1
|
Lu S, Chen X, Yang Y, Li J. CB2R activation enhances tumor-associated macrophages-mediated phagocytosis of glioma cell. Heliyon 2024; 10:e40806. [PMID: 39691192 PMCID: PMC11650289 DOI: 10.1016/j.heliyon.2024.e40806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
Background Cannabinoid administration has demonstrated promising anti-tumor effects for glioblastoma (GBM) by inhibiting glioma cell proliferation and inducing glioma cell death. However, the impact of cannabinoids and endocannabinoid receptors on immune cells within the tumor microenvironment (TME) remains largely unexplored. Tumor-associated macrophages (TAMs), the most abundant immune cells in the TME, and their mediated phagocytosis of tumor cells have shown potential in preclinical xenografts of various human malignancies. This study aimed to investigate the effect and mechanism of endocannabinoid receptor 2 (CB2R) on TAMs-mediated phagocytosis in xenografted mice with GL261-GFP cell lines. Methods We measured the phagocytic activity using immunofluorescence and flow cytometry, and we used the IVIS Spectrum System for bioluminescent imaging to track the growth of the tumor. Results Our findings demonstrated that administering JWH133, a selective CB2R agonist, significantly boosted TAMs-mediated phagocytosis. However, administering AM630, a selective CB2R antagonist, significantly inhibited TAMs-mediated phagocytosis. Mechanistically, CB2R activation upregulated the expression of CD36 on TAMs, a scavenger receptor known to facilitate phagocytosis. Furthermore, sulfo-N-succinimidyl oleate (SSO), an irreversible CD36 inhibitor, could reverse the CB2R activation-induced enhancement of phagocytosis by TAMs. Additionally. JHW133 also effectively augmented the chemotherapeutic efficacy of temozolomide. Conclusion Overall, our findings show that CB2R activation promotes TAMs-mediated phagocytosis of tumor cells by enhancing CD36 expression, implying that JWH133 could be a useful therapeutic approach to improving chemotherapeutic efficacy against GBM.
Collapse
Affiliation(s)
- Siyuan Lu
- Office of Scientific Research Administration, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Xuezhu Chen
- Department of Pathology, Public Health Medical Center, Chongqing, 400036, China
| | - Yang Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Amy Medical University), Chongqing, 400038, China
| | - Junlong Li
- Office of Scientific Research Administration, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Office of Scientific Research Administration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
2
|
Tao J, Li J, Fan X, Jiang C, Wang Y, Qin M, Nikfard Z, Nikfard F, Wang Y, Zhao T, Xing N, Zille M, Wang J, Zhang J, Chen X, Wang J. Unraveling the protein post-translational modification landscape: Neuroinflammation and neuronal death after stroke. Ageing Res Rev 2024; 101:102489. [PMID: 39277050 DOI: 10.1016/j.arr.2024.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
The impact of stroke on global health is profound, with both high mortality and morbidity rates. This condition can result from cerebral ischemia, intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH). The pathophysiology of stroke involves secondary damage and irreversible loss of neuronal function. Post-translational modifications (PTMs) have been recognized as crucial regulatory mechanisms in ischemic and hemorrhagic stroke-induced brain injury. These PTMs include phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and succinylation. This comprehensive review delves into recent research on the PTMs landscape associated with neuroinflammation and neuronal death specific to cerebral ischemia, ICH, and SAH. This review aims to explain the role of PTMs in regulating pathologic mechanisms and present critical techniques and proteomic strategies for identifying PTMs. This knowledge helps us comprehend the underlying mechanisms of stroke injury and repair processes, leading to the development of innovative treatment strategies. Importantly, this review underscores the significance of exploring PTMs to understand the pathophysiology of stroke.
Collapse
Affiliation(s)
- Jin Tao
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jiaxin Li
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P. R. China
| | - Yebin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Mengzhe Qin
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Zahra Nikfard
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Fatemeh Nikfard
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yunchao Wang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Ting Zhao
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P. R. China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna 1090, Austria
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P. R. China.
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| |
Collapse
|
3
|
Yamamoto Y, Taniguchi T, Shimazaki A. Rotenone-Induced Optic Nerve Damage and Retinal Ganglion Cell Loss in Rats. Biomolecules 2024; 14:1047. [PMID: 39334813 PMCID: PMC11430293 DOI: 10.3390/biom14091047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Rotenone is a mitochondrial complex I inhibitor that causes retinal degeneration. A study of a rat model of rotenone-induced retinal degeneration suggested that this model is caused by indirect postsynaptic N-methyl-D-aspartate (NMDA) stimulation triggered by oxidative stress-mediated presynaptic intracellular calcium signaling. To elucidate the mechanisms by which rotenone causes axonal degeneration, we investigated morphological changes in optic nerves and the change in retinal ganglion cell (RGC) number in rats. Optic nerves and retinas were collected 3 and 7 days after the intravitreal injection of rotenone. The cross-sections of the optic nerves were subjected to a morphological analysis with axon quantification. The axons and somas of RGCs were analyzed immunohistochemically in retinal flatmounts. In the optic nerve, rotenone induced axonal swelling and degeneration with the incidence of reactive gliosis. Rotenone also significantly reduced axon numbers in the optic nerve. Furthermore, rotenone caused axonal thinning, fragmentation, and beading in RGCs on flatmounts and decreased the number of RGC soma. In conclusion, the intravitreal injection of rotenone in rats induced morphological abnormities with a reduced number of optic nerve axons and RGC axons when the RGC somas were degenerated. These findings help elucidate the pathogenesis of optic neuropathy induced by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yasuko Yamamoto
- Product Development Division, Santen Pharmaceutical Co., Ltd., Nara 630-0101, Japan
| | - Takazumi Taniguchi
- Ophthalmology Innovation Center, Santen Pharmaceutical Co., Ltd., Nara 630-0101, Japan
| | - Atsushi Shimazaki
- Product Development Division, Santen Pharmaceutical Co., Ltd., Nara 630-0101, Japan
| |
Collapse
|
4
|
Cong J, Li JY, Zou W. Mechanism and treatment of intracerebral hemorrhage focus on mitochondrial permeability transition pore. Front Mol Neurosci 2024; 17:1423132. [PMID: 39156127 PMCID: PMC11328408 DOI: 10.3389/fnmol.2024.1423132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is the second most common subtype of stroke, characterized by high mortality and a poor prognosis. Despite various treatment methods, there has been limited improvement in the prognosis of ICH over the past decades. Therefore, it is imperative to identify a feasible treatment strategy for ICH. Mitochondria are organelles present in most eukaryotic cells and serve as the primary sites for aerobic respiration and energy production. Under unfavorable cellular conditions, mitochondria can induce changes in permeability through the opening of the mitochondrial permeability transition pore (mPTP), ultimately leading to mitochondrial dysfunction and contributing to various diseases. Recent studies have demonstrated that mPTP plays a role in the pathological processes associated with several neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, Huntington's disease, ischemic stroke and ischemia-reperfusion injury, among others. However, there is limited research on mPTP involvement specifically in ICH. Therefore, this study comprehensively examines the pathological processes associated with mPTP in terms of oxidative stress, apoptosis, necrosis, autophagy, ferroptosis, and other related mechanisms to elucidate the potential mechanism underlying mPTP involvement in ICH. This research aims to provide novel insights for the treatment of secondary injury after ICH.
Collapse
Affiliation(s)
- Jing Cong
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing-Yi Li
- The Second School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
5
|
Ushida K, Kinoshita K, Ichihara Y, Hirata Y, Kurauchi Y, Seki T, Katsuki H. Menaquinone-4 Alleviates Neurological Deficits Associated with Intracerebral Hemorrhage by Preserving Corticospinal Tract in Mice. Neurochem Res 2024; 49:1838-1850. [PMID: 38727984 DOI: 10.1007/s11064-024-04150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/14/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Menaquinone-4 (MK-4) is an isoform of vitamin K2 that has been shown to exert various biological actions besides its functions in blood coagulation and bone metabolism. Here we examined the effect of MK-4 on a mouse model of intracerebral hemorrhage (ICH). Daily oral administration of 200 mg/kg MK-4 starting from 3 h after induction of ICH by intrastriatal collagenase injection significantly ameliorated neurological deficits. Unexpectedly, MK-4 produced no significant effects on various histopathological parameters, including the decrease of remaining neurons and the increase of infiltrating neutrophils within the hematoma, the increased accumulation of activated microglia/macrophages and astrocytes around the hematoma, as well as the injury volume and brain swelling by hematoma formation. In addition, ICH-induced increases in nitrosative/oxidative stress reflected by changes in the immunoreactivities against nitrotyrosine and heme oxygenase-1 as well as the contents of malondialdehyde and glutathione were not significantly affected by MK-4. In contrast, MK-4 alleviated axon tract injury in the internal capsule as revealed by neurofilament-H immunofluorescence. Enhanced preservation of the corticospinal tract by MK-4 was also confirmed by retrograde labeling of neurons in the primary motor cortex innervating the spinal cord. These results suggest that MK-4 produces therapeutic effect on ICH by protecting structural integrity of the corticospinal tract.
Collapse
Affiliation(s)
- Keisuke Ushida
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Keita Kinoshita
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yusei Ichihara
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yuma Hirata
- Department of Chemico-Pharmacological Sciences, School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Department of Pharmacology, School of Pharmacy, Himeji Dokkyo University, Hyogo, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
6
|
Sun E, Lu S, Yang C, Li Z, Qian Y, Chen Y, Chen S, Ma X, Deng Y, Shan X, Chen B. Hypothermia protects the integrity of corticospinal tracts and alleviates mitochondria injury after intracerebral hemorrhage in mice. Exp Neurol 2024; 377:114803. [PMID: 38679281 DOI: 10.1016/j.expneurol.2024.114803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Disruption of corticospinal tracts (CST) is a leading factor for motor impairments following intracerebral hemorrhage (ICH) in the striatum. Previous studies have shown that therapeutic hypothermia (HT) improves outcomes of ICH patients. However, whether HT has a direct protection effect on the CST integrity and the underlying mechanisms remain largely unknown. In this study, we employed a chemogenetics approach to selectively activate bilateral warm-sensitive neurons in the preoptic areas to induce a hypothermia-like state. We then assessed effects of HT treatment on the integrity of CST and motor functional recovery after ICH. Our results showed that HT treatment significantly alleviated axonal degeneration around the hematoma and the CST axons at remote midbrain region, ultimately promoted skilled motor function recovery. Anterograde and retrograde tracing revealed that HT treatment protected the integrity of the CST over an extended period. Mechanistically, HT treatment prevented mitochondrial swelling in degenerated axons around the hematoma, alleviated mitochondrial impairment by reducing mitochondrial ROS accumulation and improving mitochondrial membrane potential in primarily cultured cortical neurons with oxyhemoglobin treatment. Serving as a proof of principle, our study provided novel insights into the application of HT to improve functional recovery after ICH.
Collapse
Affiliation(s)
- Eryi Sun
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Siyuan Lu
- Department of Radiological, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Chuanyan Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zheng Li
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Yu Qian
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Yue Chen
- Chengdu Bio-HT Company Limited, Chengdu 610000, Sichuan, China
| | - Siyuan Chen
- Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Xiaodong Ma
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Yan Deng
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, China
| | - Xiuhong Shan
- Department of Radiological, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Bo Chen
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, China.
| |
Collapse
|
7
|
Kinoshita K, Motomura K, Ushida K, Hirata Y, Konno A, Hirai H, Kotani S, Hitora-Imamura N, Kurauchi Y, Seki T, Katsuki H. Nurr1 overexpression in the primary motor cortex alleviates motor dysfunction induced by intracerebral hemorrhage in the striatum in mice. Neurotherapeutics 2024; 21:e00370. [PMID: 38704311 PMCID: PMC11305294 DOI: 10.1016/j.neurot.2024.e00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
Hemorrhage-induced injury of the corticospinal tract (CST) in the internal capsule (IC) causes severe neurological dysfunction in both human patients and rodent models of intracerebral hemorrhage (ICH). A nuclear receptor Nurr1 (NR4A2) is known to exert anti-inflammatory and neuroprotective effects in several neurological disorders. Previously we showed that Nurr1 ligands prevented CST injury and alleviated neurological deficits after ICH in mice. To prove direct effect of Nurr1 on CST integrity, we examined the effect of Nurr1 overexpression in neurons of the primary motor cortex on pathological consequences of ICH in mice. ICH was induced by intrastriatal injection of collagenase type VII, where hematoma invaded into IC. Neuron-specific overexpression of Nurr1 was induced by microinjection of synapsin I promoter-driven adeno-associated virus (AAV) vector into the primary motor cortex. Nurr1 overexpression significantly alleviated motor dysfunction but showed only modest effect on sensorimotor dysfunction after ICH. Nurr1 overexpression also preserved axonal structures in IC, while having no effect on hematoma-associated inflammatory events, oxidative stress, and neuronal death in the striatum after ICH. Immunostaining revealed that Nurr1 overexpression increased the expression of Ret tyrosine kinase and phosphorylation of Akt and ERK1/2 in neurons in the motor cortex. Moreover, administration of Nurr1 ligands 1,1-bis(3'-indolyl)-1-(p-chlorophenyl)methane or amodiaquine increased phosphorylation levels of Akt and ERK1/2 as well as expression of glial cell line-derived neurotrophic factor and Ret genes in the cerebral cortex. These results suggest that the therapeutic effect of Nurr1 on striatal ICH is attributable to the preservation of CST by acting on cortical neurons.
Collapse
Affiliation(s)
- Keita Kinoshita
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Kensuke Motomura
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Keisuke Ushida
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Yuma Hirata
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Shunsuke Kotani
- Global Center for Natural Resources Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Natsuko Hitora-Imamura
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan; Department of Pharmacology, School of Pharmacy, Himeji Dokkyo University, Hyogo, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
8
|
Zhang Y, Huang P, Cao M, Chen Y, Zhao X, He X, Xu L. ATAT1 deficiency enhances microglia/macrophage-mediated erythrophagocytosis and hematoma absorption following intracerebral hemorrhage. Neural Regen Res 2024; 19:1072-1077. [PMID: 37862210 PMCID: PMC10749593 DOI: 10.4103/1673-5374.382984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/08/2023] [Accepted: 07/17/2023] [Indexed: 10/22/2023] Open
Abstract
MIcroglia/macrophage-mediated erythrophagocytosis plays a crucial role in hematoma clearance after intracerebral hemorrhage. Dynamic cytoskeletal changes accompany phagocytosis. However, whether and how these changes are associated with microglia/macrophage-mediated erythrophagocytosis remain unclear. In this study, we investigated the function of acetylated α-tubulin, a stabilized microtubule form, in microglia/macrophage erythrophagocytosis after intracerebral hemorrhage both in vitro and in vivo. We first assessed the function of acetylated α-tubulin in erythrophagocytosis using primary DiO GFP-labeled red blood cells co-cultured with the BV2 microglia or RAW264.7 macrophage cell lines. Acetylated α-tubulin expression was significantly decreased in BV2 and RAW264.7 cells during erythrophagocytosis. Moreover, silencing α-tubulin acetyltransferase 1 (ATAT1), a newly discovered α-tubulin acetyltransferase, decreased Ac-α-tub levels and enhanced the erythrophagocytosis by BV2 and RAW264.7 cells. Consistent with these findings, in ATAT1-/- mice, we observed increased ionized calcium binding adapter molecule 1 (Iba1) and Perls-positive microglia/macrophage phagocytes of red blood cells in peri-hematoma and reduced hematoma volume in mice with intracerebral hemorrhage. Additionally, knocking out ATAT1 alleviated neuronal apoptosis and pro-inflammatory cytokines and increased anti-inflammatory cytokines around the hematoma, ultimately improving neurological recovery of mice after intracerebral hemorrhage. These findings suggest that ATAT1 deficiency accelerates erythrophagocytosis by microglia/macrophages and hematoma absorption after intracerebral hemorrhage. These results provide novel insights into the mechanisms of hematoma clearance and suggest ATAT1 as a potential target for the treatment of intracerebral hemorrhage.
Collapse
Affiliation(s)
- Yihua Zhang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ping Huang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Cao
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yi Chen
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xinhu Zhao
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xuzhi He
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lunshan Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
9
|
Peng C, Wang Y, Hu Z, Chen C. Selective HDAC6 inhibition protects against blood-brain barrier dysfunction after intracerebral hemorrhage. CNS Neurosci Ther 2024; 30:e14429. [PMID: 37665135 PMCID: PMC10915991 DOI: 10.1111/cns.14429] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUNDS Blood-brain barrier (BBB) disruption after intracerebral hemorrhage (ICH) significantly induces neurological impairment. Previous studies showed that HDAC6 knockdown or TubA can protect the TNF-induced endothelial dysfunction. However, the role of HDAC6 inhibition on ICH-induced BBB disruption remains unknown. METHODS Hemin-induced human brain microvascular endothelial cells (HBMECs) and collagenase-induced rats were employed to investigated the underlying impact of the HDAC6 inhibition in BBB lesion and neuronal dysfunction after ICH. RESULTS We found a significant decrease in acetylated α-tubulin during early phase of ICH. Both 25 or 40 mg/kg of TubA could relieve neurological deficits, perihematomal cell apoptosis, and ipsilateral brain edema in ICH animal model. TubA or specific siRNA of HDAC6 inhibited apoptosis and reduced the endothelial permeability of HBMECs. HDAC6 inhibition rescued the degradation of TJ proteins and repaired TJs collapses after ICH induction. Finally, the results suggested that the protective effects on BBB after ICH induction were exerted via upregulating the acetylated α-tubulin and reducing stress fiber formation. CONCLUSIONS Inhibition of HDAC6 expression showed beneficial effects against BBB disruption after experimental ICH, which suggested that HDAC6 could be a novel and promising target for ICH treatment.
Collapse
Affiliation(s)
- Cuiying Peng
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Department of Neurology, Hunan Provincial Rehabilitation HospitalHunan University of MedicineChangshaHunanChina
| | - Yilin Wang
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhiping Hu
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Chunli Chen
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
10
|
Okenve-Ramos P, Gosling R, Chojnowska-Monga M, Gupta K, Shields S, Alhadyian H, Collie C, Gregory E, Sanchez-Soriano N. Neuronal ageing is promoted by the decay of the microtubule cytoskeleton. PLoS Biol 2024; 22:e3002504. [PMID: 38478582 PMCID: PMC10962844 DOI: 10.1371/journal.pbio.3002504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/25/2024] [Accepted: 01/17/2024] [Indexed: 03/26/2024] Open
Abstract
Natural ageing is accompanied by a decline in motor, sensory, and cognitive functions, all impacting quality of life. Ageing is also the predominant risk factor for many neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. We need to therefore gain a better understanding of the cellular and physiological processes underlying age-related neuronal decay. However, gaining this understanding is a slow process due to the large amount of time required to age mammalian or vertebrate animal models. Here, we introduce a new cellular model within the Drosophila brain, in which we report classical ageing hallmarks previously observed in the primate brain. These hallmarks include axonal swellings, cytoskeletal decay, a reduction in axonal calibre, and morphological changes arising at synaptic terminals. In the fly brain, these changes begin to occur within a few weeks, ideal to study the underlying mechanisms of ageing. We discovered that the decay of the neuronal microtubule (MT) cytoskeleton precedes the onset of other ageing hallmarks. We showed that the MT-binding factors Tau, EB1, and Shot/MACF1, are necessary for MT maintenance in axons and synapses, and that their functional loss during ageing triggers MT bundle decay, followed by a decline in axons and synaptic terminals. Furthermore, genetic manipulations that improve MT networks slowed down the onset of neuronal ageing hallmarks and confer aged specimens the ability to outperform age-matched controls. Our work suggests that MT networks are a key lesion site in ageing neurons and therefore the MT cytoskeleton offers a promising target to improve neuronal decay in advanced age.
Collapse
Affiliation(s)
- Pilar Okenve-Ramos
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Rory Gosling
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Monika Chojnowska-Monga
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Kriti Gupta
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Samuel Shields
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Haifa Alhadyian
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Ceryce Collie
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Emilia Gregory
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Natalia Sanchez-Soriano
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
11
|
Huang Q, Yu X, Fu P, Wu M, Yin X, Chen Z, Zhang M. Mechanisms and therapeutic targets of mitophagy after intracerebral hemorrhage. Heliyon 2024; 10:e23941. [PMID: 38192843 PMCID: PMC10772251 DOI: 10.1016/j.heliyon.2023.e23941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/03/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
Mitochondria are dynamic organelles responsible for cellular energy production. In addition to regulating energy homeostasis, mitochondria are responsible for calcium homeostasis, clearance of damaged organelles, signaling, and cell survival in the context of injury and pathology. In stroke, the mechanisms underlying brain injury secondary to intracerebral hemorrhage are complex and involve cellular hypoxia, oxidative stress, inflammatory responses, and apoptosis. Recent studies have shown that mitochondrial damage and autophagy are essential for neuronal metabolism and functional recovery after intracerebral hemorrhage, and are closely related to inflammatory responses, oxidative stress, apoptosis, and other pathological processes. Because hypoxia and inflammatory responses can cause secondary damage after intracerebral hemorrhage, the restoration of mitochondrial function and timely clearance of damaged mitochondria have neuroprotective effects. Based on studies on mitochondrial autophagy (mitophagy), cellular inflammation, apoptosis, ferroptosis, the BNIP3 autophagy gene, pharmacological and other regulatory approaches, and normobaric oxygen (NBO) therapy, this article further explores the neuroprotective role of mitophagy after intracerebral hemorrhage.
Collapse
Affiliation(s)
- Qinghua Huang
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China
| | - Xiaoqin Yu
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Peijie Fu
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China
| | - Moxin Wu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332000, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China
| | - Zhiying Chen
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China
| | - Manqing Zhang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China
| |
Collapse
|
12
|
Lu D, Feng Y, Liu G, Yang Y, Ren Y, Chen Z, Sun X, Guan Y, Wang Z. Mitochondrial transport in neurons and evidence for its involvement in acute neurological disorders. Front Neurosci 2023; 17:1268883. [PMID: 37901436 PMCID: PMC10600463 DOI: 10.3389/fnins.2023.1268883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Ensuring mitochondrial quality is essential for maintaining neuronal homeostasis, and mitochondrial transport plays a vital role in mitochondrial quality control. In this review, we first provide an overview of neuronal mitochondrial transport, followed by a detailed description of the various motors and adaptors associated with the anterograde and retrograde transport of mitochondria. Subsequently, we review the modest evidence involving mitochondrial transport mechanisms that has surfaced in acute neurological disorders, including traumatic brain injury, spinal cord injury, spontaneous intracerebral hemorrhage, and ischemic stroke. An in-depth study of this area will help deepen our understanding of the mechanisms underlying the development of various acute neurological disorders and ultimately improve therapeutic options.
Collapse
Affiliation(s)
- Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun Feng
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yayi Yang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yixiang Guan
- Department of Neurosurgery, Hai'an People's Hospital Affiliated of Nantong University, Nantong, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
13
|
Zheng J, Zhang C, Wu Y, Zhang C, Che Y, Zhang W, Yang Y, Zhu J, Yang L, Wang Y. Controlled Decompression Alleviates Motor Dysfunction by Regulating Microglial Polarization via the HIF-1α Signaling Pathway in Intracranial Hypertension. Mol Neurobiol 2023; 60:5607-5623. [PMID: 37328678 DOI: 10.1007/s12035-023-03416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/24/2023] [Indexed: 06/18/2023]
Abstract
Decompressive craniectomy (DC) is a major form of surgery that is used to reduce intracranial hypertension (IH), the most frequent cause of death and disability following severe traumatic brain injury (sTBI) and stroke. Our previous research showed that controlled decompression (CDC) was more effective than rapid decompression (RDC) with regard to reducing the incidence of complications and improving outcomes after sTBI; however, the specific mechanisms involved have yet to be elucidated. In the present study, we investigated the effects of CDC in regulating inflammation after IH and attempted to identify the mechanisms involved. Analysis showed that CDC was more effective than RDC in alleviating motor dysfunction and neuronal death in a rat model of traumatic intracranial hypertension (TIH) created by epidural balloon pressurization. Moreover, RDC induced M1 microglia polarization and the release of pro-inflammatory cytokines. However, CDC treatment resulted in microglia primarily polarizing into the M2 phenotype and induced the significant release of anti-inflammatory cytokines. Mechanistically, the establishment of the TIH model led to the increased expression of hypoxia-inducible factor-1α (HIF-1α); CDC ameliorated cerebral hypoxia and reduced the expression of HIF-1α. In addition, 2-methoxyestradiol (2-ME2), a specific inhibitor of HIF-1α, significantly attenuated RDC-induced inflammation and improved motor function by promoting M1 to M2 phenotype transformation in microglial and enhancing the release of anti-inflammatory cytokines. However, dimethyloxaloylglycine (DMOG), an agonist of HIF-1α, abrogated the protective effects of CDC treatment by suppressing M2 microglia polarization and the release of anti-inflammatory cytokines. Collectively, our results indicated that CDC effectively alleviated IH-induced inflammation, neuronal death, and motor dysfunction by regulating HIF-1α-mediated microglial phenotype polarization. Our findings provide a better understanding of the mechanisms that underlie the protective effects of CDC and promote clinical translational research for HIF-1α in IH.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Chenxu Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Yonghui Wu
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Chonghui Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Yuanyuan Che
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Wang Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Yang Yang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Jie Zhu
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China.
| | - Likun Yang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China.
| | - Yuhai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China.
| |
Collapse
|
14
|
Yang C, Chen X, Zhang C, Lei X, Lu Y, Wang Y, Feng H, Chen T, Yang Y. Acetylated α-tubulin alleviates injury to the dendritic spines after ischemic stroke in mice. CNS Neurosci Ther 2023. [PMID: 36965035 DOI: 10.1111/cns.14184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/14/2023] [Accepted: 03/05/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND AND AIM Functional recovery is associated with the preservation of dendritic spines in the penumbra area after stroke. Previous studies found that polymerized microtubules (MTs) serve a crucial role in regulating dendritic spine formation and plasticity. However, the mechanisms that are involved are poorly understood. This study is designed to understand whether the upregulation of acetylated α-tubulin (α-Ac-Tub, a marker for stable, and polymerized MTs) could alleviate injury to the dendritic spines in the penumbra area and motor dysfunction after ischemic stroke. METHODS Ischemic stroke was mimicked both in an in vivo and in vitro setup using middle cerebral artery occlusion and oxygen-glucose deprivation models. Thy1-YFP mice were utilized to observe the morphology of the dendritic spines in the penumbra area. MEC17 is the specific acetyltransferase of α-tubulin. Thy1 CreERT2-eYFP and MEC17fl/fl mice were mated to produce mice with decreased expression of α-Ac-Tub in dendritic spines of pyramidal neurons in the cerebral cortex. Moreover, AAV-PHP.B-DIO-MEC17 virus and tubastatin A (TBA) were injected into Thy1 CreERT2-eYFP and Thy1-YFP mice to increase α-Ac-Tub expression. Single-pellet retrieval, irregular ladder walking, rotarod, and cylinder tests were performed to test the motor function after the ischemic stroke. RESULTS α-Ac-Tub was colocalized with postsynaptic density 95. Although knockout of MEC17 in the pyramidal neurons did not affect the density of the dendritic spines, it significantly aggravated the injury to them in the penumbra area and motor dysfunction after stroke. However, MEC17 upregulation in the pyramidal neurons and TBA treatment could maintain mature dendritic spine density and alleviate motor dysfunction after stroke. CONCLUSION Our study demonstrated that α-Ac-Tub plays a crucial role in the maintenance of the structure and functions of mature dendritic spines. Moreover, α-Ac-Tub protected the dendritic spines in the penumbra area and alleviated motor dysfunction after stroke.
Collapse
Affiliation(s)
- Chuanyan Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xuezhu Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chenxu Zhang
- Department of Neurosurgery, the 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China
| | - Xuejiao Lei
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yongling Lu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuhai Wang
- Department of Neurosurgery, the 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Tunan Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Neurosurgery, the 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China
| |
Collapse
|
15
|
Wang YH, Chen YJ, Yang Y, Zhang KY, Chen XZ, Yang CY, Wang J, Lei XJ, Quan YL, Chen WX, Zhao HL, Yang LK, Feng H. Cyclophilin D-induced mitochondrial impairment confers axonal injury after intracerebral hemorrhage in mice. Neural Regen Res 2023; 18:849-855. [PMID: 36204853 PMCID: PMC9700082 DOI: 10.4103/1673-5374.353495] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The mitochondrial permeability transition pore is a nonspecific transmembrane channel. Inhibition of mitochondrial permeability transition pore opening has been shown to alleviate mitochondrial swelling, calcium overload, and axonal degeneration. Cyclophilin D is an important component of the mitochondrial permeability transition pore. Whether cyclophilin D participates in mitochondrial impairment and axonal injury after intracerebral hemorrhage is not clear. In this study, we established mouse models of intracerebral hemorrhage in vivo by injection of autologous blood and oxyhemoglobin into the striatum in Thy1-YFP mice, in which pyramidal neurons and axons express yellow fluorescent protein. We also simulated intracerebral hemorrhage in vitro in PC12 cells using oxyhemoglobin. We found that axonal degeneration in the early stage of intracerebral hemorrhage depended on mitochondrial swelling induced by cyclophilin D activation and mitochondrial permeability transition pore opening. We further investigated the mechanism underlying the role of cyclophilin D in mouse models and PC12 cell models of intracerebral hemorrhage. We found that both cyclosporin A inhibition and short hairpin RNA interference of cyclophilin D reduced mitochondrial permeability transition pore opening and mitochondrial injury. In addition, inhibition of cyclophilin D and mitochondrial permeability transition pore opening protected corticospinal tract integrity and alleviated motor dysfunction caused by intracerebral hemorrhage. Our findings suggest that cyclophilin D is used as a key mediator of axonal degeneration after intracerebral hemorrhage; inhibition of cyclophilin D expression can protect mitochondrial structure and function and further alleviate corticospinal tract injury and motor dysfunction after intracerebral hemorrhage. Our findings provide a therapeutic target for preventing axonal degeneration of white matter injury and subsequent functional impairment in central nervous diseases.
Collapse
|
16
|
Paiva WS, Zippo E, Miranda C, Brasil S, Godoy DA, De Andrade AF, Neville I, Patriota GC, Domingues R, Teixeira MJ. Animal models for the study of intracranial hematomas (Review). Exp Ther Med 2022; 25:20. [PMID: 36561628 PMCID: PMC9748783 DOI: 10.3892/etm.2022.11719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Intracranial hematomas (ICH) are a frequent condition in neurosurgical and neurological practices, with several mechanisms of primary and secondary injury. Experimental research has been fundamental for the understanding of the pathophysiology implicated with ICH and the development of therapeutic interventions. To date, a variety of different animal approaches have been described that consider, for example, the ICH evolutive phase, molecular implications and hemodynamic changes. Therefore, choosing a test protocol should consider the scope of each particular study. The present review summarized investigational protocols in experimental research on the subject of ICH. With this subject, injection of autologous blood or bacterial collagenase, inflation of intracranial balloon and avulsion of cerebral vessels were the models identified. Rodents (mice) and swine were the most frequent species used. These different models allowed improvements on the understanding of intracranial hypertension establishment, neuroinflammation, immunology, brain hemodynamics and served to the development of therapeutic strategies.
Collapse
Affiliation(s)
- Wellingson Silva Paiva
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Medical Research Laboratory 62, Department of Neurology, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| | - Emanuele Zippo
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| | - Carolina Miranda
- Neurology Center, Samaritan Hospital, 01232010 São Paulo, Brazil
| | - Sérgio Brasil
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Medical Research Laboratory 62, Department of Neurology, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Correspondence to: Dr Sérgio Brasil, Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 255 Enéas Aguiar Street, 05403 São Paulo, Brazil
| | - Daniel Augustin Godoy
- Department of Intensive Care, Neurointensive Care Unit, Pasteur Hospital, 4700 Catamarca, Argentina
| | - Almir Ferreira De Andrade
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Medical Research Laboratory 62, Department of Neurology, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| | - Iuri Neville
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| | | | - Renan Domingues
- Neurology Center, Samaritan Hospital, 01232010 São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Medical Research Laboratory 62, Department of Neurology, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| |
Collapse
|
17
|
Docosahexaenoic Acid Alleviates Brain Damage by Promoting Mitophagy in Mice with Ischaemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3119649. [PMID: 36254232 PMCID: PMC9569200 DOI: 10.1155/2022/3119649] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/04/2022] [Accepted: 09/15/2022] [Indexed: 12/06/2022]
Abstract
Mitophagy, the selective removal of damaged mitochondria through autophagy, is crucial for mitochondrial turnover and quality control. Docosahexaenoic acid (DHA), an essential omega-3 fatty acid, protects mitochondria in various diseases. This study aimed to investigate the neuroprotective role of DHA in ischaemic stroke models in vitro and in vivo and its involvement in mitophagy and mitochondrial dysfunction. A mouse model of ischaemic stroke was established through middle cerebral artery occlusion (MCAO). To simulate ischaemic stroke in vitro, PC12 cells were subjected to oxygen–glucose deprivation (OGD). Immunofluorescence analysis, western blotting (WB), electron microscopy (EM), functional behavioural tests, and Seahorse assay were used for analysis. DHA treatment significantly alleviated the brain infarction volume, neuronal apoptosis, and behavioural dysfunction in mice with ischaemic stroke. In addition, DHA enhanced mitophagy by significantly increasing the number of autophagosomes and LC3-positive mitochondria in neurons. The Seahorse assay revealed that DHA increased glutamate and succinate metabolism in neurons after ischaemic stroke. JC-1 and MitoSox staining, and evaluation of ATP levels indicated that DHA-induced mitophagy alleviated reactive oxygen species (ROS) accumulation and mitochondrial injury. Mechanistically, DHA improved mitochondrial dynamics by increasing the expression of dynamin-related protein 1 (Drp1), LC3, and the mitophagy clearance protein Pink1/Parkin. Mdivi-1, a specific mitophagy inhibitor, abrogated the neuroprotective effects of DHA, indicating that DHA protected neurons by enhancing mitophagy. Therefore, DHA can protect against neuronal apoptosis after stroke by clearing the damaged mitochondria through Pink1/Parkin-mediated mitophagy and by alleviating mitochondrial dysfunction.
Collapse
|
18
|
Combination of microtubule targeting agents with other antineoplastics for cancer treatment. Biochim Biophys Acta Rev Cancer 2022; 1877:188777. [PMID: 35963551 DOI: 10.1016/j.bbcan.2022.188777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/22/2022]
Abstract
Microtubule targeting agents (MTAs) have attracted extensive attention for cancer treatment. However, their clinical efficacies are limited by intolerable toxicities, inadequate efficacy and acquired multidrug resistance. The combination of MTAs with other antineoplastics has become an efficient strategy to lower the toxicities, overcome resistance and improve the efficacies for cancer treatment. In this article, we review the combinations of MTAs with some other anticancer drugs, such as cytotoxic agents, kinases inhibitors, histone deacetylase inhibitors, immune checkpoints inhibitors, to overcome these obstacles. We strongly believe that this review will provide helpful information for combination therapy based on MTAs.
Collapse
|
19
|
Novel targets, treatments, and advanced models for intracerebral haemorrhage. EBioMedicine 2022; 76:103880. [PMID: 35158309 PMCID: PMC8850756 DOI: 10.1016/j.ebiom.2022.103880] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
Intracerebral haemorrhage (ICH) is the second most common type of stroke and a major cause of mortality and disability worldwide. Despite advances in surgical interventions and acute ICH management, there is currently no effective therapy to improve functional outcomes in patients. Recently, there has been tremendous progress uncovering new pathophysiological mechanisms underlying ICH that may pave the way for the development of therapeutic interventions. Here, we highlight emerging targets, but also existing gaps in preclinical animal modelling that prevent their exploitation. We particularly focus on (1) ICH aetiology, (2) the haematoma, (3) inflammation, and (4) post-ICH pathology. It is important to recognize that beyond neurons and the brain, other cell types and organs are crucially involved in ICH pathophysiology and successful interventions likely will need to address the entire organism. This review will spur the development of successful therapeutic interventions for ICH and advanced animal models that better reflect its aetiology and pathophysiology.
Collapse
|
20
|
Yoshimizu A, Kinoshita K, Ichihara Y, Kurauchi Y, Seki T, Katsuki H. Hydroxychloroquine improves motor function and affords neuroprotection without inhibition of inflammation and autophagy in mice after intracerebral hemorrhage. J Neuroimmunol 2022; 362:577786. [PMID: 34920280 DOI: 10.1016/j.jneuroim.2021.577786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 01/05/2023]
Abstract
We examined the effect of an immunomodulator hydroxychloroquine, also known as a Nurr1 ligand and an autophagy inhibitor, on a mouse model of intracerebral hemorrhage (ICH). Daily administration of hydroxychloroquine (100 mg/kg, i.p.) from 3 h after induction of ICH alleviated neurological deficits of mice, increased the number of surviving neurons in the hematoma and prevented fragmentation of axon structures in the internal capsule. Unexpectedly, hydroxychloroquine did not inhibit either upregulation of pro-inflammatory mediators or autophagic responses in the brain. Hence, hydroxychloroquine may produce therapeutic effects on ICH primarily via neuroprotection including preservation of the axon tract integrity.
Collapse
Affiliation(s)
- Ayaka Yoshimizu
- Department of Chemico-Pharmacological Sciences, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Keita Kinoshita
- Department of Chemico-Pharmacological Sciences, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yusei Ichihara
- Department of Chemico-Pharmacological Sciences, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| |
Collapse
|
21
|
Chen Y. Disturbed cerebral circulation and metabolism matters: A preface to the special issue "Stroke and Energy Metabolism": A preface to the special issue "Stroke and Energy Metabolism". J Neurochem 2021; 160:10-12. [PMID: 34894153 DOI: 10.1111/jnc.15552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 11/30/2022]
Abstract
Stroke is a serious neurological disorder caused by blockage or rupture of cerebral blood vessels. Two main aims in acute stroke therapy include the restoration of cerebral blood flow in order to preserve energy supply to neurons and other brain cells, and minimizing neuronal loss. Maintenance of energy homeostasis in the brain drives neural network dynamics, which preserves normal brain function under physiological conditions. As such, cerebral energy homeostasis is a key target in stroke therapy. The various articles in this special issue highlight energy metabolism changes following stroke, including disturbed cerebral blood circulation, mitochondrial dysfunction, programmed neuronal cell death and cell-cell communication in brain metabolism. Collectively, this series of articles provides insight and presents new avenues for further research to improve the clinical management of stroke patients.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregeneration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|