1
|
Gong H, Zhu C, Han D, Liu S. Secreted Glycoproteins That Regulate Synaptic Function: the Dispatchers in the Central Nervous System. Mol Neurobiol 2024; 61:2719-2727. [PMID: 37924485 DOI: 10.1007/s12035-023-03731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Glycoproteins are proteins that contain oligosaccharide chains. As widely distributed functional proteins in the body, glycoproteins are essential for cellular development, cellular function maintenance, and intercellular communication. Glycoproteins not only play a role in the cell and the membrane, but they are also secreted in the intercell. These secreted glycoproteins are critical to the central nervous system for neurodevelopment and synaptic transmission. More specifically, secreted glycoproteins play indispensable roles in neurite growth mediation, axon guiding, synaptogenesis, neuronal differentiation, the release of synaptic vesicles, subunit composition of neurotransmitter receptors, and neurotransmitter receptor trafficking among other things. Abnormal expressions of secreted glycoproteins in the central nervous system are associated with abnormal neuron development, impaired synaptic organization/transmission, and neuropsychiatric disorders. This article reviews the secreted glycoproteins that regulate neuronal development and synaptic function in the central nervous system, and the molecular mechanism of these regulations, providing reference for research about synaptic function regulation and related central nervous system diseases.
Collapse
Affiliation(s)
- Haiying Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Conglei Zhu
- Department of Pharmacy, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Di Han
- Department of Respiratory and Critical Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Iyer S, Dhiman N, Zade SP, Mukherjee S, Singla N, Kumar M. Exposure to Tetrabutylammonium Bromide Impairs Cranial Neural Crest Specification, Neurogenic Program, and Brain Morphogenesis. ACS Chem Neurosci 2023; 14:1785-1798. [PMID: 37125651 DOI: 10.1021/acschemneuro.2c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Tetrabutylammonium bromide (TBAB) is a widely used industrial reagent and is commonly found in our aquatic ecosystem as an industrial byproduct. In humans, the ingestion of TBAB causes severe neurological impairments and disorders such as vertigo, hallucinations, and delirium. Yet, the extent of environmental risk and TBAB toxicity to human health is poorly understood. In this study, we aim to determine the developmental toxicity of TBAB using zebrafish embryos as a model and provide novel insights into the mechanism of action of such chemicals on neurodevelopment and the overall embryonic program. Our results show that exposure to TBAB results in impaired development of the brain, inner ear, and pharyngeal skeletal elements in the zebrafish embryo. TBAB treatment resulted in aberrations in the specification of the neural crest precursors, hindbrain segmentation, and otic neurogenesis. TBAB treatment also induced a surge in apoptosis in the head, tail, and trunk regions of the developing embryo. Long-term TBAB exposure resulted in cardiac edema and craniofacial defects. Further, in silico molecular docking analysis indicated that TBAB binds to AMPA receptors and modulates neural developmental genes such as olfactomedin and acetylcholinesterase in the embryonic brain. To summarize, our study highlights the novel effects of TBAB on embryonic brain formation and segmentation, ear morphogenesis, and craniofacial skeletal development.
Collapse
Affiliation(s)
- Sharada Iyer
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Uppal Road, Habsiguda, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neha Dhiman
- Department of Biochemistry, Panjab University, Chandigarh160014, India
| | - Suraj P Zade
- Global Product Compliance─India, 301, Samved Sankul, Near MLA Hostel, Civil Lines, Nagpur 440001, India
| | - Sulagna Mukherjee
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Uppal Road, Habsiguda, Hyderabad 500007, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh160014, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Uppal Road, Habsiguda, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Autoantibody profiles associated with clinical features in psychotic disorders. Transl Psychiatry 2021; 11:474. [PMID: 34518517 PMCID: PMC8438048 DOI: 10.1038/s41398-021-01596-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
Autoimmune processes are suspected to play a role in the pathophysiology of psychotic disorders. Better understanding of the associations between auto-immunoglobulin G (IgG) repertoires and clinical features of mental illness could yield novel models of the pathophysiology of psychosis, and markers for biological patient stratification. We undertook cross-sectional detection and quantification of auto-IgGs in peripheral blood plasma of 461 people (39% females) with established psychotic disorder diagnoses. Broad screening of 24 individuals was carried out on group level in eight clinically defined groups using planar protein microarrays containing 42,100 human antigens representing 18,914 proteins. Autoantibodies indicated by broad screening and in the previous literature were measured using a 380-plex bead-based array for autoantibody profiling of all 461 individuals. Associations between autoantibody profiles and dichotomized clinical characteristics were assessed using a stepwise selection procedure. Broad screening and follow-up targeted analyses revealed highly individual autoantibody profiles. Females, and people with family histories of obesity or of psychiatric disorders other than schizophrenia had the highest overall autoantibody counts. People who had experienced subjective thought disorder and/or were treated with clozapine (trend) had the lowest overall counts. Furthermore, six autoantibodies were associated with specific psychopathology symptoms: anti-AP3B2 (persecutory delusions), anti-TDO2 (hallucinations), anti-CRYGN (initial insomnia); anti-APMAP (poor appetite), anti-OLFM1 (above-median cognitive function), and anti-WHAMMP3 (anhedonia and dysphoria). Future studies should clarify whether there are causal biological relationships, and whether autoantibodies could be used as clinical markers to inform diagnostic patient stratification and choice of treatment.
Collapse
|
4
|
Matthews PM, Pinggera A, Kampjut D, Greger IH. Biology of AMPA receptor interacting proteins - From biogenesis to synaptic plasticity. Neuropharmacology 2021; 197:108709. [PMID: 34271020 DOI: 10.1016/j.neuropharm.2021.108709] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/19/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022]
Abstract
AMPA-type glutamate receptors mediate the majority of excitatory synaptic transmission in the central nervous system. Their signaling properties and abundance at synapses are both crucial determinants of synapse efficacy and plasticity, and are therefore under sophisticated control. Unique to this ionotropic glutamate receptor (iGluR) is the abundance of interacting proteins that contribute to its complex regulation. These include transient interactions with the receptor cytoplasmic tail as well as the N-terminal domain locating to the synaptic cleft, both of which are involved in AMPAR trafficking and receptor stabilization at the synapse. Moreover, an array of transmembrane proteins operate as auxiliary subunits that in addition to receptor trafficking and stabilization also substantially impact AMPAR gating and pharmacology. Here, we provide an overview of the catalogue of AMPAR interacting proteins, and how they contribute to the complex biology of this central glutamate receptor.
Collapse
Affiliation(s)
- Peter M Matthews
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alexandra Pinggera
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Domen Kampjut
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
5
|
Schwenk J, Fakler B. Building of AMPA‐type glutamate receptors in the endoplasmic reticulum and its implication for excitatory neurotransmission. J Physiol 2020; 599:2639-2653. [DOI: 10.1113/jp279025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/21/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jochen Schwenk
- Institute of Physiology, Faculty of Medicine University of Freiburg Hermann‐Herder‐Str. 7 Freiburg 79104 Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine University of Freiburg Hermann‐Herder‐Str. 7 Freiburg 79104 Germany
- Signalling Research Centres BIOSS and CIBSS Schänzlestr. 18 Freiburg 79104 Germany
- Center for Basics in NeuroModulation Breisacherstr. 4 Freiburg 79106 Germany
| |
Collapse
|
6
|
Pronker MF, van den Hoek H, Janssen BJC. Design and structural characterisation of olfactomedin-1 variants as tools for functional studies. BMC Mol Cell Biol 2019; 20:50. [PMID: 31726976 PMCID: PMC6857237 DOI: 10.1186/s12860-019-0232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Olfactomedin-1 (Olfm1; also known as Noelin or Pancortin) is a highly-expressed secreted brain and retina protein and its four isoforms have different roles in nervous system development and function. Structural studies showed that the long Olfm1 isoform BMZ forms a disulfide-linked tetramer with a V-shaped architecture. The tips of the Olfm1 "V" each consist of two C-terminal β-propeller domains that enclose a calcium binding site. Functional characterisation of Olfm1 may be aided by new biochemical tools derived from these core structural elements. RESULTS Here we present the production, purification and structural analysis of three novel monomeric, dimeric and tetrameric forms of mammalian Olfm1 for functional studies. We characterise these constructs structurally by high-resolution X-ray crystallography and small-angle X-ray scattering. The crystal structure of the Olfm1 β-propeller domain (to 1.25 Å) represents the highest-resolution structure of an olfactomedin family member to date, revealing features such as a hydrophilic tunnel containing water molecules running into the core of the domain where the calcium binding site resides. The shorter Olfactomedin-1 isoform BMY is a disulfide-linked tetramer with a shape similar to the corresponding region in the longer BMZ isoform. CONCLUSIONS These recombinantly-expressed protein tools should assist future studies, for example of biophysical, electrophysiological or morphological nature, to help elucidate the functions of Olfm1 in the mature mammalian brain. The control over the oligomeric state of Olfm1 provides a firm basis to better understand the role of Olfm1 in the (trans-synaptic) tethering or avidity-mediated clustering of synaptic receptors such as post-synaptic AMPA receptors and pre-synaptic amyloid precursor protein. In addition, the variation in domain composition of these protein tools provides a means to dissect the Olfm1 regions important for receptor binding.
Collapse
Affiliation(s)
- Matti F Pronker
- MRC Laboratory of Molecular Biology, Division of Neurobiology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. .,Bijvoet Center for Biomolecular Research, Utrecht University, Crystal and Structural Chemistry, Kruytgebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Hugo van den Hoek
- Bijvoet Center for Biomolecular Research, Utrecht University, Crystal and Structural Chemistry, Kruytgebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Department of Molecular Structural Biology, Max Planck institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Bert J C Janssen
- Bijvoet Center for Biomolecular Research, Utrecht University, Crystal and Structural Chemistry, Kruytgebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Bissen D, Foss F, Acker-Palmer A. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci 2019; 76:2133-2169. [PMID: 30937469 PMCID: PMC6502786 DOI: 10.1007/s00018-019-03068-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
To correctly transfer information, neuronal networks need to continuously adjust their synaptic strength to extrinsic stimuli. This ability, termed synaptic plasticity, is at the heart of their function and is, thus, tightly regulated. In glutamatergic neurons, synaptic strength is controlled by the number and function of AMPA receptors at the postsynapse, which mediate most of the fast excitatory transmission in the central nervous system. Their trafficking to, at, and from the synapse, is, therefore, a key mechanism underlying synaptic plasticity. Intensive research over the last 20 years has revealed the increasing importance of interacting proteins, which accompany AMPA receptors throughout their lifetime and help to refine the temporal and spatial modulation of their trafficking and function. In this review, we discuss the current knowledge about the roles of key partners in regulating AMPA receptor trafficking and focus especially on the movement between the intracellular, extrasynaptic, and synaptic pools. We examine their involvement not only in basal synaptic function, but also in Hebbian and homeostatic plasticity. Included in our review are well-established AMPA receptor interactants such as GRIP1 and PICK1, the classical auxiliary subunits TARP and CNIH, and the newest additions to AMPA receptor native complexes.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|