1
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Maiahy TJ, Alexiou A, Mukerjee N, Batiha GES. An insight into the placental growth factor (PlGf)/angii axis in Covid-19: a detrimental intersection. Biotechnol Genet Eng Rev 2024; 40:3326-3345. [PMID: 36096720 DOI: 10.1080/02648725.2022.2122291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/29/2022] [Indexed: 11/02/2022]
Abstract
Coronavirus disease 2019 (Covid-19) is a recent and current infectious pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Covid-19 may lead to the development of acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and extrapulmonary manifestations in severe cases. Down-regulation of angiotensin-converting enzyme (ACE2) by the SARS-CoV-2 increases the production of angiotensin II (AngII), which increases the release of pro-inflammatory cytokines and placental growth factor (PlGF). PlGF is a critical molecule involved in vasculogenesis and angiogenesis. PlGF is stimulated by AngII in different inflammatory diseases through a variety of signaling pathways. PlGF and AngII are interacted in SARS-CoV-2 infection resulting in the production of pro-inflammatory cytokines and the development of Covid-19 complications. Both AngII and PlGF are interacted and are involved in the progression of inflammatory disorders; therefore, we aimed in this review to highlight the potential role of the PlGF/AngII axis in Covid-19.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Thabat J Al-Maiahy
- Department Of Gynecology and Obstetrics, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
- AFNP Med, Austria, Wien, Austria
| | - Nobendu Mukerjee
- Department of Microbiology; Ramakrishna Mission Vivekananda Centenary College, Kolkata, WestBengal, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, Egypt
| |
Collapse
|
2
|
Tang JW, Ritchie B, Taranath A, Mos K, Baulderstone M, Coppin B. Case of Acute Necrotising Encephalopathy of Childhood secondary to Severe Acute Respiratory Syndrome Coronavirus 2 infection. J Paediatr Child Health 2024; 60:28-30. [PMID: 37864394 DOI: 10.1111/jpc.16506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/07/2023] [Accepted: 10/01/2023] [Indexed: 10/22/2023]
Affiliation(s)
- Jonathan W Tang
- Department of General Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Brett Ritchie
- Department of Microbiology and Infectious Diseases, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Ajay Taranath
- South Australia Medical Imaging, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Krista Mos
- Department of Paediatric Critical Care Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Michaela Baulderstone
- Department of General Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Brian Coppin
- Department of General Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Le Guennec L, Weiss N. Blood-brain barrier dysfunction in intensive care unit. JOURNAL OF INTENSIVE MEDICINE 2023; 3:303-312. [PMID: 38028637 PMCID: PMC10658046 DOI: 10.1016/j.jointm.2023.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 12/01/2023]
Abstract
The central nervous system is characterized by a peculiar vascularization termed blood-brain barrier (BBB), which regulates the exchange of cells and molecules between the cerebral tissue and the whole body. BBB dysfunction is a life-threatening condition since its presence corresponds to a marker of severity in most diseases encountered in the intensive care unit (ICU). During critical illness, inflammatory response, cytokine release, and other phenomena activating the brain endothelium contribute to alterations in the BBB and increase its permeability to solutes, cells, nutrients, and xenobiotics. Moreover, patients in the ICU are often old, with underlying acute or chronic diseases, and overly medicated due to their critical condition; these factors could also contribute to the development of BBB dysfunction. An accurate diagnostic approach is critical for the identification of the mechanisms underlying BBB alterations, which should be rapidly managed by intensivists. Several methods were developed to investigate the BBB and assess its permeability. Nevertheless, in humans, exploration of the BBB requires the use of indirect methods. Imaging and biochemical methods can be used to study the abnormal passage of molecules through the BBB. In this review, we describe the structural and functional characteristics of the BBB, present tools and methods for probing this interface, and provide examples of the main diseases managed in the ICU that are related to BBB dysfunction.
Collapse
Affiliation(s)
- Loic Le Guennec
- Département de neurologie, Sorbonne Université, AP-HP Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Unité de Médecine Intensive Réanimation àorientation neurologique, Paris 75013, France
- Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Paris 75013, France
| | - Nicolas Weiss
- Département de neurologie, Sorbonne Université, AP-HP Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Unité de Médecine Intensive Réanimation àorientation neurologique, Paris 75013, France
- Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Paris 75013, France
- Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de recherche Saint-Antoine, Maladies métaboliques, Biliaires et fibro-inflammatoire du foie, Institute of Cardiometabolism and Nutrition (ICAN), Paris 75013, France
| |
Collapse
|
4
|
Zuo Y, He Z, Chen Y, Dai L. Dual role of ANGPTL4 in inflammation. Inflamm Res 2023:10.1007/s00011-023-01753-9. [PMID: 37300585 DOI: 10.1007/s00011-023-01753-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Angiopoietin-like 4 (ANGPTL4) belongs to the angiopoietin-like protein family and mediates the inhibition of lipoprotein lipase activity. Emerging evidence suggests that ANGPTL4 has pleiotropic functions with anti- and pro-inflammatory properties. METHODS A thorough search on PubMed related to ANGPTL4 and inflammation was performed. RESULTS Genetic inactivation of ANGPTL4 can significantly reduce the risk of developing coronary artery disease and diabetes. However, antibodies against ANGPTL4 result in several undesirable effects in mice or monkeys, such as lymphadenopathy and ascites. Based on the research progress on ANGPTL4, we systematically discussed the dual role of ANGPTL4 in inflammation and inflammatory diseases (lung injury, pancreatitis, heart diseases, gastrointestinal diseases, skin diseases, metabolism, periodontitis, and osteolytic diseases). This may be attributed to several factors, including post-translational modification, cleavage and oligomerization, and subcellular localization. CONCLUSION Understanding the potential underlying mechanisms of ANGPTL4 in inflammation in different tissues and diseases will aid in drug discovery and treatment development.
Collapse
Affiliation(s)
- Yuyue Zuo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Yu Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China
| | - Lei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Barbalho SM, Minniti G, Miola VFB, Haber JFDS, Bueno PCDS, de Argollo Haber LS, Girio RSJ, Detregiachi CRP, Dall'Antonia CT, Rodrigues VD, Nicolau CCT, Catharin VMCS, Araújo AC, Laurindo LF. Organokines in COVID-19: A Systematic Review. Cells 2023; 12:1349. [PMID: 37408184 DOI: 10.3390/cells12101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 07/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a viral infection caused by SARS-CoV-2 that induces a generalized inflammatory state. Organokines (adipokines, osteokines, myokines, hepatokines, and cardiokines) can produce beneficial or harmful effects in this condition. This study aimed to systematically review the role of organokines on COVID-19. PubMed, Embase, Google Scholar, and Cochrane databases were searched, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and 37 studies were selected, comprising more than 2700 individuals infected with the virus. Among COVID-19 patients, organokines have been associated with endothelial dysfunction and multiple organ failure due to augmented cytokines and increased SARS-CoV-2 viremia. Changes in the pattern of organokines secretion can directly or indirectly contribute to aggravating the infection, promoting immune response alterations, and predicting the disease progression. These molecules have the potential to be used as adjuvant biomarkers to predict the severity of the illness and severe outcomes.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Vitor Fernando Bordin Miola
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Jesselina Francisco Dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Centro Interdisciplinar em Diabetes (CENID), School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Patrícia Cincotto Dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Luiza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Raul S J Girio
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Cláudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| | - Camila Tiveron Dall'Antonia
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| | - Claudia C T Nicolau
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Virginia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| |
Collapse
|
6
|
Keep RF, Jones HC, Hamilton MG, Drewes LR. A year in review: brain barriers and brain fluids research in 2022. Fluids Barriers CNS 2023; 20:30. [PMID: 37085841 PMCID: PMC10120509 DOI: 10.1186/s12987-023-00429-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
This aim of this editorial is to highlight progress made in brain barrier and brain fluid research in 2022. It covers studies on the blood-brain, blood-retina and blood-CSF barriers (choroid plexus and meninges), signaling within the neurovascular unit and elements of the brain fluid systems. It further discusses how brain barriers and brain fluid systems are impacted in CNS diseases, their role in disease progression and progress being made in treating such diseases.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| | | | - Mark G Hamilton
- Department of Clinical Neurosciences, Division of Neurosurgery, University of Calgary, Alberta, Canada
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|
7
|
Lawrence AJ, Prado MA. Editorial: Exciting developments in neurochemistry research and publishing. J Neurochem 2022; 162:151-155. [PMID: 35524403 DOI: 10.1111/jnc.15595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/01/2022]
Abstract
In this editorial, we are happy to connect with our community to explain the changes introduced to the Journal of Neurochemistry over the last year and provide some insights into new developments and exciting opportunities. We anticipate these developments, which are strongly guided to increase transparency and support early career researchers, will increase the value of the Journal of Neurochemistry for the authors and readers. Ultimately, we hope to improve the author experience with the Journal of Neurochemistry and continue to be the leading venue for fast dissemination of exciting new research focusing on how molecules, cells and circuits regulate the nervous system in health and disease.
Collapse
Affiliation(s)
- Andrew J Lawrence
- The Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Marco A Prado
- University of Western Ontario, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
8
|
Chakraborty S, Basu A. Catching hold of COVID-19-related encephalitis by tracking ANGPTL4 signature in blood: An Editorial Highlight for "Endothelial cell biomarkers in critically ill COVID-19-patients with encephalitis": An Editorial Highlight for "Endothelial cell biomarkers in critically ill COVID-19-patients with encephalitis". J Neurochem 2021; 161:458-462. [PMID: 34967002 DOI: 10.1111/jnc.15560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022]
Abstract
Infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in humans is characterized by a plethora of symptoms varying in intensity, such as non-specific febrile illness, dry cough, dyspnea, hypoxemia to severe lung damage, and even death. In addition to pulmonary complications associated with coronavirus disease-19 (COVID-19), perturbations in the physiology of multiple other organ systems have been reported, resulting in multiorgan failure (MoF) that is frequently observed in severe COVID-19 cases. Central nervous system (CNS) infection by SARS-CoV-2 is characterized by neurological impairments in patients with COVID-19, with the development of encephalopathy at the severe end of the spectrum. While mechanistic investigations of SARS-CoV-2-related encephalitis may reveal promising therapeutic candidates for reducing COVID-19-associated disease morbidity, the discovery of biomarkers capable of diagnosing and predicting prognosis in patients with encephalitis upon SARS-CoV-2 infection will afford significant value for the rapid detection of encephalitis and predicting disease outcomes. This will ultimately enable appropriate modifications of therapeutic regimens aimed at reducing disease morbidity and mortality. In this editorial, we highlight a study by Le Guennec and colleagues, entitled "Endothelial cell biomarkers in critically ill COVID-19-patients with encephalitis", reporting the association of increased serum angiopoietin-like 4 (ANGPTL4) abundance with COVID-19-related encephalitis. The study highlights ANGPTL4 as a potential molecular marker for this disease. These novel findings may catalyze developments in the field of COVID-19-associated encephalitis by facilitating accurate and rapid diagnosis of encephalitis and timely treatment initiation, thus improving patient outcomes by ameliorating disease burden.
Collapse
Affiliation(s)
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, India
| |
Collapse
|