1
|
Näslund J, Landin J, Hieronymus F, Banote RK, Kettunen P. Anxiolytic-like effects of acute serotonin-releasing agents in zebrafish models of anxiety: experimental study and systematic review. Acta Neuropsychiatr 2024:1-19. [PMID: 39463428 DOI: 10.1017/neu.2024.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Though commonly used to model affective disorders, zebrafish display notable differences in terms of the structure and function of the brain serotonin system, including responses to pharmacological interventions, as compared to mammals. For example, elevation of brain serotonin following acute administration of serotonin reuptake inhibitors (SRIs) generally has anxiogenic effects, both in the clinical situation and in rodent models of anxiety, but previous research has indicated the opposite in zebrafish. However, several issues remain unresolved. We conducted a systematic review of SRI effects in zebrafish models of anxiety and, on the basis of these results, performed a series of experiments further investigating the influence of serotonin-releasing agents on anxiety-like behaviour in zebrafish, with sex-segregated wild-type animals being administered either escitalopram, or the serotonin releaser fenfluramine, in the light-dark test. In the systematic review, we find that the available literature indicates an anxiolytic-like effect of SRIs in the novel-tank diving test. Regarding the light-dark test, most studies reported no behavioural effects of SRIs, although the few that did generally saw anxiolytic-like responses. In the experimental studies, consistent anxiolytic-like effects were observed with neither sex nor habituation influencing treatment response. We find that the general effect of acute SRI administration in zebrafish indeed appears to be anxiolytic-like, indicating, at least partly, differences in the functioning of the serotonin system as compared to mammals and that caution is advised when using zebrafish to model affective disorders.
Collapse
Affiliation(s)
- Jakob Näslund
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Landin
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Hieronymus
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rakesh Kumar Banote
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hosp1ital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
de Sousa EB, Heymbeeck JAA, Feitosa LM, Xavier AGO, Dos Santos Campos K, do Socorro Dos Santos Rodrigues L, de Freitas LM, do Carmo Silva RX, Ikeda SR, de Nazaré Dos Santos Silva S, Rocha SP, do Nascimento WL, da Silva Moraes ER, Herculano AM, Maximino C, Pereira A, Lima-Maximino M. Activation of NOS-cGMP pathways promotes stress-induced sensitization of behavioral responses in zebrafish. Pharmacol Biochem Behav 2024; 243:173816. [PMID: 38971472 DOI: 10.1016/j.pbb.2024.173816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Nitric oxide (NO) is a molecule involved in plasticity across levels and systems. The role of NOergic pathways in stress-induced sensitization (SIS) of behavioral responses, in which a particular stressor triggers a state of hyper-responsiveness to other stressors after an incubation period, was assessed in adult zebrafish. In this model, adult zebrafish acutely exposed to a fear-inducing conspecific alarm substance (CAS) and left undisturbed for an incubation period show increased anxiety-like behavior 24 h after exposure. CAS increased forebrain glutamate immediately after stress and 30 min after stress, an effect that was accompanied by increased nitrite levels immediately after stress, 30 min after stress, 90 min after stress, and 24 h after stress. CAS also increased nitrite levels in the head kidney, where cortisol is produced in zebrafish. CAS-elicited nitrite responses in the forebrain 90 min (but not 30 min) after stress were prevented by a NOS-2 blocker. Blocking NOS-1 30 min after stress prevents SIS; blocking NOS-2 90 min after stress also prevents stress-induced sensitization, as does blocking calcium-activated potassium channels in this latter time window. Stress-induced sensitization is also prevented by blocking guanylate cyclase activation in both time windows, and cGMP-dependent channel activation in the second time window. These results suggest that different NO-related pathways converge at different time windows of the incubation period to induce stress-induced sensitization.
Collapse
Affiliation(s)
- Eveline Bezerra de Sousa
- Laboratório de Bacteriologia e Neuropatologia, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil; Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | - João Alphonse Apóstolo Heymbeeck
- Laboratório de Neurofarmacologia e Biofísica, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil; Programa de Pós-Graduação em Neurociências e Comportamento, Núcleo de Teoria e Pesquisa do Comportamento, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | - Leonardo Miranda Feitosa
- Laboratório de Neurofarmacologia e Biofísica, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil; Programa de Pós-Graduação em Neurociências e Comportamento, Núcleo de Teoria e Pesquisa do Comportamento, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | | | - Kimberly Dos Santos Campos
- Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| | | | - Larissa Mota de Freitas
- Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| | - Rhayra Xavier do Carmo Silva
- Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| | - Saulo Rivera Ikeda
- Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| | | | - Sueslene Prado Rocha
- Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| | - Wilker Leite do Nascimento
- Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| | | | - Anderson Manoel Herculano
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Marabá, PA, Brazil.
| | - Antonio Pereira
- Laboratório de Processamento de Sinais, Instituto de Tecnologia, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | - Monica Lima-Maximino
- Laboratório de Neurofarmacologia e Biofísica, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil; Departamento de Morfologia e Ciências Fisiológicas, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil
| |
Collapse
|
3
|
Beigloo F, Davidson CJ, Gjonaj J, Perrine SA, Kenney JW. Individual differences in the boldness of female zebrafish are associated with alterations in serotonin function. J Exp Biol 2024; 227:jeb247483. [PMID: 38842023 PMCID: PMC11213521 DOI: 10.1242/jeb.247483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
One of the most prevalent axes of behavioral variation in both humans and animals is risk taking, where individuals that are more willing to take risk are characterized as bold while those that are more reserved are regarded as shy. Brain monoamines (i.e. serotonin, dopamine and noradrenaline) have been found to play a role in a variety of behaviors related to risk taking. Using zebrafish, we investigated whether there was a relationship between monoamine function and boldness behavior during exploration of a novel tank. We found a correlation between serotonin metabolism (5-HIAA:5-HT ratio) and boldness during the initial exposure to the tank in female animals. The DOPAC:DA ratio correlated with boldness behavior on the third day in male fish. There was no relationship between boldness and noradrenaline. To probe differences in serotonergic function in bold and shy fish, we administered a selective serotonin reuptake inhibitor, escitalopram, and assessed exploratory behavior. We found that escitalopram had opposing effects on thigmotaxis in bold and shy female animals: the drug caused bold fish to spend more time near the center of the tank and shy fish spent more time near the periphery. Taken together, our findings indicate that variation in serotonergic function has sex-specific contributions to individual differences in risk-taking behavior.
Collapse
Affiliation(s)
- Fatemeh Beigloo
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Cameron J. Davidson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Joseph Gjonaj
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Shane A. Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Justin W. Kenney
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
4
|
Zhao Y, Huang CX, Gu Y, Zhao Y, Ren W, Wang Y, Chen J, Guan NN, Song J. Serotonergic modulation of vigilance states in zebrafish and mice. Nat Commun 2024; 15:2596. [PMID: 38519480 PMCID: PMC10959952 DOI: 10.1038/s41467-024-47021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Vigilance refers to being alertly watchful or paying sustained attention to avoid potential threats. Animals in vigilance states reduce locomotion and have an enhanced sensitivity to aversive stimuli so as to react quickly to dangers. Here we report that an unconventional 5-HT driven mechanism operating at neural circuit level which shapes the internal state underlying vigilance behavior in zebrafish and male mice. The neural signature of internal vigilance state was characterized by persistent low-frequency high-amplitude neuronal synchrony in zebrafish dorsal pallium and mice prefrontal cortex. The neuronal synchronization underlying vigilance was dependent on intense release of 5-HT induced by persistent activation of either DRN 5-HT neuron or local 5-HT axon terminals in related brain regions via activation of 5-HTR7. Thus, we identify a mechanism of vigilance behavior across species that illustrates the interplay between neuromodulators and neural circuits necessary to shape behavior states.
Collapse
Affiliation(s)
- Yang Zhao
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Chun-Xiao Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Yiming Gu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Yacong Zhao
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Wenjie Ren
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Yutong Wang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Jinjin Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China
| | - Na N Guan
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China.
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China.
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Jianren Song
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
- Clinical Center for Brain and Spinal Cord Research, Tongji University, 200092, Shanghai, China.
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China.
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
5
|
Pinheiro J, Pinheiro E, de Deus GR, Saito G, Luz WL, Assad N, da Cunha Palheta MR, de Jesus Oliveira Batista E, Morais S, Passos A, Oliveira KRHM, Herculano AM. Brain oxidative stress mediates anxiety-like behavior induced by indomethacin in zebrafish: protective effect of alpha-tocopherol. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1715-1725. [PMID: 37721555 PMCID: PMC10858826 DOI: 10.1007/s00210-023-02661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023]
Abstract
RATIONALE Indomethacin (INDO) is a widely utilized non-steroidal anti-inflammatory drug (NSAID) with recognized effect on the central nervous system. Although previous reports demonstrate that prolonged treatment with indomethacin can lead to behavioral alterations such as anxiety disorder, the biochemical effect exerted by this drug on the brain are not fully understood. OBJECTIVES The aim of present study was to evaluate if anxiety-like behavior elicited by indomethacin is mediated by brains oxidative stress as well as if alpha-tocopherol, a potent antioxidant, is able to prevent the behavioral and biochemical alterations induced by indomethacin treatment. METHODS Zebrafish were utilized as experimental model and subdivided into control, INDO 1 mg/Kg, INDO 2 mg/Kg, INDO 3 g/Kg, α-TP 2 mg/Kg, α-TP 2 mg/Kg + INDO 1 mg/Kg and α-TP + INDO 2 mg/Kg groups. Vertical distributions elicited by novelty and brain oxidative stress were utilized to determinate behavioral and biochemical alterations elicited by indomethacin treatment, respectively. RESULTS Our results showed that treatment with indomethacin 3 mg/kg induces animal death. No changes in animal survival were observed in animals treated with lower doses of indomethacin. Indomethacin induced significant anxiogenic-like behavior as well as intense oxidative stress in zebrafish brain. Treatment with alpha-tocopherol was able to prevent anxiety-like behavior and brain oxidative stress induced by indomethacin. CONCLUSIONS Data presented in current study demonstrated for the first time that indomethacin induces anxiety-like behavior mediated by brain oxidative stress in zebrafish as well as that pre-treatment with alpha-tocopherol is able to prevent these collateral effects.
Collapse
Affiliation(s)
- Jessica Pinheiro
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Emerson Pinheiro
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Gustavo Ramalho de Deus
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Geovanna Saito
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Waldo Lucas Luz
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Nadyme Assad
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Melk Roberto da Cunha Palheta
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Evander de Jesus Oliveira Batista
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Protozoology, Tropical Medicine Center, Federal University of Pará, Belém, Brazil
| | - Suellen Morais
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Adelaide Passos
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Anderson Manoel Herculano
- Laboratory of Experimental Neuropharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.
| |
Collapse
|
6
|
Beigloo F, Davidson CJ, Gjonaj J, Perrine SA, Kenney JW. Individual differences in the boldness of female zebrafish are associated with alterations in serotonin function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580160. [PMID: 38405806 PMCID: PMC10888793 DOI: 10.1101/2024.02.13.580160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
One of the most prevalent axes of behavioral variation in both humans and animals is risk taking, where individuals that are more willing to take risk are characterized as bold while those that are more reserved as shy. Brain monoamines (i.e., serotonin, dopamine, and norepinephrine) have been found to play a role in a variety of behaviors related to risk taking. Genetic variation related to monoamine function have also been linked to personality in both humans and animals. Using zebrafish, we investigated the relationship between monoamine function and boldness behavior during exploration of a novel tank. We found a sex-specific correlation between serotonin metabolism (5-HIAA:5-HT ratio) and boldness that was limited to female animals; there were no relationships between boldness and dopamine or norepinephrine. To probe differences in serotonergic function, we administered a serotonin reuptake inhibitor, escitalopram, to bold and shy fish, and assessed their exploratory behavior. We found that escitalopram had opposing effects on thigmotaxis in female animals with bold fish spending more time near the center of the tank and shy fish spent more time near the periphery. Taken together, our findings suggest that variation in serotonergic function makes sex-specific contributions to individual differences in risk taking behavior.
Collapse
Affiliation(s)
- Fatemeh Beigloo
- Department of Biological Sciences Wayne State University, Detroit, MI 48202, USA
| | - Cameron J Davidson
- Department of Psychiatry and Behavioral Neurosciences Wayne State University School of Medicine, Detroit, MI 48201, USA
- Current address: Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Joseph Gjonaj
- Department of Biological Sciences Wayne State University, Detroit, MI 48202, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Justin W Kenney
- Department of Biological Sciences Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
7
|
Sivasundarampillai J, Youssef L, Priemel T, Mikulin S, Eren ED, Zaslansky P, Jehle F, Harrington MJ. A strong quick-release biointerface in mussels mediated by serotonergic cilia-based adhesion. Science 2023; 382:829-834. [PMID: 37972188 DOI: 10.1126/science.adi7401] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/29/2023] [Indexed: 11/19/2023]
Abstract
The mussel byssus stem provides a strong and compact mechanically mismatched biointerface between living tissue and a nonliving biopolymer. Yet, in a poorly understood process, mussels can simply jettison their entire byssus, rebuilding a new one in just hours. We characterized the structure and composition of the byssus biointerface using histology, confocal Raman mapping, phase contrast-enhanced microcomputed tomography, and advanced electron microscopy, revealing a sophisticated junction consisting of abiotic biopolymer sheets interdigitated between living extracellular matrix. The sheet surfaces are in intimate adhesive contact with billions of motile epithelial cilia that control biointerface strength and stem release through their collective movement, which is regulated neurochemically. We posit that this may involve a complex sensory pathway by which sessile mussels respond to environmental stresses to release and relocate.
Collapse
Affiliation(s)
- Jenaes Sivasundarampillai
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Lucia Youssef
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Tobias Priemel
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Sydney Mikulin
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - E Deniz Eren
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Paul Zaslansky
- Department for Operative, Preventive and Pediatric Dentistry, Charité-Universitätsmedizin Berlin, Berlin 14197, Germany
| | - Franziska Jehle
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Matthew J Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
8
|
Luchiari AC, Maximino C. Fish personality: meta-theoretical issues, personality dimensions, and applications to neuroscience and psychopathology. PERSONALITY NEUROSCIENCE 2023; 6:e9. [PMID: 38107778 PMCID: PMC10725779 DOI: 10.1017/pen.2023.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 12/19/2023]
Abstract
While the field of personality neuroscience has extensively focused on humans and, in a few cases, primates and rodents, a wide range of research on fish personality has emerged in the last decades. This research is focused mainly on the ecological and evolutionary causes of individual differences and also aimed less extensively at proximal mechanisms (e.g., neurochemistry or genetics). We argue that, if consistent and intentional work is made to solve some of the meta-theoretical issues of personality research both on fish and mammals, fish personality research can lead to important advances in personality neuroscience as a whole. The five dimensions of personality in fish (shyness-boldness, exploration-avoidance, activity, aggressiveness, and sociability) need to be translated into models that explicitly recognize the impacts of personality in psychopathology, synergizing research on fish as model organisms in experimental psychopathology, personality neuroscience, and ecological-ethological approaches to the evolutionary underpinnings of personality to produce a powerful framework to understand individual differences.
Collapse
Affiliation(s)
- Ana Carolina Luchiari
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil
| |
Collapse
|
9
|
Rodrigues J, Rosa-Silva M, Tercya H, Jesus P, Miranda S, Oliveira H, Lima B, Santos L, Maximino C, Siqueira-Silva D. Oogenesis and in vitro reproduction of the twospot astyanax Astyanax bimaculatus (Linnaeus, 1758) exposed to conspecific alarm substance. Anim Reprod Sci 2023; 253:107252. [PMID: 37209522 DOI: 10.1016/j.anireprosci.2023.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
Stress situations can be essential to trigger reproduction in fish; however, it may also inhibit it. One of those situations involves the release of the conspecific alarm substance (CAS), a natural stressor, into the water by specific fish epidermal cells after a predator attack. Little is known about the effects of that substance on fish reproduction. This study aimed to evaluate the effects of CAS exposure on the oogenesis and reproduction of the twospot astyanax Astyanax bimaculatus before the hormonal induction for artificial reproduction. No macroscopic or cellular changes in the ovaries were observed for the females exposed to CAS, and the oocyte stages show all females in the same phase of maturation (Spawning Capable). Females exposed to CAS spawned 20 min before the females without exposure. On the other hand, they ovulated only once, whereas the females from the control group ovulated multiple times for approximately two hours after hormonal induction. Moreover, the precocious ovulation of the females submitted to CAS did not generate offspring, since all generated zygotes did not develop. In contrast, the control group females produced more than 11 thousand healthy larvae. Exposing the female fish to CAS during their reproductive management in captivity may reduce breeding success.
Collapse
Affiliation(s)
- Jeane Rodrigues
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Graduate Program in Animal Reproduction in the Amazon (ReproAmazon) of the Federal Rural University of the Amazon (Ufra) and Federal University of Pará (UFPA), Av. Presidente Tancredo Neves, Nº 2501, Terra Firme, 66.077-830 Belém, PA, Brazil
| | - Maria Rosa-Silva
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil
| | - Hadda Tercya
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil
| | - Paulo Jesus
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil
| | - Saynara Miranda
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Graduate Program in Animal Reproduction in the Amazon (ReproAmazon) of the Federal Rural University of the Amazon (Ufra) and Federal University of Pará (UFPA), Av. Presidente Tancredo Neves, Nº 2501, Terra Firme, 66.077-830 Belém, PA, Brazil
| | - Hingrid Oliveira
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil
| | - Bianca Lima
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil
| | - Ludmylla Santos
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil
| | - Caio Maximino
- Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil
| | - Diógenes Siqueira-Silva
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Graduate Program in Animal Reproduction in the Amazon (ReproAmazon) of the Federal Rural University of the Amazon (Ufra) and Federal University of Pará (UFPA), Av. Presidente Tancredo Neves, Nº 2501, Terra Firme, 66.077-830 Belém, PA, Brazil.
| |
Collapse
|
10
|
de Moura LA, Pyterson MP, Pimentel AFN, Araújo F, de Souza LVXB, Mendes CHM, Costa BPD, de Siqueira-Silva DH, Lima-Maximino M, Maximino C. Roles of the 5-HT2C receptor on zebrafish sociality. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110769. [PMID: 37068544 DOI: 10.1016/j.pnpbp.2023.110769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Serotonin (5-HT) receptors have been implicated in social behavior in vertebrates. Zebrafish (Danio rerio) have been increasingly being used behavioral neuroscience to study the neurobiological correlates of behavior, including sociality. Nonetheless, the role of 5-HT2C receptors in different social functions were not yet studied in this species. Zebrafish were treated with the agonist MK-212 (2 mg/kg) or the antagonist RS-102221 (2 mg/kg) and tested in the social interaction and social novelty tests, conditional approach test, or mirror-induced aggressive displays. MK-212 increased preference for an unknown conspecific in the social investigation test, but also increased preference for the known conspecific in the social novelty test; RS-102221, on the other hand, decreased preference in the social investigation test but increased preference for the novel conspecific in the social novelty test. MK-212 also decreased predator inspection in the conditional approach test. While RS-102221 decreased time in the display zone in the mirror-induced aggressive display test, it increased display duration. Overall, these results demonstrate the complex role of 5-HT2C receptors in different social contexts in zebrafish, revealing a participation in social plasticity in vertebrates.
Collapse
Affiliation(s)
- Layana Aquino de Moura
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil
| | - Maryana Pereira Pyterson
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil
| | - Ana Flávia Nogueira Pimentel
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil
| | - Fernanda Araújo
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Loanne Valéria Xavier Bruce de Souza
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Programa de Pós-Graduação em Neurociências e Comportamento, Universidade Federal do Pará, Belém, PA, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Caio Henrique Moura Mendes
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Bruna Patrícia Dutra Costa
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Brazil
| | - Diógenes Henrique de Siqueira-Silva
- Grupo de Estudos da Reprodução de Peixes Amazônicos, Faculdade de Biologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, PA, Brazil; Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Monica Lima-Maximino
- Laboratório de Neurofarmacologia e Biofísica, Universidade do Estado do Pará, Campus VIII, Marabá, PA, Brazil; Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Faculdade de Psicologia, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá,PA, Brazil; Programa de Pós-Graduação em Neurociências e Comportamento, Universidade Federal do Pará, Belém, PA, Brazil; Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Brazil; Núcleo Emergente de Fisiologia e Farmacologia de Peixes Teleósteos do Sudeste do Pará, Marabá, PA, Brazil.
| |
Collapse
|
11
|
Environmentally-relevant concentrations of the antipsychotic drugs sulpiride and clozapine induce abnormal dopamine and serotonin signaling in zebrafish brain. Sci Rep 2022; 12:17973. [PMID: 36289270 PMCID: PMC9606268 DOI: 10.1038/s41598-022-22169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
The presence of drugs in surface and groundwaters adversely affects the physiological function of non-target organisms due special activities that can pose a serious threats to various forms of aquatic life. Psychotropic drugs are one of the most commonly used drugs in the world. Hence, the aim of this study was to investigate the effect of environmentally-relevant concentrations of the antipsychotic drugs, sulpiride and clozapine, on dopaminergic (DAergic) and serotonergic (5-HTergic) neurotransmitter systems in the brain of zebrafish. Adult zebrafish (AB strain) were exposed to the environmentally-relevant concentrations of sulpiride, clozapine, or a mixture of sulpiride and clozapine. The effects of the drugs on the mRNA and protein levels of major functional molecules in DAergic and 5-HTergic systems were then analyzed in the telencephalon and diencephalon. Both drugs induced abnormal mRNA and protein levels of important functional molecules of the DA and 5-HT signaling pathways in both telencephalon and diencephalon, as shown by the abnormal transcriptional levels of TH, DAT, DR D1, DR D2, MAO, TPH, serotonin transporter (SERT), 5-HTR 1AA, 5-HTR 1B, 5-THR 2AA, and 5-HTR 2B, and the abnormal translational levels of DAT, DR D2, SERT, 5-HTR 1A, 5-HTR 1B, and 5-HTR 2B. In addition, we observed a specificity in the adverse effects of these antipsychotic drugs, in terms of doses and brain parts. Compared to their effects alone, the drug mixture had a weaker effect on the DA and 5-HT systems, suggesting an antagonistic interaction between sulpiride and clozapine. Our findings suggest that sulpiride and clozapine interfere with DAergic and 5-HTergic neurotransmitter systems in the telencephalon and diencephalon of zebrafish, resulting in possible effects on brain functions and posing a serious threat to the health of zebrafish.
Collapse
|
12
|
do Carmo Silva RX, do Nascimento BG, Gomes GCV, da Silva NAH, Pinheiro JS, da Silva Chaves SN, Pimentel AFN, Costa BPD, Herculano AM, Lima-Maximino M, Maximino C. 5-HT2C agonists and antagonists block different components of behavioral responses to potential, distal, and proximal threat in zebrafish. Pharmacol Biochem Behav 2021; 210:173276. [PMID: 34555392 DOI: 10.1016/j.pbb.2021.173276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Serotonin (5-HT) receptors have been implicated in responses to aversive stimuli in mammals and fish, but its precise role is still unknown. Moreover, since at least seven families of 5-HT receptors exist in vertebrates, the role of specific receptors is still debated. Aversive stimuli can be classified as indicators of proximal, distal, or potential threat, initiating responses that are appropriate for each of these threat levels. Responses to potential threat usually involve cautious exploration and increased alertness, while responses to distal and proximal threat involve a fight-flight-freeze reaction. We exposed adult zebrafish to a conspecific alarm substance (CAS) and observed behavior during (distal threat) and after (potential threat) exposure, and treated with the 5-HT2C receptor agonists MK-212 or WAY-161503 or with the antagonist RS-102221. The agonists blocked CAS-elicited defensive behavior (distal threat), but not post-exposure increases in defensive behavior (potential threat), suggesting inhibition of responses to distal threat. MK-212 blocked changes in freezing elicited by acute restraint stress, a model of proximal threat, while RS-102221 blocked changes in geotaxis elicited this stressor. We also found that RS-102221, a 5-HT2C receptor antagonist, produced small effect on behavior during and after exposure to CAS. Preprint: https://www.biorxiv.org/content/10.1101/2020.10.04.324202; Data and scripts: https://github.com/lanec-unifesspa/5-HT-CAS/tree/master/data/5HT2C.
Collapse
Affiliation(s)
- Rhayra Xavier do Carmo Silva
- Laboratório de Neurofarmacologia Experimental - LNE, Universidade Federal do Pará, Belém/PA, Brazil; Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil
| | - Bianca Gomes do Nascimento
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil
| | - Gabriela Cristini Vidal Gomes
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil
| | | | - Jéssica Souza Pinheiro
- Laboratório de Neurofarmacologia Experimental - LNE, Universidade Federal do Pará, Belém/PA, Brazil
| | - Suianny Nayara da Silva Chaves
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil
| | - Ana Flávia Nogueira Pimentel
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil
| | - Bruna Patrícia Dutra Costa
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil
| | | | - Monica Lima-Maximino
- Laboratório de Neurofarmacologia e Biofísica - LaNeF, Universidade do Estado do Pará, Marabá/PA, Brazil
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff" - LaNeC, Universidade Federal do Sul e Sudeste do Pará, Marabá/PA, Brazil.
| |
Collapse
|
13
|
Rosa LV, Costa FV, Canzian J, Borba JV, Quadros VA, Rosemberg DB. Three- and bi-dimensional analyses of the shoaling behavior in zebrafish: Influence of modulators of anxiety-like responses. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109957. [PMID: 32360787 DOI: 10.1016/j.pnpbp.2020.109957] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
Social behaviors are key components that play adaptive roles in various species, including humans. The zebrafish (Danio rerio) is a social species and the shoaling behavior can be pharmacologically manipulated either by anxiogenic or anxiolytic substances, providing translatable data in neuropsychiatric research. Here, we aimed to characterize the shoaling behavior in zebrafish under different pharmacological manipulations in a three-dimensional (3D) perspective using the spatial coordinates of the fish positions. Temporal and spatial reconstructions of shoal occupancy were performed after exposure to conspecific alarm substance (CAS) and caffeine (CAF) (anxiogenic substances) or diazepam (DZP) (a classical anxiolytic drug). Behavioral 3D analyses and spatiotemporal reconstructions of the shoaling behavior revealed that both CAS and CAF decreased the shoal volume, the average fish distance to the centoid point, and increased shoal geotaxis, but only CAS reduced the inter-fish distance when compared to control (CTRL). Conversely, DZP group showed increased shoal volume and inter-fish distance. Because substantial differences were verified when the shoaling response was analyzed in 3D and 2D perspectives, we reinforce the use of 3D reconstructions of fish positions to assess how different manipulations affect the social behavior of zebrafish. The novel procedure described here represents an easy-to-use, inexpensive, and alternative tool to perform a spatiotemporal reconstruction of the shoal occupancy under different pharmacological manipulations, complementing the existing quantification of locomotion activity of multiple fish.
Collapse
Affiliation(s)
- Luiz V Rosa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Fabiano V Costa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Vanessa A Quadros
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
14
|
Kermen F, Darnet L, Wiest C, Palumbo F, Bechert J, Uslu O, Yaksi E. Stimulus-specific behavioral responses of zebrafish to a large range of odors exhibit individual variability. BMC Biol 2020; 18:66. [PMID: 32539727 PMCID: PMC7296676 DOI: 10.1186/s12915-020-00801-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/22/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Odor-driven behaviors such as feeding, mating, and predator avoidance are crucial for animal survival. The neural pathways processing these behaviors have been well characterized in a number of species, and involve the activity of diverse brain regions following stimulation of the olfactory bulb by specific odors. However, while the zebrafish olfactory circuitry is well understood, a comprehensive characterization linking odor-driven behaviors to specific odors is needed to better relate olfactory computations to animal responses. RESULTS Here, we used a medium-throughput setup to measure the swimming trajectories of 10 zebrafish in response to 17 ecologically relevant odors. By selecting appropriate locomotor metrics, we constructed ethograms systematically describing odor-induced changes in the swimming trajectory. We found that adult zebrafish reacted to most odorants using different behavioral programs and that a combination of a few relevant behavioral metrics enabled us to capture most of the variance in these innate odor responses. We observed that individual components of natural food and alarm odors do not elicit the full behavioral response. Finally, we show that zebrafish blood elicits prominent defensive behaviors similar to those evoked by skin extract and activates spatially overlapping olfactory bulb domains. CONCLUSION Altogether, our results highlight a prominent intra- and inter-individual variability in zebrafish odor-driven behaviors and identify a small set of waterborne odors that elicit robust responses. Our behavioral setup and our results will be useful resources for future studies interested in characterizing innate olfactory behaviors in aquatic animals.
Collapse
Affiliation(s)
- Florence Kermen
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway.
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef 75, 3001, Leuven, Belgium.
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
- KU Leuven, 3000, Leuven, Belgium.
| | - Lea Darnet
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef 75, 3001, Leuven, Belgium
- KU Leuven, 3000, Leuven, Belgium
| | - Christoph Wiest
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Fabrizio Palumbo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway
| | - Jack Bechert
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef 75, 3001, Leuven, Belgium
- KU Leuven, 3000, Leuven, Belgium
| | - Ozge Uslu
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef 75, 3001, Leuven, Belgium
- KU Leuven, 3000, Leuven, Belgium
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway.
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef 75, 3001, Leuven, Belgium.
- KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|