1
|
Schuler H, Bonapersona V, Joëls M, Sarabdjitsingh RA. Effects of early life adversity on immediate early gene expression: Systematic review and 3-level meta-analysis of rodent studies. PLoS One 2022; 17:e0253406. [PMID: 35025862 PMCID: PMC8757918 DOI: 10.1371/journal.pone.0253406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/11/2021] [Indexed: 01/30/2023] Open
Abstract
Early-life adversity (ELA) causes long-lasting structural and functional changes to the brain, rendering affected individuals vulnerable to the development of psychopathologies later in life. Immediate-early genes (IEGs) provide a potential marker for the observed alterations, bridging the gap between activity-regulated transcription and long-lasting effects on brain structure and function. Several heterogeneous studies have used IEGs to identify differences in cellular activity after ELA; systematically investigating the literature is therefore crucial for comprehensive conclusions. Here, we performed a systematic review on 39 pre-clinical studies in rodents to study the effects of ELA (alteration of maternal care) on IEG expression. Females and IEGs other than cFos were investigated in only a handful of publications. We meta-analyzed publications investigating specifically cFos expression. ELA increased cFos expression after an acute stressor only if the animals (control and ELA) had experienced additional hits. At rest, ELA increased cFos expression irrespective of other life events, suggesting that ELA creates a phenotype similar to naïve, acutely stressed animals. We present a conceptual theoretical framework to interpret the unexpected results. Overall, ELA likely alters IEG expression across the brain, especially in interaction with other negative life events. The present review highlights current knowledge gaps and provides guidance to aid the design of future studies.
Collapse
Affiliation(s)
- Heike Schuler
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Valeria Bonapersona
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| | - Marian Joëls
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - R. Angela Sarabdjitsingh
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Snell-Rood E, Snell-Rood C. The developmental support hypothesis: adaptive plasticity in neural development in response to cues of social support. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190491. [PMID: 32475336 PMCID: PMC7293157 DOI: 10.1098/rstb.2019.0491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Across mammals, cues of developmental support, such as touching, licking or attentiveness, stimulate neural development, behavioural exploration and even overall body growth. Why should such fitness-related traits be so sensitive to developmental conditions? Here, we review what we term the 'developmental support hypothesis', a potential adaptive explanation of this plasticity. Neural development can be a costly process, in terms of time, energy and exposure. However, environmental variability may sometimes compromise parental care during this costly developmental period. We propose this environmental variation has led to the evolution of adaptive plasticity of neural and behavioural development in response to cues of developmental support, where neural development is stimulated in conditions that support associated costs. When parental care is compromised, offspring grow less and adopt a more resilient and stress-responsive strategy, improving their chances of survival in difficult conditions, similar to existing ideas on the adaptive value of early-life programming of stress. The developmental support hypothesis suggests new research directions, such as testing the adaptive value of reduced neural growth and metabolism in stressful conditions, and expanding the range of potential cues animals may attend to as indicators of developmental support. Considering evolutionary and ecologically appropriate cues of social support also has implications for promoting healthy neural development in humans. This article is part of the theme issue 'Life history and learning: how childhood, caregiving and old age shape cognition and culture in humans and other animals'.
Collapse
Affiliation(s)
- Emilie Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, Gortner 140, St Paul, MN 55108, USA
| | - Claire Snell-Rood
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
3
|
Abstract
Abstract
Lactation is a critical period during which maternal nutritional and environmental challenges affect milk composition and, therefore, organ differentiation, structure, and function in offspring during the early postnatal period. Evidence to date shows that lactation is a vulnerable time during which transient insults can have lasting effects, resulting in altered health outcomes in offspring in adult life. Despite the importance of the developmental programming that occurs during this plastic period of neonatal life, there are few comprehensive reviews of the multiple challenges—especially to the dam—during lactation. This review presents milk data from rodent studies involving maternal nutritional challenges and offspring outcome data from studies involving maternal manipulations during lactation. Among the topics addressed are maternal nutritional challenges and the effects of litter size and artificial rearing on offspring metabolism and neural and endocrine outcomes. The lactation period is an opportunity to correct certain functional deficits resulting from prenatal challenges to the fetus, but, if not personalized, can also lead to undesirable outcomes related to catch up-growth and overnutrition.
Collapse
|
4
|
Does early weaning shape future endocrine and metabolic disorders? Lessons from animal models. J Dev Orig Health Dis 2020; 11:441-451. [PMID: 32487270 DOI: 10.1017/s2040174420000410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Obesity and its complications occur at alarming rates worldwide. Epidemiological data have associated perinatal conditions, such as malnutrition, with the development of some disorders, such as obesity, dyslipidemia, diabetes, and cardiovascular diseases, in childhood and adulthood. Exclusive breastfeeding has been associated with protection against long-term chronic diseases. However, in humans, the interruption of breastfeeding before the recommended period of 6 months is a common practice and can increase the risk of several metabolic disturbances. Nutritional and environmental changes within a critical window of development, such as pregnancy and breastfeeding, can induce permanent changes in metabolism through epigenetic mechanisms, leading to diseases later in life via a phenomenon known as programming or developmental plasticity. However, little is known regarding the underlying mechanisms by which precocious weaning can result in adipose tissue dysfunction and endocrine profile alterations. Here, the authors give a comprehensive report of the different animal models of early weaning and programming that can result in the development of metabolic syndrome. In rats, for example, pharmacological and nonpharmacological early weaning models are associated with the development of overweight and visceral fat accumulation, leptin and insulin resistance, and neuroendocrine and hepatic changes in adult progeny. Sex-related differences seem to influence this phenotype. Therefore, precocious weaning seems to be obesogenic for offspring. A better understanding of this condition seems essential to reducing the risk for diseases. Additionally, this knowledge can generate new insights into therapeutic strategies for obesity management, improving health outcomes.
Collapse
|
5
|
Francisco EDS, Guedes RCA. Sub-Convulsing Dose Administration of Pilocarpine Reduces Glycemia, Increases Anxiety-Like Behavior and Decelerates Cortical Spreading Depression in Rats Suckled on Various Litter Sizes. Front Neurosci 2018; 12:897. [PMID: 30559645 PMCID: PMC6287009 DOI: 10.3389/fnins.2018.00897] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
Epilepsy and malnutrition constitute two worldwide health problems affecting behavior and brain function. The cholinergic agonist pilocarpine (300-380 mg/kg; single administration) reproduces the human type of temporal lobe epilepsy in rats. Pilocarpine-induced epilepsy in rodents has been associated with glycemia, learning and memory and anxiety disturbances. Cortical spreading depression (CSD) is a neural response that has been linked to brain excitability disorders and its diseases, and has been shown to be antagonized by acute pilocarpine. This study aimed to further investigate the effect of chronic pilocarpine at a sub-convulsing dose on weight gain, blood glucose levels, anxiety-like behavior and CSD. In addition, we tested whether unfavorable lactation-induced malnutrition could modulate the pilocarpine effects. Wistar rats were suckled under normal size and large size litters (litters with 9 and 15 pups; groups L9 and L15, respectively). From postnatal days (PND) 35-55, these young animals received a daily intraperitoneal injection of pilocarpine (45 mg/kg/day), or vehicle (saline), or no treatment (naïve). On PND58, the animals were behaviorally tested in an open field apparatus. This was immediately followed by 6 h fasting and blood glucose measurement. At PND60-65, CSD was recorded, and its parameters (velocity of propagation, amplitude, and duration) were calculated. Compared to the control groups, pilocarpine-treated animals presented with reduced weight gain and lower glycemia, increased anxiety-like behavior and decelerated CSD propagation. CSD velocity was higher (p < 0.001) in the L15 groups in comparison to the corresponding groups in the L9 condition. The results demonstrate an influence of chronic (21-day) administration of a sub-convulsing, very low dose (45 mg/kg) of pilocarpine on CSD propagation, anxiety-like behavior, glycemia and body weight. Furthermore, data reinforce the hypothesis of a relationship between CSD and brain excitability. The lactation condition seems to differentially modulate these effects.
Collapse
|
6
|
Small litter size impairs spatial memory and increases anxiety- like behavior in a strain-dependent manner in male mice. Sci Rep 2018; 8:11281. [PMID: 30050150 PMCID: PMC6062575 DOI: 10.1038/s41598-018-29595-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/16/2018] [Indexed: 01/14/2023] Open
Abstract
Early life overfeeding is associated with cognitive decline and anxiety-like behaviors in later life. It is not clear whether there are individual differences in the effects of early life overfeeding and what the underlying mechanistic pathways are. We investigated the long-lasting effects of small litter size, an experimental manipulation to induce neonatal overfeeding, in two strains of mice, C57BL/6 and NMRI. We measured body weight, learning and memory, anxiety-related behaviors, interleukin-(IL)-1β and brain-derived-neurotrophic-factor (BDNF) levels in the hippocampus, and both basal and stress corticosterone levels in adult mice which have been nursed in small litters compared with those from control litters. Our findings showed that small litter size led to increased body weight in both strains of mice. Small litter size significantly decreased spatial memory and hippocampal BDNF levels, and increased hippocampal IL-1β, in NMRI mice, but not C57BL/6 mice. Interestingly, we found that small litter size resulted in a significant increase in anxiety-like behaviors and stress-induced corticosterone in NMRI mice, whereas small litter size reduced anxiety-like symptoms and stress-induced corticosterone levels in C57BL/6 mice. These data show that small litter size, which is life-long associated with increased body weight, affects memory and anxiety-related behaviors in a strain-dependent manner in male mice. This suggests that there are individual differences in the developmental consequences of early life overfeeding.
Collapse
|
7
|
Sominsky L, Ziko I, Nguyen TX, Andrews ZB, Spencer SJ. Early life disruption to the ghrelin system with over-eating is resolved in adulthood in male rats. Neuropharmacology 2017; 113:21-30. [DOI: 10.1016/j.neuropharm.2016.09.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022]
|
8
|
Neonatal l-glutamine modulates anxiety-like behavior, cortical spreading depression, and microglial immunoreactivity: analysis in developing rats suckled on normal size- and large size litters. Amino Acids 2016; 49:337-346. [DOI: 10.1007/s00726-016-2365-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/11/2016] [Indexed: 12/19/2022]
|
9
|
Gehrand AL, Hoeynck B, Jablonski M, Leonovicz C, Ye R, Scherer PE, Raff H. Sex differences in adult rat insulin and glucose responses to arginine: programming effects of neonatal separation, hypoxia, and hypothermia. Physiol Rep 2016; 4:e12972. [PMID: 27664190 PMCID: PMC5037920 DOI: 10.14814/phy2.12972] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 01/26/2023] Open
Abstract
Acute neonatal hypoxia, a common stressor, causes a spontaneous decrease in body temperature which may be protective. There is consensus that hypothermia should be prevented during acute hypoxia in the human neonate; however, this may be an additional stress with negative consequences. We hypothesize that maintaining body temperature during hypoxia in the first week of postnatal life alters the subsequent insulin, glucose, and glucagon secretion in adult rats. Rat pups were separated from their dam daily from postnatal days (PD) 2-6 for the following 90 min experimental treatments: (1) normoxic separation (control), (2) hypoxia (8% O2) allowing spontaneous hypothermia, (3) normoxic hypothermia with external cold, and (4) exposure to 8% O2 while maintaining body temperature using external heat. An additional normoxic non-separated control group was performed to determine if separation per se changed the adult phenotype. Plasma insulin, glucose, and glucagon responses to arginine stimulation were evaluated from PD105 to PD133. Maternal separation (compared to non-separated neonates) had more pronounced effects on the adult response to arginine compared to the hypoxic, hypothermic, and hypoxic-isothermic neonatal treatments. Adult males exposed to neonatal maternal separation had augmented insulin and glucose responses to arginine compared to unseparated controls. Additionally, neonatal treatment had a significant effect on body weight gain; adults exposed to neonatal maternal separation were significantly heavier. Female adults had significantly smaller insulin and glucose responses to arginine regardless of neonatal treatment. Neonatal maternal separation during the first week of life significantly altered adult beta-cell function in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Ashley L Gehrand
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Brian Hoeynck
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Mack Jablonski
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Cole Leonovicz
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Risheng Ye
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hershel Raff
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin Departments of Medicine, Surgery, and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
10
|
Lerea JS, Ring LE, Hassouna R, Chong ACN, Szigeti-Buck K, Horvath TL, Zeltser LM. Reducing Adiposity in a Critical Developmental Window Has Lasting Benefits in Mice. Endocrinology 2016; 157:666-78. [PMID: 26587784 PMCID: PMC4733128 DOI: 10.1210/en.2015-1753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although most adults can lose weight by dieting, a well-characterized compensatory decrease in energy expenditure promotes weight regain more than 90% of the time. Using mice with impaired hypothalamic leptin signaling as a model of early-onset hyperphagia and obesity, we explored whether this unfavorable response to weight loss could be circumvented by early intervention. Early-onset obesity was associated with impairments in the structure and function of brown adipose tissue mitochondria, which were ameliorated by weight loss at any age. Although decreased sympathetic tone in weight-reduced adults resulted in net reductions in brown adipose tissue thermogenesis and energy expenditure that promoted rapid weight regain, this was not the case when dietary interventions were initiated at weaning. Enhanced energy expenditure persisted even after mice were allowed to resume overeating, leading to lasting reductions in adiposity. These findings reveal a time window when dietary interventions can produce metabolic improvements that are stably maintained.
Collapse
Affiliation(s)
- Jaclyn S Lerea
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Laurence E Ring
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Rim Hassouna
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Angie C N Chong
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Klara Szigeti-Buck
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Tamas L Horvath
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Lori M Zeltser
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| |
Collapse
|
11
|
Kenny R, Dinan T, Cai G, Spencer SJ. Effects of mild calorie restriction on anxiety and hypothalamic-pituitary-adrenal axis responses to stress in the male rat. Physiol Rep 2014; 2:e00265. [PMID: 24760519 PMCID: PMC4002245 DOI: 10.1002/phy2.265] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chronic calorie restriction (CR) is one of the few interventions to improve longevity and quality of life in a variety of species. It also reduces behavioral indices of anxiety and influences some stress hormones under basal conditions. However, it is not known how CR influences hypothalamic–pituitary–adrenal (HPA) axis function or if those on a CR diet have heightened HPA axis responses to stress. We hypothesized elevated basal glucocorticoid levels induced by CR would lead to exacerbated HPA axis responses to the psychological stress, restraint, in the male rat. We first confirmed rats fed 75% of their normal calorie intake for 3 weeks were less anxious than ad libitum‐fed (AD) rats in the elevated plus maze test for anxiety. The anxiolytic effect was mild, with only grooming significantly attenuated in the open field and no measured behavior affected in the light/dark box. Despite elevated basal glucocorticoids, CR rats had very similar hormonal and central responses to 15‐min restraint to the AD rats. Both CR and AD rats responded to restraint stress with a robust increase in glucocorticoids that was resolved by 60 min. Both groups also showed robust neuronal activation in the paraventricular nucleus of the hypothalamus and in other stress‐ and feeding‐sensitive brain regions that was not substantially affected by calorie intake. Our findings thus demonstrate chronic mild CR is subtly anxiolytic and is not likely to affect HPA axis responses to psychological stress. These findings support research suggesting a beneficial effect of mild CR.
Collapse
Affiliation(s)
- Rachel Kenny
- School of Health Sciences and Health Innovations Research Institute (HIRi), RMIT University, Melbourne, Vic., Australia
| | | | | | | |
Collapse
|
12
|
Fuentes S, Daviu N, Gagliano H, Garrido P, Zelena D, Monasterio N, Armario A, Nadal R. Sex-dependent effects of an early life treatment in rats that increases maternal care: vulnerability or resilience? Front Behav Neurosci 2014; 8:56. [PMID: 24616673 PMCID: PMC3934416 DOI: 10.3389/fnbeh.2014.00056] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/05/2014] [Indexed: 11/13/2022] Open
Abstract
Early life stress (ELS) in rodents has profound long-term effects that are partially mediated by changes in maternal care. ELS not only induces “detrimental” effects in adulthood, increasing psychopathology, but also promotes resilience to further stressors. In Long-Evans rats, we evaluated a combination of two procedures as a model of ELS: restriction of bedding during the first post-natal days and exposure to a “substitute” mother. The maternal care of biological and “substitute” mothers was measured. The male and female offspring were evaluated during adulthood in several contexts. Anxiety was measured by the elevated plus-maze (EPM), acoustic startle response (ASR) and forced swim test (FST). In other group of animals, novelty-seeking was measured (activity in an inescapable novel environment, preference for novel environments and exploration of novel objects). Plasmatic ACTH and corticosterone in basal conditions and in response to stress were also measured. Cognitive impulsivity was assessed by a delay-discounting paradigm, and impulsive action, attention and compulsive-like behavior by a five choice serial reaction time task (5CSRTT). ELS decreased pup body weight and increased the care of the biological mother; however, the “substitute” mother did not exhibit overt maltreatment. A mixture of “detrimental” and “beneficial” effects was shown. In the 5CSRTT, attention was impaired in both genders, and in females, ELS increased compulsive-like behavior. Novel object exploration was only increased by ELS in males, but the preference for novel spaces decreased in both genders. Baseline anxiety (EPM and ASR) and recognition memory were not affected. Unexpectedly, ELS decreased the ACTH response to novelty and swim stress and increased active coping in the FST in both genders. Cognitive impulsivity was decreased only in females, but impulsive action was not affected. The enhancement in maternal care may “buffer” the effects of ELS in a context-dependent manner.
Collapse
Affiliation(s)
- Sílvia Fuentes
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Núria Daviu
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Pedro Garrido
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Science Budapest, Hungary
| | - Nela Monasterio
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Animal Physiology Unit, School of Biosciences, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Roser Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona Barcelona, Spain ; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|
13
|
Grissom N, Bowman N, Reyes TM. Epigenetic programming of reward function in offspring: a role for maternal diet. Mamm Genome 2013; 25:41-8. [PMID: 24317506 DOI: 10.1007/s00335-013-9487-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/22/2013] [Indexed: 12/15/2022]
Abstract
Early life development, through gestation and lactation, represents a timeframe of extreme vulnerability for the developing fetus in general, and for the central nervous system in particular. An adverse perinatal environment can have a lasting negative impact on brain development, increasing the risk for developmental disorders and broader psychopathologies. A major determinant of the fetal developmental environment is maternal diet. The present review summarizes the current literature regarding the effect of poor maternal perinatal nutrition on offspring brain development, with an emphasis on reward-related neural systems and behaviors. Epigenetic mechanisms represent a likely link between maternal diet and persistent changes in offspring brain development, and these mechanisms are presented and discussed within the context of perinatal maternal nutrition.
Collapse
Affiliation(s)
- Nicola Grissom
- Department of Pharmacology, Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, 10-131 Smilow Center for Translational Research, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|