1
|
R R, Devtalla H, Rana K, Panda SP, Agrawal A, Kadyan S, Jindal D, Pancham P, Yadav D, Jha NK, Jha SK, Gupta V, Singh M. A comprehensive update on genetic inheritance, epigenetic factors, associated pathology, and recent therapeutic intervention by gene therapy in schizophrenia. Chem Biol Drug Des 2024; 103:e14374. [PMID: 37994213 DOI: 10.1111/cbdd.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 11/24/2023]
Abstract
Schizophrenia is a severe psychological disorder in which reality is interpreted abnormally by the patient. The symptoms of the disease include delusions and hallucinations, associated with extremely disordered behavior and thinking, which may affect the daily lives of the patients. Advancements in technology have led to understanding the dynamics of the disease and the identification of the underlying causes. Multiple investigations prove that it is regulated genetically, and epigenetically, and is affected by environmental factors. The molecular and neural pathways linked to the regulation of schizophrenia have been extensively studied. Over 180 Schizophrenic risk loci have now been recognized due to several genome-wide association studies (GWAS). It has been observed that multiple transcription factors (TF) binding-disrupting single nucleotide polymorphisms (SNPs) have been related to gene expression responsible for the disease in cerebral complexes. Copy number variation, SNP defects, and epigenetic changes in chromosomes may cause overexpression or underexpression of certain genes responsible for the disease. Nowadays, gene therapy is being implemented for its treatment as several of these genetic defects have been identified. Scientists are trying to use viral vectors, miRNA, siRNA, and CRISPR technology. In addition, nanotechnology is also being applied to target such genes. The primary aim of such targeting was to either delete or silence such hyperactive genes or induce certain genes that inhibit the expression of these genes. There are challenges in delivering the gene/DNA to the site of action in the brain, and scientists are working to resolve the same. The present article describes the basics regarding the disease, its causes and factors responsible, and the gene therapy solutions available to treat this disease.
Collapse
Affiliation(s)
- Rachana R
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Harshit Devtalla
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Karishma Rana
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Arushi Agrawal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Shreya Kadyan
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- IIT Bombay Monash Research Academy, IIT - Bombay, Bombay, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Deepshikha Yadav
- Bhartiya Nirdeshak Dravya Division, CSIR-National Physical Laboratory, New Delhi, India
- Physico-Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Vivek Gupta
- Macquarie Medical School, Macquarie University (MQU), Sydney, New South Wales, Australia
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- Faculty of Health, Graduate School of Public Health, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Research Consortium in Complementary and Integrative Medicine (ARCCIM), University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Fei E, Chen P, Zhang Q, Zhong Y, Zhou T. Protein kinase B/Akt1 phosphorylates dysbindin-1A at serine 10 to regulate neuronal development. Neuroscience 2022; 490:66-78. [DOI: 10.1016/j.neuroscience.2022.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 01/05/2023]
|
3
|
Zhu H, Li Q, Zhao Y, Peng H, Guo L, Zhu J, Jiang Z, Zeng Z, Xu B, Chen S. Vaccinia-related kinase 2 drives pancreatic cancer progression by protecting Plk1 from Chfr-mediated degradation. Oncogene 2021; 40:4663-4674. [PMID: 34140642 DOI: 10.1038/s41388-021-01893-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022]
Abstract
As a key cell cycle regulator, polo-like kinase 1 (Plk1) has been recognized as a crucial factor involved in the progression of pancreatic cancer (PC). However, its regulatory mechanism is poorly understood. Here, we present evidence that Plk1 is a novel substrate of vaccinia-related kinase 2 (VRK2), a serine-threonine kinase that is highly expressed and predicts poor prognosis in PC. VRK2 phosphorylates Plk1 at threonine 210 and protects it from ubiquitin-dependent proteasomal degradation. We showed that mechanistically complement factor H-related protein (CFHR), as a major E3 ligase, promotes Plk1 degradation by ubiquitinating it at lysine 209. Phosphorylation of Plk1 at threonine 210 by VRK2 interferes with the interaction of Chfr with Plk1 and antagonizes Plk1 ubiquitination, thereby stabilizing the Plk1 protein. Taken together, our data reveal a mechanism of Plk1 overexpression in PC and provide evidence for targeting VRK2 as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Hengqing Zhu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Thyroid Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Li
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yulan Zhao
- Department of Ultrasound in Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Peng
- Department of Colorectal Surgery, 908th Hospital of Chinese People's Liberation Army Joint, Nanchang, China
| | - Liangyun Guo
- Department of Ultrasound, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhu
- Department of Pharmacy, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zi Jiang
- Department of Pharmacy, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhaoxia Zeng
- Department of Radiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Xu
- Department of Burns, First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Sisi Chen
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
4
|
Serafim RM, de Souza Gama FH, Dutra LA, dos Reis CV, Vasconcelos SNS, da Silva Santiago A, Takarada J, Di Pillo F, Azevedo H, Mascarello A, Elkins JM, Massirer KB, Gileadi O, Guimarães CRW, Couñago RM. Development of Pyridine-based Inhibitors for the Human Vaccinia-related Kinases 1 and 2. ACS Med Chem Lett 2019; 10:1266-1271. [PMID: 31531195 PMCID: PMC6746079 DOI: 10.1021/acsmedchemlett.9b00082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/19/2019] [Indexed: 11/29/2022] Open
Abstract
Vaccinia-related kinases 1 and 2 (VRK1 and VRK2) are human Ser/Thr protein kinases associated with increased cell division and neurological disorders. Nevertheless, the cellular functions of these proteins are not fully understood. Despite their therapeutic potential, there are no potent and specific inhibitors available for VRK1 or VRK2. We report here the discovery and elaboration of an aminopyridine scaffold as a basis for VRK1 and VRK2 inhibitors. The most potent compound for VRK1 (26) displayed an IC50 value of 150 nM and was fairly selective in a panel of 48 human kinases (selectivity score S(50%) of 0.04). Differences in compound binding mode and substituent preferences between the two VRKs were identified by the structure-activity relationship combined with the crystallographic analysis of key compounds. We expect our results to serve as a starting point for the design of more specific and potent inhibitors against each of the two VRKs.
Collapse
Affiliation(s)
- Ricardo
A. M. Serafim
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | | | - Luiz A. Dutra
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Caio V. dos Reis
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Stanley N. S. Vasconcelos
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - André da Silva Santiago
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Jéssica
E. Takarada
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Fúlvia Di Pillo
- PhD
Program in Genetics and Molecular Biology (PGBM), UNICAMP, Campinas, SP 13083-886, Brazil
| | | | | | - Jonathan M. Elkins
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, U.K.
| | - Katlin B. Massirer
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Opher Gileadi
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, U.K.
| | | | - Rafael M. Couñago
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| |
Collapse
|
5
|
Li M, Yue W. VRK2, a Candidate Gene for Psychiatric and Neurological Disorders. MOLECULAR NEUROPSYCHIATRY 2018; 4:119-133. [PMID: 30643786 PMCID: PMC6323383 DOI: 10.1159/000493941] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022]
Abstract
Recent large-scale genetic approaches, such as genome-wide association studies, have identified multiple genetic variations that contribute to the risk of mental illnesses, among which single nucleotide polymorphisms (SNPs) within or near the vaccinia related kinase 2 (VRK2) gene have gained consistent support for their correlations with multiple psychiatric and neurological disorders including schizophrenia (SCZ), major depressive disorder (MDD), and genetic generalized epilepsy. For instance, the genetic variant rs1518395 in VRK2 showed genome-wide significant associations with SCZ (35,476 cases and 46,839 controls, p = 3.43 × 10-8) and MDD (130,620 cases and 347,620 controls, p = 4.32 × 10-12) in European populations. This SNP was also genome-wide significantly associated with SCZ in Han Chinese population (12,083 cases and 24,097 controls, p = 3.78 × 10-13), and all associations were in the same direction of allelic effects. These studies highlight the potential roles of VRK2 in the central nervous system, and this gene therefore might be a good candidate to investigate the shared genetic and molecular basis between SCZ and MDD, as it is one of the few genes known to show genome-wide significant associations with both illnesses. Furthermore, the VRK2 gene was found to be involved in multiple other congenital deficits related to the malfunction of neurodevelopment, adding further support for the involvement of this gene in the pathogenesis of these neurological and psychiatric illnesses. While the precise function of VRK2 in these conditions remains unclear, preliminary evidence suggests that it may affect neuronal proliferation and migration via interacting with multiple essential signaling pathways involving other susceptibility genes/proteins for psychiatric disorders. Here, we have reviewed the recent progress of genetic and molecular studies of VRK2, with an emphasis on its role in psychiatric illnesses and neurological functions. We believe that attention to this important gene is necessary, and further investigations of VRK2 may provide hints into the underlying mechanisms of SCZ and MDD.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|