1
|
Sarkar S, Pandey A, Kumar Yadav S, Haris Siddiqui M, Pant AB, Yadav S. Differentiated and mature neurons are more responsive to neurotoxicant exposure at both transcriptional and translational levels. Neuroscience 2025; 564:110-125. [PMID: 39571964 DOI: 10.1016/j.neuroscience.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/13/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
SH-SY5Y human neuroblastoma cells have been extensively used as an in vitro model system in a diverse range of studies involving neurodevelopment, neurotoxicity, neurodegeneration, and neuronal ageing. Both naïve and differentiated phenotypes of SH-SY5Y cells are utilized to model human neurons under in vitro conditions. The process of differentiation causes extensive remodeling of neuronal cells at multiple omic levels, including the epigenome and proteome. In the present investigation, the miRNAome and proteome profiles of arsenic-treated naïve and differentiated SH-SY5Y cells were generated using the miRNA OpenArray technology and high-resolution mass spectrometry. Our findings demonstrated that differentiation dramatically affected the response of SH-SY5Y cells to toxicant exposure, as indicated by increased tolerance of differentiated cells against arsenic exposure compared to naïve cells in cell viability assay. Arsenic-exposed naïve and differentiated SH-SY5Y cells possess distinct miRNA and protein profiles with few similarities. Compared to naïve cells, differentiated cells have undergone higher deregulation in the expression of brain-enriched miRNAs and proteins and have shown a more drastic decrease in oxygen consumption rate, which is a measure of mitochondrial respiration after exposure to arsenic. Proteins identified in arsenic-treated differentiated SH-SY5Y cells were more enriched in pathways underlying multifactorial neurotoxic events. Additionally, more functional regulatory modules have been identified between the miRNAs and proteins differentially expressed in arsenic-treated differentiated SH-SY5Y cells relative to naïve cells. Collectively, our studies have shown that differentiated SH-SY5Y cells displayed alterations in the expression of a greater number of miRNAs and proteins following neurotoxicant exposure, indicating their higher responsivity.
Collapse
Affiliation(s)
- Sana Sarkar
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India.
| | - Anuj Pandey
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India.
| | - Sanjeev Kumar Yadav
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India.
| | | | - A B Pant
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India.
| | - Sanjay Yadav
- All India Institute of Medical Sciences (AIIMS), Raebareli, Uttar Pradesh, India.
| |
Collapse
|
2
|
Nie X, Cheng R, Hao P, Guo Y, Chen G, Ji L, Jia L. MicroRNA-128-3p Affects Neuronal Apoptosis and Neurobehavior in Cerebral Palsy Rats by Targeting E3 Ubiquitin-Linking Enzyme Smurf2 and Regulating YY1 Expression. Mol Neurobiol 2024:10.1007/s12035-024-04362-7. [PMID: 39102109 DOI: 10.1007/s12035-024-04362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/09/2024] [Indexed: 08/06/2024]
Abstract
This study was dedicated to investigating the effects of microRNA-128-3p (miR-128-3p) on neuronal apoptosis and neurobehavior in cerebral palsy (CP) rats via the Smurf2/YY1 axis.In vivo modeling of hypoxic-ischemic (HI) CP was established in neonatal rats. Neurobehavioral tests (geotaxis reflex, cliff avoidance reaction, and grip test) were measured after HI induction. The HI-induced neurological injury was evaluated by HE staining, Nissl staining, TUNEL staining, immunohistochemical staining, and RT-qPCR. The expression of miR-128-3p, Smurf2, and YY1 was determined by RT-qPCR and western blot techniques. Moreover, primary cortical neurons were used to establish the oxygen and glucose deprivation (OGD) model in vitro, cell viability was detected by CCK-8 assay, neuronal apoptosis was assessed by flow cytometry and western blot, and the underlying mechanism between miR-128-3p, Smurf2 and YY1 was verified by bioinformatics analysis, dual luciferase reporter assay, RIP, Co-IP, ubiquitination assay, western blot, and RT-qPCR.In vivo, miR-128-3p and YY1 expression was elevated, and Smurf2 expression was decreased in brain tissues of hypoxic-ischemic CP rats. Downregulation of miR-128-3p or overexpression of Smurf2 improved neurobehavioral performance, reduced neuronal apoptosis, and elevated Nestin and NGF expression in hypoxic-ischemic CP rats, and downregulation of Smurf2 reversed the effects of downregulation of miR-128-3p on neurobehavioral performance, neuronal apoptosis, and Nestin and NGF expression in hypoxic-ischemic CP rats, while overexpression of YY1 reversed the effects of Smurf2 on neurobehavioral performance, neuronal apoptosis, and Nestin and NGF expression in hypoxic-ischemic CP rats. In vitro, downregulation of miR-128-3p effectively promoted the neuronal survival, reduced the apoptosis rate, and decreased caspase3 protein expression after OGD, and overexpression of YY1 reversed the ameliorative effect of downregulation of miR-128-3p on OGD-induced neuronal injury. miR-128-3p targeted to suppress Smurf2 to lower YY1 ubiquitination degradation and decrease its expression.Inhibition of miR-128-3p improves neuronal apoptosis and neurobehavioral changes in hypoxic-ischemic CP rats by promoting Smurf2 to promote YY1 ubiquitination degradation and reduce YY1 expression.
Collapse
Affiliation(s)
- Xiaoqi Nie
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Rui Cheng
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Pengfei Hao
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
- Shanxi Medical University, Taiyuan, 030607, Shanxi, China
| | - Yuhong Guo
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Gang Chen
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Lei Ji
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Lu Jia
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China.
| |
Collapse
|
3
|
He C, Zhou H, Chen L, Liu Z. NEAT1 Promotes Valproic Acid-Induced Autism Spectrum Disorder by Recruiting YY1 to Regulate UBE3A Transcription. Mol Neurobiol 2024:10.1007/s12035-024-04309-y. [PMID: 38922486 DOI: 10.1007/s12035-024-04309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Evidence suggests that long non-coding RNAs (lncRNAs) play a significant role in autism. Herein, we explored the functional role and possible molecular mechanisms of NEAT1 in valproic acid (VPA)-induced autism spectrum disorder (ASD). A VPA-induced ASD rat model was constructed, and a series of behavioral tests were performed to examine motor coordination and learning-memory abilities. qRT-PCR and western blot assays were used to evaluate target gene expression levels. Loss-and-gain-of-function assays were conducted to explore the functional role of NEAT1 in ASD development. Furthermore, a combination of mechanistic experiments and bioinformatic tools was used to assess the relationship and regulatory role of the NEAT1-YY1-UBE3A axis in ASD cellular processes. Results showed that VPA exposure induced autism-like developmental delays and behavioral abnormalities in the VPA-induced ASD rat model. We found that NEAT1 was elevated in rat hippocampal tissues after VPA exposure. NEAT1 promoted VPA-induced autism-like behaviors and mitigated apoptosis, oxidative stress, and inflammation in VPA-induced ASD rats. Notably, NEAT1 knockdown improved autism-related behaviors and ameliorated hippocampal neuronal damage. Mechanistically, it was observed that NEAT1 recruited the transcription factor YY1 to regulate UBE3A expression. Additionally, in vitro experiments further confirmed that NEAT1 knockdown mitigated hippocampal neuronal damage, oxidative stress, and inflammation through the YY1/UBE3A axis. In conclusion, our study demonstrates that NEAT1 is highly expressed in ASD, and its inhibition prominently suppresses hippocampal neuronal injury and oxidative stress through the YY1/UBE3A axis, thereby alleviating ASD development. This provides a new direction for ASD-targeted therapy.
Collapse
Affiliation(s)
- Chuping He
- Department of Children's Health, Chenzhou First People's Hospital, No. 6, Feihong Road, Suxian District, Chenzhou, 423000, Hunan, China
| | - Huimei Zhou
- Department of Children's Health, Chenzhou First People's Hospital, No. 6, Feihong Road, Suxian District, Chenzhou, 423000, Hunan, China.
| | - Lei Chen
- Department of Children's Health, Chenzhou First People's Hospital, No. 6, Feihong Road, Suxian District, Chenzhou, 423000, Hunan, China
| | - Zeying Liu
- Department of Children's Health, Chenzhou First People's Hospital, No. 6, Feihong Road, Suxian District, Chenzhou, 423000, Hunan, China
| |
Collapse
|
4
|
Friedman MJ, Wagner T, Lee H, Rosenfeld MG, Oh S. Enhancer-promoter specificity in gene transcription: molecular mechanisms and disease associations. Exp Mol Med 2024; 56:772-787. [PMID: 38658702 PMCID: PMC11058250 DOI: 10.1038/s12276-024-01233-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/26/2024] Open
Abstract
Although often located at a distance from their target gene promoters, enhancers are the primary genomic determinants of temporal and spatial transcriptional specificity in metazoans. Since the discovery of the first enhancer element in simian virus 40, there has been substantial interest in unraveling the mechanism(s) by which enhancers communicate with their partner promoters to ensure proper gene expression. These research efforts have benefited considerably from the application of increasingly sophisticated sequencing- and imaging-based approaches in conjunction with innovative (epi)genome-editing technologies; however, despite various proposed models, the principles of enhancer-promoter interaction have still not been fully elucidated. In this review, we provide an overview of recent progress in the eukaryotic gene transcription field pertaining to enhancer-promoter specificity. A better understanding of the mechanistic basis of lineage- and context-dependent enhancer-promoter engagement, along with the continued identification of functional enhancers, will provide key insights into the spatiotemporal control of gene expression that can reveal therapeutic opportunities for a range of enhancer-related diseases.
Collapse
Affiliation(s)
- Meyer J Friedman
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tobias Wagner
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Haram Lee
- College of Pharmacy Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Michael G Rosenfeld
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Soohwan Oh
- College of Pharmacy Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea.
| |
Collapse
|
5
|
Diaw SH, Delcambre S, Much C, Ott F, Kostic VS, Gajos A, Münchau A, Zittel S, Busch H, Grünewald A, Klein C, Lohmann K. DYT-THAP1: exploring gene expression in fibroblasts for potential biomarker discovery. Neurogenetics 2024; 25:141-147. [PMID: 38498291 DOI: 10.1007/s10048-024-00752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Dystonia due to pathogenic variants in the THAP1 gene (DYT-THAP1) shows variable expressivity and reduced penetrance of ~ 50%. Since THAP1 encodes a transcription factor, modifiers influencing this variability likely operate at the gene expression level. This study aimed to assess the transferability of differentially expressed genes (DEGs) in neuronal cells related to pathogenic variants in the THAP1 gene, which were previously identified by transcriptome analyses. For this, we performed quantitative (qPCR) and Digital PCR (dPCR) in cultured fibroblasts. RNA was extracted from THAP1 manifesting (MMCs) and non-manifesting mutation carriers (NMCs) as well as from healthy controls. The expression profiles of ten of 14 known neuronal DEGs demonstrated differences in fibroblasts between these three groups. This included transcription factors and targets (ATF4, CLN3, EIF2A, RRM1, YY1), genes involved in G protein-coupled receptor signaling (BDKRB2, LPAR1), and a gene linked to apoptosis and DNA replication/repair (CRADD), which all showed higher expression levels in MMCs and NMCs than in controls. Moreover, the analysis of genes linked to neurological disorders (STXBP1, TOR1A) unveiled differences in expression patterns between MMCs and controls. Notably, the genes CUEDC2, DRD4, ECH1, and SIX2 were not statistically significantly differentially expressed in fibroblast cultures. With > 70% of the tested genes being DEGs also in fibroblasts, fibroblasts seem to be a suitable model for DYT-THAP1 research despite some restrictions. Furthermore, at least some of these DEGs may potentially also serve as biomarkers of DYT-THAP1 and influence its penetrance and expressivity.
Collapse
Affiliation(s)
| | - Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L-4362, Luxembourg
| | - Christoph Much
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Fabian Ott
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Vladimir S Kostic
- Institute of Neurology, School of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Agata Gajos
- Department of Extrapyramidal Diseases, Medical University of Lodz, Lodz, 90-647, Poland
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, 23562, Lübeck, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hauke Busch
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L-4362, Luxembourg
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, 23562, Lübeck, Germany.
| |
Collapse
|
6
|
Min XL, Jia WJ, Guo L, Jing R, Zhao XH, Hu JY, Li XH, Liu W, Wang T, Dou XK. Brain microvascular endothelial cell-derived exosomes transmitting circ_0000495 promote microglial M1-polarization and endothelial cell injury under hypoxia condition. FASEB J 2024; 38:e23387. [PMID: 38193649 DOI: 10.1096/fj.202301637r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Human brain microvascular endothelial cells (HBMVECs) and microglia play critical roles in regulating cerebral homeostasis during ischemic stroke. However, the role of HBMVECs-derived exosomes in microglia polarization after stroke remains unknown. We isolated exosomes (Exos) from oxygen glucose deprivation (OGD)-exposed HBMVECs, before added them into microglia. Microglia polarization markers were tested using RT-qPCR or flow cytometry. Inflammatory cytokines were measured with ELISA. Endothelial cell damage was assessed by cell viability, apoptosis, apoptosis-related proteins, oxidative stress, and angiogenic activity using CCK-8, flow cytometry, western blot, ELISA, and endothelial tube formation assay, respectively. We also established middle cerebral artery occlusion (MCAO) mice model to examine the function of circ_0000495 on stroke in vivo. Our study found that HBMVECs-Exos reduced M2 markers (IL-10, CD163, and CD206), increased M1 markers (TNF-α, IL-1β, and IL-12), CD86-positive cells, and inflammatory cytokines (TNF-α and IL-1β), indicating the promotion of microglial M1-polarization. Microglial M1-polarization induced by HBMVECs-Exos reduced viability and promoted apoptosis and oxidative stress, revealing the aggravation of endothelial cell damage. However, circ_0000495 silencing inhibited HBMVECs-Exos-induced alterations. Mechanistically, circ_0000495 adsorbed miR-579-3p to upregulate toll-like receptor 4 (TLR4) in microglia; miR-579-3p suppressed HBMVECs-Exos-induced alterations via declining TLR4; furthermore, Yin Yang 1 (YY1) transcriptionally activated circ_0000495 in HBMVECs. Importantly, circ_0000495 aggravated ischemic brain injury in vivo via activating TLR4/nuclear factor-κB (NF-κB) pathway. Collectively, OGD-treated HBMVECs-Exos transmitted circ_0000495 to regulate miR-579-3p/TLR4/NF-κB axis in microglia, thereby facilitating microglial M1-polarization and endothelial cell damage.
Collapse
Affiliation(s)
- Xiao-Li Min
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen-Ji Jia
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Guo
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rui Jing
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiao-Hong Zhao
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jia-Yi Hu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xu-Hui Li
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Liu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xing-Kui Dou
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
Yellajoshyula D. Transcriptional regulatory network for neuron-glia interactions and its implication for DYT6 dystonia. DYSTONIA (LAUSANNE, SWITZERLAND) 2023; 2:11796. [PMID: 38737544 PMCID: PMC11087070 DOI: 10.3389/dyst.2023.11796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Advances in sequencing technologies have identified novel genes associated with inherited forms of dystonia, providing valuable insights into its genetic basis and revealing diverse genetic pathways and mechanisms involved in its pathophysiology. Since identifying genetic variation in the transcription factor coding THAP1 gene linked to isolated dystonia, numerous investigations have employed transcriptomic studies in DYT-THAP1 models to uncover pathogenic molecular mechanisms underlying dystonia. This review examines key findings from transcriptomic studies conducted on in vivo and in vitro DYT-THAP1 models, which demonstrate that the THAP1-regulated transcriptome is diverse and cell-specific, yet it is bound and co-regulated by a common set of proteins. Prominent among its functions, THAP1 and its co-regulatory network target molecular pathways critical for generating myelinating oligodendrocytes that ensheath axons and generate white matter in the central nervous system. Several lines of investigation have demonstrated the importance of myelination and oligodendrogenesis in motor function during development and in adults, emphasizing the non-cell autonomous contributions of glial cells to neural circuits involved in motor function. Further research on the role of myelin abnormalities in motor deficits in DYT6 models will enhance our understanding of axon-glia interactions in dystonia pathophysiology and provide potential therapeutic interventions targeting these pathways.
Collapse
|
8
|
Lu Y, Huang X, Liang W, Li Y, Xing M, Pan W, Zhang Y, Wang Z, Song W. Regulation of TREM2 expression by transcription factor YY1 and its protective effect against Alzheimer's Disease. J Biol Chem 2023; 299:104688. [PMID: 37044212 DOI: 10.1016/j.jbc.2023.104688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
TREM2 encoding the transmembrane receptor protein TREM2 is a risk gene of Alzheimer's disease (AD), and the impairment of TREM2 functions in microglia due to mutations in TREM2 may significantly increase the risk of AD by promoting AD pathologies. However, how the expression of TREM2 is regulated and the transcription factors required for TREM2 expression are largely unknown. By luciferase assay, DNA pull-down and in silico predictions, we identified ying-yang-1(YY1) as a binding protein of the minimal promoter of the TREM2 gene, and the binding was further confirmed by EMSA and DNA pull-down assay. shRNA-mediated YY1 silencing significantly reduced the activity of the TREM2 minimal promoter and TREM2 protein levels in the microglial cell line BV2 and the neuroblastoma Neuro2A. Furthermore, we found that the levels of TREM2 and YY1 were both downregulated in lipopolysaccharide (LPS)-treated BV2 cells and in the brain of AD model mice. These results demonstrated that YY1 plays a crucial role in regulation of TREM2 expression. Our study suggests that microglial YY1 could be targeted to maintain TREM2 expression for AD prevention and therapy.
Collapse
Affiliation(s)
- Yanhui Lu
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xiaofeng Huang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wenping Liang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yu Li
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Mengen Xing
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Wenhao Pan
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
9
|
Dos Santos SR, Piergiorge RM, Rocha J, Abdala BB, Gonçalves AP, Pimentel MMG, Santos-Rebouças CB. A de novo YY1 missense variant expanding the Gabriele-de Vries syndrome phenotype and affecting X-chromosome inactivation. Metab Brain Dis 2022; 37:2431-2440. [PMID: 35829845 DOI: 10.1007/s11011-022-01024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
Yin and Yang 1 gene (YY1; MIM#600,013) is recognized as a dual transcriptional activating and repressing factor, RNA-binding protein, and 3D chromatin regulator, with multi roles in neurodevelopmental and maintenance pathways. YY1 haploinsufficiency caused either by heterozygous sequence variants or deletions involving the whole gene has been recently associated with Gabriele-de Vries syndrome (GADEVS), a rare congenital autosomal dominant condition, leading to intellectual disability (ID) and multiple physical/behavioural abnormalities. Herein, we describe clinical and molecular findings from a Brazilian female harbouring a de novo missense pathogenic variant in YY1 gene (NM_003403.5:c.1106A > G; p.Asn369Ser) found by whole exome sequencing with potential implications for protein structure and function. Undescribed or uncommon clinical features in this patient included non-febrile seizures, severe scoliosis, hearing impairment, and chorioretinitis. Further bioinformatics analyses using YY1-other protein interaction networks reinforced the involvement of YY1 interactors in such phenotypes, in exception of chorioretinitis. Moreover, X-chromosome inactivation (XCI) skewing was evidenced in the patient and attributed to the haploinsufficiency of YY1, which direct and indirectly interacts with numerous XCI key regulators. Besides expanding the mutational and phenotype spectrum of GADEVS, our results highlight the role of YY1 as an essential autosomal regulator of XCI epigenetic process.
Collapse
Affiliation(s)
- Suely Rodrigues Dos Santos
- Gaffrée and Guinle University Hospital, Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jady Rocha
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Barbosa Abdala
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andressa Pereira Gonçalves
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Márcia Mattos Gonçalves Pimentel
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Departamento de Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro, Rua São Francisco Xavier, 524, PHLC - sala 501F, Maracanã 20550-013, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|