1
|
Kitani A, Matsui Y. Integrative Network Analysis Reveals Novel Moderators of Aβ-Tau Interaction in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599092. [PMID: 39554095 PMCID: PMC11565825 DOI: 10.1101/2024.06.14.599092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background Although interactions between amyloid-beta and tau proteins have been implicated in Alzheimer's disease (AD), the precise mechanisms by which these interactions contribute to disease progression are not yet fully understood. Moreover, despite the growing application of deep learning in various biomedical fields, its application in integrating networks to analyze disease mechanisms in AD research remains limited. In this study, we employed BIONIC, a deep learning-based network integration method, to integrate proteomics and protein-protein interaction data, with an aim to uncover factors that moderate the effects of the Aβ-tau interaction on mild cognitive impairment (MCI) and early-stage AD. Methods Proteomic data from the ROSMAP cohort were integrated with protein-protein interaction (PPI) data using a Deep Learning-based model. Linear regression analysis was applied to histopathological and gene expression data, and mutual information was used to detect moderating factors. Statistical significance was determined using the Benjamini-Hochberg correction (p < 0.05). Results Our results suggested that astrocytes and GPNMB+ microglia moderate the Aβ-tau interaction. Based on linear regression with histopathological and gene expression data, GFAP and IBA1 levels and GPNMB gene expression positively contributed to the interaction of tau with Aβ in non-dementia cases, replicating the results of the network analysis. Conclusions These findings indicate that GPNMB+ microglia moderate the Aβ-tau interaction in early AD and therefore are a novel therapeutic target. To facilitate further research, we have made the integrated network available as a visualization tool for the scientific community (URL: https://igcore.cloud/GerOmics/AlzPPMap).
Collapse
Affiliation(s)
- Akihiro Kitani
- Biomedical and Health Informatics Unit, Department of Integrated Health Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Matsui
- Biomedical and Health Informatics Unit, Department of Integrated Health Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, 461-8673 Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Shen H, Jiang Y, Qiu C, Xie X, Zhang H, He Z, Song Z, Zhou W. Abnormal amyloid precursor protein processing in periodontal tissue in a murine model of periodontitis induced by Porphyromonas gingivalis. J Periodontal Res 2024; 59:395-407. [PMID: 38311599 DOI: 10.1111/jre.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 02/06/2024]
Abstract
OBJECTIVE The study aimed to investigate the change of amyloid precursor protein (APP) processing and amyloid β (Aβ) metabolites in linking periodontitis to Alzheimer's disease (AD). BACKGROUND Aβ is one of the main pathological features of AD, and few studies have discussed changes in its expression in peripheral tissues or analyzed the relationship between the peripheral imbalance of Aβ production and clearance. METHODS A murine model of periodontitis was established by oral infection with Porphyromonas gingivalis (P. gingivalis). Micro-computed tomography (Micro-CT) was used to observe the destruction of the alveolar bone. Nested quantitative polymerase chain reaction (qPCR) was used to measure small quantities of P.gingivalis DNA in different tissues. Behavioral experiments were performed to measure cognitive function in the mice. The mRNA levels of TNF-α, IL-6, IL-8, RANKL, OPG, APP695, APP751, APP770, and BACE1 in the gingival tissues or cortex were detected by RT-PCR. The levels of Aβ1-40 and Aβ1-42 in gingival crevicular fluid (GCF) and plasma were tested by ELISA. RESULTS P. gingivalis oral infection was found to cause alveolar bone resorption and impaired learning and memory. P.gingivalis DNA was detected in the gingiva, blood and cortex of the P.gingivalis group by nested qPCR (p < .05). The mRNA expression of TNF-α, IL-6, IL-8, RANKL/OPG, and BACE1 in the gingival tissue was significantly higher than that in the control group (p < .05). Similarly, upregulated mRNA levels of APP695 and APP770 were observed in the gingival tissuses and cortex of the P. gingivalis group (p < .05). The levels of Aβ1-40 and Aβ1-42 in the GCF and plasma of the P. gingivalis group were significantly higher than those in the control group (p < .05). CONCLUSION P. gingivalis can directly invade the brain via hematogenous infection. The invasion of P. gingivalis could trigger an immune response and lead to an imbalance between Aβ production and clearance in peripheral tissues, which may trigger an abnormal Aβ metabolite in the brain, resulting in the occurrence and development of AD.
Collapse
Affiliation(s)
- Hui Shen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yiting Jiang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Che Qiu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xinyi Xie
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Huanyu Zhang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhiyan He
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Zhou
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Nowakowska-Gołacka J, Czapiewska J, Sominka H, Sowa-Rogozińska N, Słomińska-Wojewódzka M. EDEM1 Regulates Amyloid Precursor Protein (APP) Metabolism and Amyloid-β Production. Int J Mol Sci 2021; 23:ijms23010117. [PMID: 35008544 PMCID: PMC8745108 DOI: 10.3390/ijms23010117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Endoplasmic reticulum (ER) degradation-enhancing α-mannosidase-like protein 1 (EDEM1) is a quality control factor directly involved in the endoplasmic reticulum-associated degradation (ERAD) process. It recognizes terminally misfolded proteins and directs them to retrotranslocation which is followed by proteasomal degradation in the cytosol. The amyloid-β precursor protein (APP) is synthesized and N-glycosylated in the ER and transported to the Golgi for maturation before being delivered to the cell surface. The amyloidogenic cleavage pathway of APP leads to production of amyloid-β (Aβ), deposited in the brains of Alzheimer’s disease (AD) patients. Here, using biochemical methods applied to human embryonic kidney, HEK293, and SH-SY5Y neuroblastoma cells, we show that EDEM1 is an important regulatory factor involved in APP metabolism. We find that APP cellular levels are significantly reduced after EDEM1 overproduction and are increased in cells with downregulated EDEM1. We also report on EDEM1-dependent transport of APP from the ER to the cytosol that leads to proteasomal degradation of APP. EDEM1 directly interacts with APP. Furthermore, overproduction of EDEM1 results in decreased Aβ40 and Aβ42 secretion. These findings indicate that EDEM1 is a novel regulator of APP metabolism through ERAD.
Collapse
|
4
|
Ramsey J, McIntosh B, Renfro D, Aleksander SA, LaBonte S, Ross C, Zweifel AE, Liles N, Farrar S, Gill JJ, Erill I, Ades S, Berardini TZ, Bennett JA, Brady S, Britton R, Carbon S, Caruso SM, Clements D, Dalia R, Defelice M, Doyle EL, Friedberg I, Gurney SMR, Hughes L, Johnson A, Kowalski JM, Li D, Lovering RC, Mans TL, McCarthy F, Moore SD, Murphy R, Paustian TD, Perdue S, Peterson CN, Prüß BM, Saha MS, Sheehy RR, Tansey JT, Temple L, Thorman AW, Trevino S, Vollmer AC, Walbot V, Willey J, Siegele DA, Hu JC. Crowdsourcing biocuration: The Community Assessment of Community Annotation with Ontologies (CACAO). PLoS Comput Biol 2021; 17:e1009463. [PMID: 34710081 PMCID: PMC8553046 DOI: 10.1371/journal.pcbi.1009463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Experimental data about gene functions curated from the primary literature have enormous value for research scientists in understanding biology. Using the Gene Ontology (GO), manual curation by experts has provided an important resource for studying gene function, especially within model organisms. Unprecedented expansion of the scientific literature and validation of the predicted proteins have increased both data value and the challenges of keeping pace. Capturing literature-based functional annotations is limited by the ability of biocurators to handle the massive and rapidly growing scientific literature. Within the community-oriented wiki framework for GO annotation called the Gene Ontology Normal Usage Tracking System (GONUTS), we describe an approach to expand biocuration through crowdsourcing with undergraduates. This multiplies the number of high-quality annotations in international databases, enriches our coverage of the literature on normal gene function, and pushes the field in new directions. From an intercollegiate competition judged by experienced biocurators, Community Assessment of Community Annotation with Ontologies (CACAO), we have contributed nearly 5,000 literature-based annotations. Many of those annotations are to organisms not currently well-represented within GO. Over a 10-year history, our community contributors have spurred changes to the ontology not traditionally covered by professional biocurators. The CACAO principle of relying on community members to participate in and shape the future of biocuration in GO is a powerful and scalable model used to promote the scientific enterprise. It also provides undergraduate students with a unique and enriching introduction to critical reading of primary literature and acquisition of marketable skills.
Collapse
Affiliation(s)
- Jolene Ramsey
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
- Center for Phage Technology, Texas A&M University, College Station, Texas, United States of America
| | - Brenley McIntosh
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Daniel Renfro
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Suzanne A. Aleksander
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Sandra LaBonte
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Curtis Ross
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
- Center for Phage Technology, Texas A&M University, College Station, Texas, United States of America
| | - Adrienne E. Zweifel
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Nathan Liles
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Shabnam Farrar
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Jason J. Gill
- Center for Phage Technology, Texas A&M University, College Station, Texas, United States of America
- Department of Animal Science, Texas A&M University, College Station, Texas, United States of America
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Sarah Ades
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Tanya Z. Berardini
- The Arabidopsis Information Resource, Phoenix Bioinformatics, Newark, California, United States of America
| | - Jennifer A. Bennett
- Department of Biology and Earth Science, Otterbein University, Westerville, Ohio, United States of America
| | - Siobhan Brady
- Department of Plant Biology and Genome Center, University of California Davis, Davis, California, United States of America
| | - Robert Britton
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Seth Carbon
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Steven M. Caruso
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Dave Clements
- Department of Biology, John Hopkins University, Baltimore, Maryland, United States of America
| | - Ritu Dalia
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Meredith Defelice
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Erin L. Doyle
- Biology Department, Doane University, Crete, Nebraska, United States of America
| | - Iddo Friedberg
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Susan M. R. Gurney
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Lee Hughes
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Allison Johnson
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jason M. Kowalski
- Biological Sciences Department, University of Wisconsin-Parkside, Kenosha, Wisconsin, United States of America
| | - Donghui Li
- The Arabidopsis Information Resource, Phoenix Bioinformatics, Newark, California, United States of America
| | - Ruth C. Lovering
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Tamara L. Mans
- Department of Biochemistry and Biotechnology, Minnesota State University Moorhead, Brooklyn Park, Minnesota, United States of America
| | - Fiona McCarthy
- Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Sean D. Moore
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, United States of America
| | - Rebecca Murphy
- Department of Biology, Centenary College of Louisiana, Shreveport, Louisiana, United States of America
| | - Timothy D. Paustian
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sarah Perdue
- Biological Sciences Department, University of Wisconsin-Parkside, Kenosha, Wisconsin, United States of America
| | - Celeste N. Peterson
- Biology Department, Suffolk University, Boston, Massachusetts, United States of America
| | - Birgit M. Prüß
- Microbiological Sciences Department, North Dakota State University, Fargo, North Dakota, United States of America
| | - Margaret S. Saha
- Department of Biology, College of William & Mary, Williamsburg, Virginia, United States of America
| | - Robert R. Sheehy
- Biology Department, Radford University, Radford, Virginia, United States of America
| | - John T. Tansey
- Department of Biochemistry and Molecular Biology, Otterbein University, Westerville, Ohio, United States of America
| | - Louise Temple
- School of Integrated Sciences, James Madison University, Harrisonburg, Virginia, United States of America
| | - Alexander William Thorman
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Saul Trevino
- Department of Chemistry, Math, and Physics, Houston Baptist University, Houston, Texas, United States of America
| | - Amy Cheng Vollmer
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Joanne Willey
- Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States of America
| | - Deborah A. Siegele
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - James C. Hu
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
- Center for Phage Technology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
5
|
Hark TJ, Savas JN. Using stable isotope labeling to advance our understanding of Alzheimer's disease etiology and pathology. J Neurochem 2021; 159:318-329. [PMID: 33434345 PMCID: PMC8273190 DOI: 10.1111/jnc.15298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
Stable isotope labeling with mass spectrometry (MS)-based proteomic analysis has become a powerful strategy to assess protein steady-state levels, protein turnover, and protein localization. Applying these analyses platforms to neurodegenerative disorders may uncover new aspects of the etiology of these devastating diseases. Recently, stable isotopes-MS has been used to investigate early pathological mechanisms of Alzheimer's disease (AD) with mouse models of AD-like pathology. In this review, we summarize these stable isotope-MS experimental designs and the recent application in the context of AD pathology. We also describe our current efforts aimed at using nuclear magnetic resonance (NMR) analysis of stable isotope-labeled amyloid fibrils from AD mouse model brains. Collectively, these methodologies offer new opportunities to study proteome changes in AD and other neurodegenerative diseases by elucidating mechanisms to target for treatment and prevention.
Collapse
Affiliation(s)
- Timothy J Hark
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
6
|
Miranda A, Montiel E, Ulrich H, Paz C. Selective Secretase Targeting for Alzheimer's Disease Therapy. J Alzheimers Dis 2021; 81:1-17. [PMID: 33749645 DOI: 10.3233/jad-201027] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is associated with marked atrophy of the cerebral cortex and accumulation of amyloid plaques and neurofibrillary tangles. Amyloid plaques are formed by oligomers of amyloid-β (Aβ) in the brain, with a length of 42 and 40 amino acids. α-secretase cleaves amyloid-β protein precursor (AβPP) producing the membrane-bound fragment CTFα and the soluble fragment sAβPPα with neuroprotective activity; β-secretase produces membrane-bound fragment CTFβ and a soluble fragment sAβPPβ. After α-secretase cleavage of AβPP, γ-secretase cleaves CTFα to produce the cytoplasmic fragment AICD and P3 in the non-amyloidogenic pathway. CTFβ is cleaved by γ-secretase producing AICD as well as Aβ in amyloidogenic pathways. In the last years, the study of natural products and synthetic compounds, such as α-secretase activity enhancers, β-secretase inhibitors (BACE-1), and γ-secretase activity modulators, have been the focus of pharmaceuticals and researchers. Drugs were improved regarding solubility, blood-brain barrier penetration, selectivity, and potency decreasing Aβ42. In this regard, BACE-1 inhibitors, such as Atabecestat, NB-360, Umibecestat, PF-06751979 Verubecestat, LY2886721, Lanabecestat, LY2811376 and Elenbecestat, were submitted to phase I-III clinical trials. However, inhibition of Aβ production did not recover cognitive functions or reverse disease progress. Novel strategies are being developed, aiming at a partial reduction of Aβ production, such as the development of γ-secretase modulators or α-secretase activity enhancers. Such therapeutic tools shall focus on slowing down or minimizing the progression of neuronal damage. Here, we summarize structures and activities of the latest compounds designed for AD treatment, with remarkable in vitro, in vivo, and clinical phase activities.
Collapse
Affiliation(s)
- Alvaro Miranda
- Departamento de Ciencias Básicas, Universidad de La Frontera, Temuco, Chile
| | - Enrique Montiel
- Departamento de Ciencias Básicas, Universidad de La Frontera, Temuco, Chile
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cristian Paz
- Departamento de Ciencias Básicas, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
7
|
Wiatrak B, Piasny J, Kuźniarski A, Gąsiorowski K. Interactions of Amyloid-β with Membrane Proteins. Int J Mol Sci 2021; 22:6075. [PMID: 34199915 PMCID: PMC8200087 DOI: 10.3390/ijms22116075] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
In developing and developed countries, an increasing elderly population is observed. This affects the growing percentage of people struggling with neurodegenerative diseases, including Alzheimer's disease. Nevertheless, the pathomechanism of this disease is still unknown. This contributes to problems with early diagnosis of the disease as well as with treatment. One of the most popular hypotheses of Alzheimer's disease is related to the pathological deposition of amyloid-β (Aβ) in the brain of ill people. In this paper, we discuss issues related to Aβ and its relationship in the development of Alzheimer's disease. The structure of Aβ and its interaction with the cell membrane are discussed. Not only do the extracellular plaques affect nerve cells, but other forms of this peptide as well.
Collapse
Affiliation(s)
- Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Janusz Piasny
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Amadeusz Kuźniarski
- Department of Prosthetic Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Kazimierz Gąsiorowski
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
8
|
Astroski JW, Akporyoe LK, Androphy EJ, Custer SK. Mutations in the COPI coatomer subunit α-COP induce release of Aβ-42 and amyloid precursor protein intracellular domain and increase tau oligomerization and release. Neurobiol Aging 2021; 101:57-69. [PMID: 33582567 DOI: 10.1016/j.neurobiolaging.2021.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/02/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Understanding the cellular processes that lead to Alzheimer's disease (AD) is critical, and one key lies in the genetics of families with histories of AD. Mutations a complex known as COPI were found in families with AD. The COPI complex is involved in protein processing and trafficking. Intriguingly, several recent publications have found components of the COPI complex can affect the metabolism of pathogenic AD proteins. We reduced levels of the COPI subunit α-COP, altering maturation and cleavage of amyloid precursor protein (APP), resulting in decreased release of Aβ-42 and decreased accumulation of the AICD. Depletion of α-COP reduced uptake of proteopathic Tau seeds and reduces intracellular Tau self-association. Expression of AD-associated mutant α-COP altered APP processing, resulting in increased release of Aβ-42 and increased intracellular Tau aggregation and release of Tau oligomers. These results show that COPI coatomer function modulates processing of both APP and Tau, and expression of AD-associated α-COP confers a toxic gain of function, resulting in potentially pathogenic changes in both APP and Tau.
Collapse
Affiliation(s)
- Jacob W Astroski
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Elliot J Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sara K Custer
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Breuza L, Arighi CN, Argoud-Puy G, Casals-Casas C, Estreicher A, Famiglietti ML, Georghiou G, Gos A, Gruaz-Gumowski N, Hinz U, Hyka-Nouspikel N, Kramarz B, Lovering RC, Lussi Y, Magrane M, Masson P, Perfetto L, Poux S, Rodriguez-Lopez M, Stoeckert C, Sundaram S, Wang LS, Wu E, Orchard S. A Coordinated Approach by Public Domain Bioinformatics Resources to Aid the Fight Against Alzheimer's Disease Through Expert Curation of Key Protein Targets. J Alzheimers Dis 2020; 77:257-273. [PMID: 32716361 PMCID: PMC7592670 DOI: 10.3233/jad-200206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND The analysis and interpretation of data generated from patient-derived clinical samples relies on access to high-quality bioinformatics resources. These are maintained and updated by expert curators extracting knowledge from unstructured biological data described in free-text journal articles and converting this into more structured, computationally-accessible forms. This enables analyses such as functional enrichment of sets of genes/proteins using the Gene Ontology, and makes the searching of data more productive by managing issues such as gene/protein name synonyms, identifier mapping, and data quality. OBJECTIVE To undertake a coordinated annotation update of key public-domain resources to better support Alzheimer's disease research. METHODS We have systematically identified target proteins critical to disease process, in part by accessing informed input from the clinical research community. RESULTS Data from 954 papers have been added to the UniProtKB, Gene Ontology, and the International Molecular Exchange Consortium (IMEx) databases, with 299 human proteins and 279 orthologs updated in UniProtKB. 745 binary interactions were added to the IMEx human molecular interaction dataset. CONCLUSION This represents a significant enhancement in the expert curated data pertinent to Alzheimer's disease available in a number of biomedical databases. Relevant protein entries have been updated in UniProtKB and concomitantly in the Gene Ontology. Molecular interaction networks have been significantly extended in the IMEx Consortium dataset and a set of reference protein complexes created. All the resources described are open-source and freely available to the research community and we provide examples of how these data could be exploited by researchers.
Collapse
Affiliation(s)
- Lionel Breuza
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Cecilia N. Arighi
- Protein Information Resource, Georgetown University Medical Center, Washington, DC, USA
- Protein Information Resource, University of Delaware, Newark, DE, USA
| | - Ghislaine Argoud-Puy
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Cristina Casals-Casas
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Anne Estreicher
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Maria Livia Famiglietti
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - George Georghiou
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, UK
| | - Arnaud Gos
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Nadine Gruaz-Gumowski
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Ursula Hinz
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Nevila Hyka-Nouspikel
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Barbara Kramarz
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, UK
| | - Ruth C. Lovering
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, UK
| | - Yvonne Lussi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, UK
| | - Michele Magrane
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, UK
| | - Patrick Masson
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Livia Perfetto
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, UK
| | - Sylvain Poux
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Milagros Rodriguez-Lopez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, UK
| | - Christian Stoeckert
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shyamala Sundaram
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
| | - Li-San Wang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, UK
| | - IMEx Consortium, UniProt Consortium
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland
- Protein Information Resource, Georgetown University Medical Center, Washington, DC, USA
- Protein Information Resource, University of Delaware, Newark, DE, USA
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Campus, Hinxton, Cambridge, UK
- Functional Gene Annotation, Preclinical and Fundamental Science, Institute of Cardiovascular Science, University College London (UCL), London, UK
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Alzforum, Cambridge, MA, USA
| |
Collapse
|
10
|
Lukiw WJ, Li W, Bond T, Zhao Y. Facilitation of Gastrointestinal (GI) Tract Microbiome-Derived Lipopolysaccharide (LPS) Entry Into Human Neurons by Amyloid Beta-42 (Aβ42) Peptide. Front Cell Neurosci 2019; 13:545. [PMID: 31866832 PMCID: PMC6908466 DOI: 10.3389/fncel.2019.00545] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/22/2019] [Indexed: 01/01/2023] Open
Abstract
Human gastrointestinal (GI)-tract microbiome-derived lipopolysaccharide (LPS): (i) has been recently shown to target, accumulate within, and eventually encapsulate neuronal nuclei of the human central nervous system (CNS) in Alzheimer's disease (AD) brain; and (ii) this action appears to impede and restrict the outward flow of genetic information from neuronal nuclei. It has previously been shown that in LPS-encased neuronal nuclei in AD brain there is a specific disruption in the output and expression of two AD-relevant, neuron-specific markers encoding the cytoskeletal neurofilament light (NF-L) chain protein and the synaptic phosphoprotein synapsin-1 (SYN1) involved in the regulation of neurotransmitter release. The biophysical mechanisms involved in the facilitation of the targeting of LPS to neuronal cells and nuclei and eventual nuclear envelopment and functional disruption are not entirely clear. In this "Perspectives article" we discuss current advances, and consider future directions in this research area, and provide novel evidence in human neuronal-glial (HNG) cells in primary culture that the co-incubation of LPS with amyloid-beta 42 (Aβ42) peptide facilitates the association of LPS with neuronal cells. These findings: (i) support a novel pathogenic role for Aβ42 peptides in neurons via the formation of pores across the nuclear membrane and/or a significant biophysical disruption of the neuronal nuclear envelope; and (ii) advance the concept that the Aβ42 peptide-facilitated entry of LPS into brain neurons, accession of neuronal nuclei, and down-regulation of neuron-specific components such as NF-L and SYN1 may contribute significantly to neuropathological deficits as are characteristically observed in AD-affected brain.
Collapse
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Wenhong Li
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Pharmacology, School of Pharmacy, Jiangxi University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - Taylor Bond
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|