1
|
Nijakowski K, Owecki W, Jankowski J, Surdacka A. Salivary Biomarkers for Alzheimer's Disease: A Systematic Review with Meta-Analysis. Int J Mol Sci 2024; 25:1168. [PMID: 38256241 PMCID: PMC10817083 DOI: 10.3390/ijms25021168] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's Disease (AD) is the most common neurodegenerative disease which manifests with progressive cognitive impairment, leading to dementia. Considering the noninvasive collection of saliva, we designed the systematic review to answer the question "Are salivary biomarkers reliable for the diagnosis of Alzheimer's Disease?" Following the inclusion and exclusion criteria, 30 studies were included in this systematic review (according to the PRISMA statement guidelines). Potential biomarkers include mainly proteins, metabolites and even miRNAs. Based on meta-analysis, in AD patients, salivary levels of beta-amyloid42 and p-tau levels were significantly increased, and t-tau and lactoferrin were decreased at borderline statistical significance. However, according to pooled AUC, lactoferrin and beta-amyloid42 showed a significant predictive value for salivary-based AD diagnosis. In conclusion, potential markers such as beta-amyloid42, tau and lactoferrin can be detected in the saliva of AD patients, which could reliably support the early diagnosis of this neurodegenerative disease.
Collapse
Affiliation(s)
- Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| | - Wojciech Owecki
- Student’s Scientific Group in Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland (J.J.)
| | - Jakub Jankowski
- Student’s Scientific Group in Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland (J.J.)
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| |
Collapse
|
2
|
Jovičić SM. Enzyme ChE, cholinergic therapy and molecular docking: Significant considerations and future perspectives. Int J Immunopathol Pharmacol 2024; 38:3946320241289013. [PMID: 39367568 PMCID: PMC11526157 DOI: 10.1177/03946320241289013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
Enzyme Che plays an essential role in cholinergic and non-cholinergic functions. It is present in the fertilized/unfertilized eggs and sperm of different species. Inclusion criteria for data collection from electronic databases NCBI and Google Scholar are enzyme AChE/BChE, cholinergic therapy, genomic organization and gene transcription, enzyme structure, biogenesis, transport, processing and localization, molecular signaling and biological function, polymorphism and influencing factors. Enzyme Che acts as a signaling receptor during hematopoiesis, protein adhesion, amyloid fiber formation, neurite outgrowth, bone development, and maturation, explaining the activity out of synaptic neurotransmission. Polymorphism in the Che genes correlates to various diseases and diverse drug responses. In particular, change accompanies cancer, neurodegenerative, and cardiovascular disease. Literature knowledge indicates the importance of Che inhibitors that influence biochemical and molecular pathways in disease treatment, genomic organization, gene transcription, structure, biogenesis, transport, processing, and localization of Che enzyme. Enzyme Che polymorphism changes indicate the possibility of efficient and new inhibitor drug target mechanisms in diverse research areas.
Collapse
Affiliation(s)
- Snežana M Jovičić
- Department of Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Rayff da Silva P, de Andrade JC, de Sousa NF, Portela ACR, Oliveira Pires HF, Remígio MCRB, da Nóbrega Alves D, de Andrade HHN, Dias AL, Salvadori MGDSS, de Oliveira Golzio AMF, de Castro RD, Scotti MT, Felipe CFB, de Almeida RN, Scotti L. Computational Studies Applied to Linalool and Citronellal Derivatives Against Alzheimer's and Parkinson's Disorders: A Review with Experimental Approach. Curr Neuropharmacol 2023; 21:842-866. [PMID: 36809939 PMCID: PMC10227923 DOI: 10.2174/1570159x21666230221123059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 02/24/2023] Open
Abstract
Alzheimer's and Parkinson's are neurodegenerative disorders that affect a great number of people around the world, seriously compromising the quality of life of individuals, due to motor and cognitive damage. In these diseases, pharmacological treatment is used only to alleviate symptoms. This emphasizes the need to discover alternative molecules for use in prevention. Using Molecular Docking, this review aimed to evaluate the anti-Alzheimer's and anti-Parkinson's activity of linalool and citronellal, as well as their derivatives. Before performing Molecular Docking simulations, the compounds' pharmacokinetic characteristics were evaluated. For Molecular Docking, 7 chemical compounds derived from citronellal, and 10 compounds derived from linalool, and molecular targets involved in Alzheimer's and Parkinson's pathophysiology were selected. According to the Lipinski rules, the compounds under study presented good oral absorption and bioavailability. For toxicity, some tissue irritability was observed. For Parkinson-related targets, the citronellal and linalool derived compounds revealed excellent energetic affinity for α-Synuclein, Adenosine Receptors, Monoamine Oxidase (MAO), and Dopamine D1 receptor proteins. For Alzheimer disease targets, only linalool and its derivatives presented promise against BACE enzyme activity. The compounds studied presented high probability of modulatory activity against the disease targets under study, and are potential candidates for future drugs.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Jéssica Cabral de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Natália Ferreira de Sousa
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Anne Caroline Ribeiro Portela
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Hugo Fernandes Oliveira Pires
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Maria Caroline Rodrigues Bezerra Remígio
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Danielle da Nóbrega Alves
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Humberto Hugo Nunes de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Arthur Lins Dias
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | | | | | - Ricardo Dias de Castro
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Marcus T. Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Cícero Francisco Bezerra Felipe
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| |
Collapse
|
4
|
Protection of insect neurons by erythropoietin/CRLF3-mediated regulation of pro-apoptotic acetylcholinesterase. Sci Rep 2022; 12:18565. [PMID: 36329181 PMCID: PMC9633726 DOI: 10.1038/s41598-022-22035-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Cytokine receptor-like factor 3 (CRLF3) is a conserved but largely uncharacterized orphan cytokine receptor of eumetazoan animals. CRLF3-mediated neuroprotection in insects can be stimulated with human erythropoietin. To identify mechanisms of CRLF3-mediated neuroprotection we studied the expression and proapoptotic function of acetylcholinesterase in insect neurons. We exposed primary brain neurons from Tribolium castaneum to apoptogenic stimuli and dsRNA to interfere with acetylcholinesterase gene expression and compared survival and acetylcholinesterase expression in the presence or absence of the CRLF3 ligand erythropoietin. Hypoxia increased apoptotic cell death and expression of both acetylcholinesterase-coding genes ace-1 and ace-2. Both ace genes give rise to single transcripts in normal and apoptogenic conditions. Pharmacological inhibition of acetylcholinesterases and RNAi-mediated knockdown of either ace-1 or ace-2 expression prevented hypoxia-induced apoptosis. Activation of CRLF3 with protective concentrations of erythropoietin prevented the increased expression of acetylcholinesterase with larger impact on ace-1 than on ace-2. In contrast, high concentrations of erythropoietin that cause neuronal death induced ace-1 expression and hence promoted apoptosis. Our study confirms the general proapoptotic function of AChE, assigns a role of both ace-1 and ace-2 in the regulation of apoptotic death and identifies the erythropoietin/CRLF3-mediated prevention of enhanced acetylcholinesterase expression under apoptogenic conditions as neuroprotective mechanism.
Collapse
|
5
|
Schavinski CR, Santos MBD, Londero JEL, Rocha MCD, Amaral AMBD, Ruiz NQ, Leandro GDS, Loro VL, Schuch AP. Effects of isolated and combined exposures of Boana curupi (Anura: Hylidae) tadpoles to environmental doses of trichlorfon and ultraviolet radiation. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 883-884:503549. [PMID: 36462791 DOI: 10.1016/j.mrgentox.2022.503549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 07/22/2022] [Accepted: 09/16/2022] [Indexed: 06/17/2023]
Abstract
The biodiversity collapse strongly affects the amphibian group and many factors have been pointed out as catalytic agents. It is estimated that several events in the amphibian population decline worldwide may have been caused by the interaction of multiple drivers. Thus, this study aimed to evaluate the stressful effects of the exposure to environmental doses of trichlorfon (TCF) pesticide (0.5 μg/L; and an additional 100-fold concentration of 50 µg/L) and ultraviolet radiation (UV) (184.0 kJ/m² of UVA and 3.4 kJ/m² of UVB, which correspond to 5% of the daily dose) in tadpoles of the Boana curupi species (Anura: Hylidae). The isolated and combined exposures to TCF happened within 24 h of acute treatments under laboratory-controlled conditions. In the combined treatments, we adopted three different moments (M) of tadpole irradiation from the beginning of the exposures to TCF (0 h - M1; 12 h - M2; and 24 h - M3). Then, we evaluated tadpole survival, change in morphological characters, induction of apoptotic cells, lipid peroxidation (LPO), protein carbonyl content (PCC), glutathione S-transferase (GST), non-protein thiols (NPSH), and acetylcholinesterase (AChE), as well as the induction of genomic DNA (gDNA) damage. UVB treatment alone resulted in high mortality, along with a high level of apoptosis induction. Both UVA, UVB, and TCF increased LPO, PC, and AChE, while decreased GST activity. Regarding co-exposures, the most striking effect was observed in the interaction between UVB and TCF, which surprisingly decreased UVB-induced tadpole mortality, apoptosis, and gDNA damage. These results reinforce the B. curupi sensitivity to solar UVB radiation and indicate a complex response in face of UVB interaction with TCF, which may be related to activation of DNA repair pathways and/or inhibition of apoptosis, decreasing UVB-induced tadpole mortality.
Collapse
Affiliation(s)
- Cassiano Ricardo Schavinski
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maurício Beux Dos Santos
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - James Eduardo Lago Londero
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Marcelo Carvalho da Rocha
- Post-Graduation Program in Animal Biodiversity, Department of Ecology and Evolution, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Aline Monique Blank do Amaral
- Post-Graduation Program in Animal Biodiversity, Department of Ecology and Evolution, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Nathalia Quintero Ruiz
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giovana da Silva Leandro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vania Lucia Loro
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - André Passaglia Schuch
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Onder S, Schopfer LM, Jiang W, Tacal O, Lockridge O. Butyrylcholinesterase in SH-SY5Y human neuroblastoma cells. Neurotoxicology 2022; 90:1-9. [PMID: 35189179 PMCID: PMC9124689 DOI: 10.1016/j.neuro.2022.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
Abstract
Cultured SH-SY5Y human neuroblastoma cells are used in neurotoxicity assays. These cells express markers of the cholinergic and dopaminergic systems. Acetylcholinesterase (AChE) activity has been reported in these cells. Neurotoxic organophosphate compounds that inhibit AChE, also inhibit butyrylcholinesterase (BChE). We confirmed the presence of AChE in the cell lysate by activity assays, Western blot, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of immunopurified AChE. A nondenaturing gel stained for AChE activity identified the catalytically active AChE in SH-SY5Y cells as the unstable monomer. We also identified immature BChE in the cell lysate. The concentration of active BChE protein was similar to that of active AChE protein. The rate of substrate hydrolysis by AChE was 10-fold higher than substrate hydrolysis by BChE. The higher rate was due to the 10-fold higher specific activity of AChE over BChE (5000 units/mg for AChE; 500 units/mg for BChE). Neither cholinesterase was secreted. Tryptic peptides of immunopurified AChE and BChE were identified by LC-MS/MS on an Orbitrap Lumos Fusion mass spectrometer. The unfolded protein chaperone, binding immunoglobulin protein BiP/GRP78, was identified in the mass spectral data from all cholinesterase samples, suggesting that BiP was co-extracted with cholinesterase. This suggests that the cytoplasmic cholinesterases are immature forms of AChE and BChE that bind to BiP. It was concluded that SH-SY5Y cells express active AChE and active BChE, but the proteins do not mature to glycosylated tetramers.
Collapse
|
7
|
Normal cognition in Parkinson's disease may involve hippocampal cholinergic compensation: An exploratory PET imaging study with [ 18F]-FEOBV. Parkinsonism Relat Disord 2021; 91:162-166. [PMID: 34628195 DOI: 10.1016/j.parkreldis.2021.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Severe cholinergic degeneration is known to occur in Parkinson's disease (PD) and is thought to play a primary role in the cognitive decline associated with this disease. Although cholinergic losses occur in all patients with PD, cognitive performance remains normal for many of them, suggesting compensatory mechanisms in those. OBJECTIVES This exploratory study aimed at verifying if normal cognition in PD may involve distinctive features of the brain cholinergic systems. METHODS Following extensive neuropsychological screening in 25 patients with PD, 12 were selected and evenly distributed between a cognitively normal (PD-CN) group, and a mild cognitive impairment (PD-MCI) group. Each group was compared with matched healthy volunteers (HV) on standardized cognitive scales (MoCA, PDCRS), and PET imaging with [18F]-FEOBV, a sensitive measurement of brain cholinergic innervation density. RESULTS [18F]-FEOBV uptake reductions were observed in PD-CN as well as in PD-MCI, with the lowest values located in the posterior cortical areas. However, in PD-CN but not in PD-MCI, there was a significant and bilateral increase of [18F]-FEOBV uptake, exclusively located in the hippocampus. Significant correlations were observed between cognitive performance and hippocampal [18F]-FEOBV uptake. CONCLUSION These findings suggest a compensatory upregulation of the hippocampal cholinergic innervation in PD-CN, which might underly normal cognitive performances in spite of cortical cholinergic denervation in other regions.
Collapse
|
8
|
Klichkhanov NK, Dzhafarova AM. Effect of Mild Hypothermia on the Catalytic Characteristics of Synaptic Acetylcholinesterase during Subtotal Global Cerebral Ischemia in Rats. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421030077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Ogata N, Tagishi H. The Inhibitory Effect of Wood Creosote on the Movement of Anisakis Larvae: An Implication for the Treatment of Acute Anisakiasis. Pharmacology 2021; 106:637-643. [PMID: 34537769 DOI: 10.1159/000518961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Anisakiasis is a common disease in countries such as Japan, where raw or undercooked marine fish are frequently consumed. The disease is caused by accidental ingestion of a live larva of Anisakis in raw or undercooked marine fish. In typical cases, it causes abrupt gastrointestinal symptoms, such as epigastric pain, nausea, and vomiting. According to a published report, the disease was alleviated by oral ingestion of an over-the-counter drug containing wood creosote. METHODS We performed an in vitro experiment to elucidate whether wood creosote can inhibit the motor activity of Anisakis larvae, using infrared locomotion tracking and agarose gel penetration techniques. RESULTS Our results clearly demonstrate that wood creosote inhibits the motor activity of Anisakis larvae. The concentration of wood creosote used in our experiment is similar to that found in stomach juice when a usual oral dose is taken of the medicine containing wood creosote. DISCUSSION/CONCLUSION Our results suggest the potential usefulness of the medicine containing wood creosote in the treatment of acute Anisakis infection of the gastrointestinal tract.
Collapse
Affiliation(s)
- Norio Ogata
- R&D Center, Taiko Pharmaceutical Co., Ltd., Kyoto, Japan
| | | |
Collapse
|
10
|
Ogata N, Tagishi H, Tsuji M. Inhibition of Acetylcholinesterase by Wood Creosote and Simple Phenolic Compounds. Chem Pharm Bull (Tokyo) 2020; 68:1193-1200. [PMID: 33268651 DOI: 10.1248/cpb.c20-00583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anisakiasis is common in countries where raw or incompletely cooked marine fish are consumed. Currently, effective therapeutic methods to treat anisakiasis are unavailable. A recent study found that wood creosote inactivates the movement of Anisakis species. Essential oil of Origanum compactum containing carvacrol and thymol, which are similar to the constituents of wood creosote, was reported to inactivate Anisakis by inhibiting its acetylcholinesterase. We examined whether wood creosote can also inhibit acetylcholinesterase. We examined the effect of components of wood creosote using the same experimental method. A computer simulation experiment (molecular docking) was also performed. Here, we demonstrate that wood creosote inactivated acetylcholinesterase in a dose-dependent manner with an IC50 of 0.25 mg/mL. Components of wood creosote were also tested individually: 5-methylguaiacol, p-cresol, guaiacol, o-cresol, 2,4-dimethylphenol, m-cresol, phenol and 4-methylguaiacol inactivated the enzyme with an IC50 of 14.0, 5.6, 17.0, 6.3, 3.9, 10.0, 15.2 and 27.2 mM, respectively. The mechanism of acetylcholinesterase inactivation was analyzed using a computer-based molecular docking simulation, which employed a three-dimensional structure of acetylcholinesterase and above phenolic compounds as docking ligands. The simulation indicated that the phenolic compounds bind to the active site of the enzyme, thereby competitively blocking entry of the substrate acetylcholine. These findings suggest that the mechanism for the inactivation of Anisakis movement by wood creosote is due to inhibition of acetylcholinesterase needed for motor neuron activity.
Collapse
Affiliation(s)
- Norio Ogata
- R&D Department, Taiko Pharmaceutical Co., Ltd
| | | | | |
Collapse
|
11
|
The NMJ as a model synapse: New perspectives on formation, synaptic transmission and maintenance: Acetylcholinesterase at the neuromuscular junction. Neurosci Lett 2020; 735:135157. [PMID: 32540360 DOI: 10.1016/j.neulet.2020.135157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/28/2022]
Abstract
Acetylcholinesterase (AChE) is an essential enzymatic component of the neuromuscular junction where it is responsible for terminating neurotransmission by the cholinergic motor neurons. The enzyme at the neuromuscular junction (NMJ) is contributed primarily by the skeletal muscle where it is produced at higher levels in the post-synaptic region of the fibers. The major form of AChE at the NMJ is a large asymmetric form consisting of three tetramers covalently attached to a three-stranded collagen-like tail which is responsible for anchoring it to the synaptic basal lamina. Its location and expression is regulated to a large extent by the motor neurons and occurs at the transcriptional, translational and post-translational levels. While its expression can be quite rapid in tissue cultured cells, its half-life in vivo appears to be quite long, about three weeks, although more rapidly turning over pools have been described. Finally the essential nature of this enzyme is underscored by the fact that no naturally occurring null mutations of the catalytic subunit have been described in higher organisms and the few dozen humans carrying mutations in the collagen tail responsible for anchoring the enzyme at the NMJ are severely affected.
Collapse
|
12
|
Arylaminopropanone Derivatives as Potential Cholinesterase Inhibitors: Synthesis, Docking Study and Biological Evaluation. Molecules 2020; 25:molecules25071751. [PMID: 32290227 PMCID: PMC7180927 DOI: 10.3390/molecules25071751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 11/18/2022] Open
Abstract
Neurodegenerative diseases in which the decrease of the acetylcholine is observed are growing worldwide. In the present study, a series of new arylaminopropanone derivatives with N-phenylcarbamate moiety (1–16) were prepared as potential acetylcholinesterase and butyrylcholinesterase inhibitors. In vitro enzyme assays were performed; the results are expressed as a percentage of inhibition and the IC50 values. The inhibitory activities were compared with reference drugs galantamine and rivastigmine showing piperidine derivatives (1–3) as the most potent. A possible mechanism of action for these compounds was determined from a molecular modelling study by using combined techniques of docking, molecular dynamics simulations and quantum mechanics calculations.
Collapse
|
13
|
Vladimirova IA, Philyppov IB, Sotkis GV, Kulieva EM, Shuba YY, Gulak KL, Skryma R, Prevarskaya N, Shuba YM. Impairment of cholinergic bladder contractility in rat model of type I diabetes complicated by cystitis: Contribution of neurotransmitter-degrading ectoenzymes. Eur J Pharmacol 2019; 860:172529. [PMID: 31299187 DOI: 10.1016/j.ejphar.2019.172529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 06/25/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
Parasympathetic regulation of urinary bladder contractions primarily involves acetylcholine release and activation of detrusor smooth muscle (DSM) muscarinic acetylcholine (mACh) receptors. Co-release of ATP and activation of DSM purinergic P2X1-receptors may participate as well in some species. Both types of neuromuscular transmission (NMT) are impaired in diabetes, however, which factors may contribute to such impairment remains poorly understood. Here by using rats with streptozotocin(STZ)-induced type I diabetes (8th week after induction) we show that contribution of atropine-sensitive m-cholinergic component to the contractions of urothelium-denuded DSM strips evoked by electric field stimulation (EFS) greatly increased when diabetic bladders presented overt signs of accompanying cystitis. Modeling of hemorrhagic cystitis alone in control rats by cyclophosphamide injection only modestly increased m-cholinergic component of EFS-contractions. However, exposure of DSM strips from control animals to acetylcholinesterase (AChE) inhibitor, neostigmine (1-10 μM) largely reproduced alterations in EFS contractions observed in diabetic DSM complicated by cystitis. Ellman's assay revealed statistically significant 31% decrease of AChE activities in diabetic vs. control DSM. Changes in purinergic contractility of diabetic DSM were consistent with altered P2X1-receptor desensitization and re-sensitization. They could be mimicked by pharmacological inhibition of ATP-degrading ecto-ATPases with ARL 67156 (50 μM), pointing to compromised extracellular ATP clearance as underlying reason. We conclude that decreased AChE activities associated with diabetes and likely cystitis provide complementary factor to the described in literature altered expression of mACh receptor subtypes linked to diabetes as well as to cystitis to produce dramatic modification of cholinergic NMT.
Collapse
Affiliation(s)
- Irina A Vladimirova
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Igor B Philyppov
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ganna V Sotkis
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Eugenia M Kulieva
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yelyzaveta Y Shuba
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Kseniya L Gulak
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Roman Skryma
- Laboratoire de Physiologie Cellulaire, Inserm U1003, Université de Lille, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Laboratoire de Physiologie Cellulaire, Inserm U1003, Université de Lille, Villeneuve d'Ascq, France
| | - Yaroslav M Shuba
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| |
Collapse
|
14
|
Catalytic bioscavengers as countermeasures against organophosphate nerve agents. Chem Biol Interact 2018; 292:50-64. [DOI: 10.1016/j.cbi.2018.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022]
|
15
|
Yang Y, Yang K, Hao T, Zhu G, Ling R, Zhou X, Li P. Prediction of Molecular Mechanisms for LianXia NingXin Formula: A Network Pharmacology Study. Front Physiol 2018; 9:489. [PMID: 29867541 PMCID: PMC5952186 DOI: 10.3389/fphys.2018.00489] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/17/2018] [Indexed: 12/27/2022] Open
Abstract
Objectives: Network pharmacological methods were used to investigate the underlying molecular mechanisms of LianXia NingXin (LXNX) formula, a Chinese prescription, to treat coronary heart disease (CHD) and disease phenotypes (CHD related diseases and symptoms). Methods: The different seed gene lists associated with the herbs of LXNX formula, the CHD co-morbid diseases and symptoms which were relieved by the LXNX formula (co-morbid diseases and symptoms) were curated manually from biomedical databases and published biomedical literatures. Module enrichment analysis was used to identify CHD-related disease modules in the protein–protein interaction (PPI) network which were also associated to the targets of LXNX formula (LXNX formula’s CHD modules). The molecular characteristics of LXNX formula’s CHD modules were investigated via functional enrichment analysis in terms of gene ontology and pathways. We performed shortest path analysis to explore the interactions between the drug targets of LXNX formula and CHD related disease phenotypes (e.g., co-morbid diseases and symptoms). Results: We identified two significant CHD related disease modules (i.e., M146 and M203), which were targeted by the herbs of LXNX formula. Pathway and GO term functional analysis results indicated that G-protein coupled receptor signaling pathways (GPCR) of M146 and cellular protein metabolic process of M203 are important functional pathways for the respective module. This is further confirmed by the shortest path analysis between the drug targets of LXNX formula and the aforementioned disease modules. In addition, corticotropin releasing hormone (CRH) and natriuretic peptide precursor A (NPPA) are the only two LXNX formula target proteins with the low shortest path length (on average shorter than 3) to their respective CHD module and co-morbid disease and symptom gene groups. Conclusion: G-protein coupled receptor signaling pathway and cellular protein metabolic process are the key LXNX formula’s pathways to treat CHD disease phenotypes, in which CRH and NPPA are the two key drug targets of LXNX formula. Further evidences from Chinese herb pharmacological databases indicate that Pinellia ternata (Banxia) has relatively strong adjustive functions on the two key targets.
Collapse
Affiliation(s)
- Yang Yang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kuo Yang
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Teng Hao
- Department of Psychiatry, Beijing ChaoYang Hospital of Traditional Chinese Medicine, Beijing, China
| | - Guodong Zhu
- Department of Cardiovascular, Beijing Chaoyang Integrative Medicine Emergency Medical Center, Beijing, China
| | - Ruby Ling
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xuezhong Zhou
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Ping Li
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Prado MAM, Marchot P, Silman I. Preface: Cholinergic Mechanisms. J Neurochem 2017; 142 Suppl 2:3-6. [PMID: 28791707 DOI: 10.1111/jnc.14027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 01/28/2023]
Abstract
This special issue is a companion to the meeting 'XVth International Symposium on Cholinergic Mechanisms', and is edited by Israel Silman, Marco Prado and Pascale Marchot. In the review articles, renowned researchers in the field capture key mechanisms of cholinergic neurotransmission, from genomic amplification of cholinesterase genes, splicing and post-translational modifications; features of the neuromuscular junction, implications of cholinergic circuitry that are relevant to addiction, anxiety and mood, to preclinical models, protein biomarkers, and clinical findings that are relevant to pathology, for example, developmental neurotoxicity. The broad variety of features reflects the impact of cholinergic mechanisms on many physiological events and emphasizes the importance of research in this area. This is the Preface for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Marco A M Prado
- Robarts Research Institute, Department of Physiology and Pharmacology and Department of Anatomy and Cell Biology, The University of Western Ontario London, Ontario, Canada
| | - Pascale Marchot
- Centre National de la Recherche Scientifique, Aix-Marseille Universite, Marseille
| | - Israel Silman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Mis K, Grubic Z, Lorenzon P, Sciancalepore M, Mars T, Pirkmajer S. In Vitro Innervation as an Experimental Model to Study the Expression and Functions of Acetylcholinesterase and Agrin in Human Skeletal Muscle. Molecules 2017; 22:molecules22091418. [PMID: 28846617 PMCID: PMC6151842 DOI: 10.3390/molecules22091418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022] Open
Abstract
Acetylcholinesterase (AChE) and agrin, a heparan-sulfate proteoglycan, reside in the basal lamina of the neuromuscular junction (NMJ) and play key roles in cholinergic transmission and synaptogenesis. Unlike most NMJ components, AChE and agrin are expressed in skeletal muscle and α-motor neurons. AChE and agrin are also expressed in various other types of cells, where they have important alternative functions that are not related to their classical roles in NMJ. In this review, we first focus on co-cultures of embryonic rat spinal cord explants with human skeletal muscle cells as an experimental model to study functional innervation in vitro. We describe how this heterologous rat-human model, which enables experimentation on highly developed contracting human myotubes, offers unique opportunities for AChE and agrin research. We then highlight innovative approaches that were used to address salient questions regarding expression and alternative functions of AChE and agrin in developing human skeletal muscle. Results obtained in co-cultures are compared with those obtained in other models in the context of general advances in the field of AChE and agrin neurobiology.
Collapse
Affiliation(s)
- Katarina Mis
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Zoran Grubic
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Marina Sciancalepore
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Tomaz Mars
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|