gene products involved were discovered during the mid-twentieth century. Historically, myriad existing nervous system drugs act as positive and negative allosteric modulators of these proteins, making GABA a major component of modern neuropharmacology, and suggesting that many potential drugs will be found that share these targets. Although some of these drugs act on proteins involved in synthesis, degradation, and membrane transport of GABA, the GABA receptors Type A (GABAAR) and Type B (GABABR) are the targets of the great majority of GABAergic drugs. This discovery is due in no small part to Professor Norman Bowery. Whereas the topic of GABABR is appropriately emphasized in this special issue, Norman Bowery also made many insights into GABAAR pharmacology, the topic of this article. GABAAR are members of the ligand-gated ion channel receptor superfamily, a chloride channel family of a dozen or more heteropentameric subtypes containing 19 possible different subunits. These subtypes show different brain regional and subcellular localization, age-dependent expression, and potential for plastic changes with experience including drug exposure. Not only are GABAAR the targets of agonist depressants and antagonist convulsants, but most GABAAR drugs act at other (allosteric) binding sites on the GABAAR proteins. Some anxiolytic and sedative drugs, like benzodiazepine and related drugs, act on GABAAR subtype-dependent extracellular domain sites. General anesthetics including alcohols and neurosteroids act at GABAAR subunit-interface trans-membrane sites. Ethanol at high anesthetic doses acts on GABAAR subtype-dependent trans-membrane domain sites. Ethanol at low intoxicating doses acts at GABAAR subtype-dependent extracellular domain sites. Thus GABAAR subtypes possess pharmacologically specific receptor binding sites for a large group of different chemical classes of clinically important neuropharmacological agents. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Richard W Olsen
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
14
|
The Benzodiazepine Binding Sites of GABAA Receptors. Trends Pharmacol Sci 2018; 39:659-671. [DOI: 10.1016/j.tips.2018.03.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 11/24/2022]
|
15
|
Treven M, Siebert DCB, Holzinger R, Bampali K, Fabjan J, Varagic Z, Wimmer L, Steudle F, Scholze P, Schnürch M, Mihovilovic MD, Ernst M. Towards functional selectivity for α6β3γ2 GABA A receptors: a series of novel pyrazoloquinolinones. Br J Pharmacol 2018; 175:419-428. [PMID: 29127702 PMCID: PMC5773961 DOI: 10.1111/bph.14087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE The GABAA receptors are ligand-gated ion channels, which play an important role in neurotransmission. Their variety of binding sites serves as an appealing target for many clinically relevant drugs. Here, we explored the functional selectivity of modulatory effects at specific extracellular α+/β- interfaces, using a systematically varied series of pyrazoloquinolinones. EXPERIMENTAL APPROACH Recombinant GABAA receptors were expressed in Xenopus laevis oocytes and modulatory effects on GABA-elicited currents by the newly synthesized and reference compounds were investigated by the two-electrode voltage clamp method. KEY RESULTS We identified a new compound which, to the best of our knowledge, shows the highest functional selectivity for positive modulation at α6β3γ2 GABAA receptors with nearly no residual activity at the other αxβ3γ2 (x = 1-5) subtypes. This modulation was independent of affinity for α+/γ- interfaces. Furthermore, we demonstrated for the first time a compound that elicits a negative modulation at specific extracellular α+/β- interfaces. CONCLUSION AND IMPLICATIONS These results constitute a major step towards a potential selective positive modulation of certain α6-containing GABAA receptors, which might be useful to elicit their physiological role. Furthermore, these studies pave the way towards insights into molecular principles that drive positive versus negative allosteric modulation of specific GABAA receptor isoforms.
Collapse
Affiliation(s)
- Marco Treven
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University ViennaViennaAustria
| | | | - Raphael Holzinger
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Konstantina Bampali
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Jure Fabjan
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Zdravko Varagic
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Laurin Wimmer
- Institute of Applied Synthetic ChemistryTU WienViennaAustria
| | - Friederike Steudle
- Department of Pathobiology of the Nervous System, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain ResearchMedical University ViennaViennaAustria
| | | | | | - Margot Ernst
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University ViennaViennaAustria
| |
Collapse
|
16
|
Simeone X, Siebert DCB, Bampali K, Varagic Z, Treven M, Rehman S, Pyszkowski J, Holzinger R, Steudle F, Scholze P, Mihovilovic MD, Schnürch M, Ernst M. Molecular tools for GABA A receptors: High affinity ligands for β1-containing subtypes. Sci Rep 2017; 7:5674. [PMID: 28720884 PMCID: PMC5516028 DOI: 10.1038/s41598-017-05757-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 06/05/2017] [Indexed: 12/15/2022] Open
Abstract
γ-Aminobutyric acid type A (GABAA) receptors are pentameric GABA-gated chloride channels that are, in mammalians, drawn from a repertoire of 19 different genes, namely α1-6, β1-3, γ1-3, δ, ε, θ, π and ρ1-3. The existence of this wide variety of subunits as well as their diverse assembly into different subunit compositions result in miscellaneous receptor subtypes. In combination with the large number of known and putative allosteric binding sites, this leads to a highly complex pharmacology. Recently, a novel binding site at extracellular α+/β- interfaces was described as the site of modulatory action of several pyrazoloquinolinones. In this study we report a highly potent ligand from this class of compounds with pronounced β1-selectivity that mainly lacks α-subunit selectivity. It constitutes the most potent β1-selective positive allosteric modulatory ligand with known binding site. In addition, a proof of concept pyrazoloquinolinone ligand lacking the additional high affinity interaction with the benzodiazepine binding site is presented. Ultimately, such ligands can be used as invaluable molecular tools for the detection of β1-containing receptor subtypes and the investigation of their abundance and distribution.
Collapse
Affiliation(s)
- Xenia Simeone
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - David C B Siebert
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060, Vienna, Austria
| | - Konstantina Bampali
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Zdravko Varagic
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Marco Treven
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Sabah Rehman
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Jakob Pyszkowski
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Raphael Holzinger
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Friederike Steudle
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060, Vienna, Austria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060, Vienna, Austria
| | - Margot Ernst
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| |
Collapse
|