1
|
Hong B. Gut flora reflects potential risk factors for cognitive dysfunction in patients with epilepsy. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:155. [PMID: 39342383 PMCID: PMC11439293 DOI: 10.1186/s41043-024-00639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVE This cross-sectional study aims to analyze the differences in gut flora between patients with epilepsy with and without cognitive impairment and normal subjects. METHODS One hundred patients with epilepsy who came to our hospital from 2020.12 to 2022.12 (epilepsy group) were selected, and another 100 family members of the patients were selected as the control group (control group). Patients with epilepsy were further classified by the MMSE scale into 62 patients with combined cognitive impairment (Yes group) and 38 patients without cognitive impairment (No group). Detection of gut flora in feces by 16 S rRNA high-throughput sequencing. Logistic regression was used to analyze risk factors for cognitive dysfunction in patients with epilepsy. RESULTS There were more significant differences in the structure and composition of the gut flora between patients in the epilepsy group and the control group, but no significant differences in diversity analysis (P > 0.05). Actinobacteriota, Faecalibacterium and Collinsella were significantly lower in the Yes group than in the No group (P < 0.05), and the Alpha diversity index was numerically slightly smaller than in the No group, with the PCoA analysis demonstrating a more dispersed situation in both groups. Five metabolic pathways, including glycolysis and heterolactic fermentation, were upregulated in the Yes group. LEfSe analysis showed that five groups of bacteria, including Coriobacteriaceae and Collinsella, were selected as marker species for the presence or absence of comorbid cognitive impairment. Of these, Collinsella, Oscillospirales, and Ruminococcaceae have a greater impact on epilepsy combined with cognitive impairment. CONCLUSION There was an imbalance in the gut flora of patients with epilepsy compared to healthy controls. The gut flora of patients with epilepsy with cognitive dysfunction differs significantly from that of patients without cognitive dysfunction. Collinsella, Oscillospirales, and Ruminococcaceae have a greater impact on epilepsy with cognitive dysfunction and can be used as an indicator for the observation of epilepsy with cognitive dysfunction.
Collapse
Affiliation(s)
- BingCong Hong
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, China.
| |
Collapse
|
2
|
Liu J, Zhao F, Qu Y. Lactylation: A Novel Post-Translational Modification with Clinical Implications in CNS Diseases. Biomolecules 2024; 14:1175. [PMID: 39334941 PMCID: PMC11430557 DOI: 10.3390/biom14091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Lactate, an important metabolic product, provides energy to neural cells during energy depletion or high demand and acts as a signaling molecule in the central nervous system. Recent studies revealed that lactate-mediated protein lactylation regulates gene transcription and influences cell fate, metabolic processes, inflammation, and immune responses. This review comprehensively examines the regulatory roles and mechanisms of lactylation in neurodevelopment, neuropsychiatric disorders, brain tumors, and cerebrovascular diseases. This analysis indicates that lactylation has multifaceted effects on central nervous system function and pathology, particularly in hypoxia-induced brain damage. Highlighting its potential as a novel therapeutic target, lactylation may play a significant role in treating neurological diseases. By summarizing current findings, this review aims to provide insights and guide future research and clinical strategies for central nervous system disorders.
Collapse
Affiliation(s)
- Junyan Liu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Neonatal Intensive Care Unit, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Fengyan Zhao
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)/NHC Key Laboratory of Chronobiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Hu J, Huang B, Chen K. The impact of physical exercise on neuroinflammation mechanism in Alzheimer's disease. Front Aging Neurosci 2024; 16:1444716. [PMID: 39233828 PMCID: PMC11371602 DOI: 10.3389/fnagi.2024.1444716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Alzheimer's disease (AD), a major cause of dementia globally, imposes significant societal and personal costs. This review explores the efficacy of physical exercise as a non-pharmacological intervention to mitigate the impacts of AD. Methods This review draws on recent studies that investigate the effects of physical exercise on neuroinflammation and neuronal enhancement in individuals with AD. Results Consistent physical exercise alters neuroinflammatory pathways, enhances cognitive functions, and bolsters brain health among AD patients. It favorably influences the activation states of microglia and astrocytes, fortifies the integrity of the blood-brain barrier, and attenuates gut inflammation associated with AD. These changes are associated with substantial improvements in cognitive performance and brain health indicators. Discussion The findings underscore the potential of integrating physical exercise into comprehensive AD management strategies. Emphasizing the necessity for further research, this review advocates for the refinement of exercise regimens to maximize their enduring benefits in decelerating the progression of AD.
Collapse
Affiliation(s)
- Junhui Hu
- School of Physical Education, West Anhui University, Lu'an, China
| | - Baiqing Huang
- School of Physical Education, Yunnan Minzu University, Kunming, China
| | - Kang Chen
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
4
|
Chausse B, Malorny N, Lewen A, Poschet G, Berndt N, Kann O. Metabolic flexibility ensures proper neuronal network function in moderate neuroinflammation. Sci Rep 2024; 14:14405. [PMID: 38909138 PMCID: PMC11193723 DOI: 10.1038/s41598-024-64872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
Microglia, brain-resident macrophages, can acquire distinct functional phenotypes, which are supported by differential reprogramming of cell metabolism. These adaptations include remodeling in glycolytic and mitochondrial metabolic fluxes, potentially altering energy substrate availability at the tissue level. This phenomenon may be highly relevant in the brain, where metabolism must be precisely regulated to maintain appropriate neuronal excitability and synaptic transmission. Direct evidence that microglia can impact on neuronal energy metabolism has been widely lacking, however. Combining molecular profiling, electrophysiology, oxygen microsensor recordings and mathematical modeling, we investigated microglia-mediated disturbances in brain energetics during neuroinflammation. Our results suggest that proinflammatory microglia showing enhanced nitric oxide release and decreased CX3CR1 expression transiently increase the tissue lactate/glucose ratio that depends on transcriptional reprogramming in microglia, not in neurons. In this condition, neuronal network activity such as gamma oscillations (30-70 Hz) can be fueled by increased ATP production in mitochondria, which is reflected by elevated oxygen consumption. During dysregulated inflammation, high energy demand and low glucose availability can be boundary conditions for neuronal metabolic fitness as revealed by kinetic modeling of single neuron energetics. Collectively, these findings indicate that metabolic flexibility protects neuronal network function against alterations in local substrate availability during moderate neuroinflammation.
Collapse
Affiliation(s)
- Bruno Chausse
- Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany.
- MEDISS Doctoral Program, INF 110, Heidelberg University, 69120, Heidelberg, Germany.
| | - Nikolai Malorny
- Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Andrea Lewen
- Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Nikolaus Berndt
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany.
- Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
McKenna MC, Choi IY, Schousboe A. Preface: Special issue: 14 th International Conference on Brain Energy Metabolism: Energy substrates and microbiome govern brain bioenergetics and cognitive function with aging. J Neurochem 2024; 168:443-449. [PMID: 38613180 DOI: 10.1111/jnc.16094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 04/14/2024]
Abstract
This Preface introduces the Special Issue entitled, "Energy Substrates and Microbiome Govern Brain Bioenergetics and Cognitive Function with Aging", which is comprised of manuscripts contributed by invited speakers and program/organizing committee members who participated in the 14th International Conference on Brain Energy Metabolism (ICBEM) held on October 24-27, 2022 in Santa Fe, New Mexico, USA. The conference covered the latest developments in research related to neuronal energetics, emerging roles for glycogen in higher brain functions, the impact of dietary intervention on aging, memory, and Alzheimer's disease, roles of the microbiome in gut-brain signaling, astrocyte-neuron interactions related to cognition and memory, novel roles for mitochondria and their metabolites, and metabolic neuroimaging in aging and neurodegeneration. The special issue contains 25 manuscripts on these topics plus three tributes to outstanding scientists who have made important contributions to brain energy metabolism and participated in numerous ICBEM conferences. In addition, two of the manuscripts describe important directions and the rationale for future research in many thematic areas covered by the conference.
Collapse
Affiliation(s)
- Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - In-Young Choi
- Department of Neurology, Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Arne Schousboe
- Department of Drug Design & Pharmacotherapy, School of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Rae CD, Baur JA, Borges K, Dienel G, Díaz-García CM, Douglass SR, Drew K, Duarte JMN, Duran J, Kann O, Kristian T, Lee-Liu D, Lindquist BE, McNay EC, Robinson MB, Rothman DL, Rowlands BD, Ryan TA, Scafidi J, Scafidi S, Shuttleworth CW, Swanson RA, Uruk G, Vardjan N, Zorec R, McKenna MC. Brain energy metabolism: A roadmap for future research. J Neurochem 2024; 168:910-954. [PMID: 38183680 PMCID: PMC11102343 DOI: 10.1111/jnc.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.
Collapse
Affiliation(s)
- Caroline D. Rae
- School of Psychology, The University of New South Wales, NSW 2052 & Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, & Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, Baltimore, Maryland, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dasfne Lee-Liu
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Región Metropolitana, Chile
| | - Britta E. Lindquist
- Department of Neurology, Division of Neurocritical Care, Gladstone Institute of Neurological Disease, University of California at San Francisco, San Francisco, California, USA
| | - Ewan C. McNay
- Behavioral Neuroscience, University at Albany, Albany, New York, USA
| | - Michael B. Robinson
- Departments of Pediatrics and System Pharmacology & Translational Therapeutics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas L. Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Benjamin D. Rowlands
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | - Joseph Scafidi
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susanna Scafidi
- Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine Albuquerque, Albuquerque, New Mexico, USA
| | - Raymond A. Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Gökhan Uruk
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology—Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mary C. McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|