1
|
Van Voorhies KJ, Liu W, Lovelock DF, Lin S, Liu J, Guan D, Gay EA, Jin C, Besheer J. Novel RXFP3 negative allosteric modulator RLX-33 reduces alcohol self-administration in rats. J Neurochem 2023; 167:204-217. [PMID: 37674350 PMCID: PMC10592109 DOI: 10.1111/jnc.15949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023]
Abstract
There is much interest in identifying novel pharmacotherapeutic targets that improve clinical outcomes for the treatment of alcohol use disorder (AUD). One promising target for therapeutic intervention is the relaxin family peptide 3 (RXFP3) receptor, a cognate receptor for neuropeptide relaxin-3, which has previously been implicated in regulating alcohol drinking behavior. Recently, we developed the first small-molecule RXFP3-selective negative allosteric modulator (NAM) RLX-33. Therefore, the goal of the present work was to characterize the impact of this novel NAM on affective-related behaviors and alcohol self-administration in rats. First, the effects of RLX-33 were tested on alcohol and sucrose self-administration in Wistar and alcohol-preferring P rats to determine the dose-response profile and specificity for alcohol. Then, we assessed the effects of systemic RLX-33 injection in Wistar rats in a battery of behavioral assays (open-field test, elevated zero maze, acoustic startle response test, and prepulse inhibition) and tested for alcohol clearance. We found that the lowest effective dose (5 mg/kg) reduced alcohol self-administration in both male and female Wistar rats, while in alcohol-preferring P rats, this effect was restricted to males, and there were no effects on sucrose self-administration or general locomotor activity. The characterization of affective and metabolic effects in Wistar rats generally found few locomotor, affective, or alcohol clearance changes, particularly at the 5 mg/kg dose. Overall, these findings are promising and suggest that RXFP3 NAM has potential as a pharmacological target for treating AUD.
Collapse
Affiliation(s)
- Kalynn J. Van Voorhies
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wen Liu
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Dennis F. Lovelock
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sophia Lin
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jiaqi Liu
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Dongliang Guan
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Elaine A. Gay
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Chunyang Jin
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Wong WLE, Dawe GS, Young AH. The putative role of the relaxin-3/RXFP3 system in clinical depression and anxiety: A systematic literature review. Neurosci Biobehav Rev 2021; 131:429-450. [PMID: 34537263 DOI: 10.1016/j.neubiorev.2021.09.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
The relaxin-3/RXFP3 system is one of several neuropeptidergic systems putatively implicated in regulating the behavioural alterations that characterise clinical depression and anxiety, making it a potential target for clinical translation. Accordingly, this systematic review identified published reports on the role of relaxin-3/RXFP3 signalling in these neuropsychiatric disorders and their behavioural endophenotypes, evaluating evidence from animal and human studies to ascertain any relationship. We searched PubMed, EMBASE, PsycINFO and Google Scholar databases up to February 2021, finding 609 relevant records. After stringent screening, 51 of these studies were included in the final synthesis. There was considerable heterogeneity in study designs and some inconsistency across study outcomes. However, experimental evidence is consistent with an ability of relaxin-3/RXFP3 signalling to promote arousal and suppress depressive- and anxiety-like behaviour. Moreover, meta-analyses of six to eight articles investigating food intake revealed that acute RXFP3 activation had strong orexigenic effects in rats. This appraisal also identified the lack of high-quality clinical studies pertinent to the relaxin-3/RXFP3 system, a gap that future research should attempt to bridge.
Collapse
Affiliation(s)
- Win Lee Edwin Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; South London & Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, London, United Kingdom
| |
Collapse
|
3
|
de Ávila C, Chometton S, Calvez J, Guèvremont G, Kania A, Torz L, Lenglos C, Blasiak A, Rosenkilde MM, Holst B, Conrad CD, Fryer JD, Timofeeva E, Gundlach AL, Cifani C. Estrous Cycle Modulation of Feeding and Relaxin-3/Rxfp3 mRNA Expression: Implications for Estradiol Action. Neuroendocrinology 2021; 111:1201-1218. [PMID: 33333517 DOI: 10.1159/000513830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Food intake varies during the ovarian hormone/estrous cycle in humans and rodents, an effect mediated mainly by estradiol. A potential mediator of the central anorectic effects of estradiol is the neuropeptide relaxin-3 (RLN3) synthetized in the nucleus incertus (NI) and acting via the relaxin family peptide-3 receptor (RXFP3). METHODS We investigated the relationship between RLN3/RXFP3 signaling and feeding behavior across the female rat estrous cycle. We used in situ hybridization to investigate expression patterns of Rln3 mRNA in NI and Rxfp3 mRNA in the hypothalamic paraventricular nucleus (PVN), lateral hypothalamic area (LHA), medial preoptic area (MPA), and bed nucleus of the stria terminalis (BNST), across the estrous cycle. We identified expression of estrogen receptors (ERs) in the NI using droplet digital PCR and assessed the electrophysiological responsiveness of NI neurons to estradiol in brain slices. RESULTS Rln3 mRNA reached the lowest levels in the NI pars compacta during proestrus. Rxfp3 mRNA levels varied across the estrous cycle in a region-specific manner, with changes observed in the perifornical LHA, magnocellular PVN, dorsal BNST, and MPA, but not in the parvocellular PVN or lateral LHA. G protein-coupled estrogen receptor 1 (Gper1) mRNA was the most abundant ER transcript in the NI. Estradiol inhibited 33% of type 1 NI neurons, including RLN3-positive cells. CONCLUSION These findings demonstrate that the RLN3/RXFP3 system is modulated by the estrous cycle, and although further studies are required to better elucidate the cellular and molecular mechanisms of estradiol signaling, current results implicate the involvement of the RLN3/RXFP3 system in food intake fluctuations observed across the estrous cycle in female rats.
Collapse
Affiliation(s)
- Camila de Ávila
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada,
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark,
- Department of Neuroscience, Mayo Clinic, Scottsdale, Arizona, USA,
- Department of Psychology, Arizona State University, Tempe, Arizona, USA,
| | - Sandrine Chometton
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada
| | - Juliane Calvez
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada
| | - Geneviève Guèvremont
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada
| | - Alan Kania
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Lola Torz
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF CBMR, Nutrient and Metabolite Sensing, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Christophe Lenglos
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF CBMR, Nutrient and Metabolite Sensing, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Cheryl D Conrad
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Scottsdale, Arizona, USA
| | - Elena Timofeeva
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Carlo Cifani
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CRIUCPQ, Université Laval, Québec, Québec, Canada
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
4
|
Lee CS, Kim JY, Kim BK, Lee IO, Park NH, Kim SH. Lactobacillus-fermented milk products attenuate bone loss in an experimental rat model of ovariectomy-induced post-menopausal primary osteoporosis. J Appl Microbiol 2020; 130:2041-2062. [PMID: 32920885 DOI: 10.1111/jam.14852] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/09/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
Abstract
AIM In this study, we investigated the anti-osteoporotic effect of two fermented milk products (FMPs) fermented by Lactobacillus plantarum A41 and Lactobacillus fermentum SRK414 on a rat model of ovariectomy-induced post-menopausal primary osteoporosis. METHODS AND RESULTS The two Lactobacillus FMPs increased the bone volume and bone mineral density (BMD) in ovariectomized (OVX) rats, and normalized the bone biomarkers in the serum. Additionally, they altered the gene expression levels of bone-metabolism-related markers. Furthermore, the two Lactobacillus FMPs downregulated bone-apoptosis-related genes stimulated by ovariectomy. Interestingly, the Lactobacillus FMPs decreased the levels of inflammation markers in the serum, bone, ileum and colon of the rats. Gut bacterial populations were also affected upon FMP treatment due to increase in the abundance of the genus Lactobacillus and Faecalibacterium prausnitzii. CONCLUSIONS Milk products fermented by L. plantarum A41 and L. fermentum SRK414 can exhibit anti-osteoporotic effects on post-menopausal osteoporosis via regulating the expression of bone-metabolism-related markers. SIGNIFICANCE AND IMPACT OF THE STUDY The two Lactobacillus FMPs used in the study can be an ideal method that has its potential of treating post-menopausal osteoporosis instead of drug treatments.
Collapse
Affiliation(s)
- C S Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - J-Y Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - B K Kim
- Probiotic Research Laboratory, CKD Bio Research Institute, Ansan, Republic of Korea
| | - I O Lee
- Probiotic Research Laboratory, CKD Bio Research Institute, Ansan, Republic of Korea
| | - N H Park
- Probiotic Research Laboratory, CKD Bio Research Institute, Ansan, Republic of Korea
| | - S H Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Kania A, Szlaga A, Sambak P, Gugula A, Blasiak E, Micioni Di Bonaventura MV, Hossain MA, Cifani C, Hess G, Gundlach AL, Blasiak A. RLN3/RXFP3 Signaling in the PVN Inhibits Magnocellular Neurons via M-like Current Activation and Contributes to Binge Eating Behavior. J Neurosci 2020; 40:5362-5375. [PMID: 32532885 PMCID: PMC7343322 DOI: 10.1523/jneurosci.2895-19.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/17/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Binge-eating disorder is the most common eating disorder. Various neuropeptides play important roles in the regulation of feeding behavior, including relaxin-3 (RLN3), which stimulates food intake in rats through the activation of the relaxin-family peptide-3 receptor (RXFP3). Here we demonstrate that a likely mechanism underlying the orexigenic action of RLN3 is RXFP3-mediated inhibition of oxytocin- and arginine-vasopressin-synthesizing paraventricular nucleus (PVN) magnocellular neurosecretory cells. Moreover, we reveal that, in male and female rats, this action depends on M-like potassium conductance. Notably, higher intra- and peri-PVN RLN3 fiber densities were observed in females, which may constitute an anatomic substrate for observed sex differences in binge-eating disorder. Finally, in a model of binge-eating in female rats, RXFP3 blockade within the PVN prevented binge-eating behavior. These data demonstrate a direct RLN3/RXFP3 action in the PVN of male and female rats, identify the associated ionic mechanisms, and reveal that hypothalamic RLN3/RXFP3 signaling regulates binge-eating behavior.SIGNIFICANCE STATEMENT Binge-eating disorder is the most common eating disorder worldwide, affecting women twice as frequently as men. Various neuropeptides play important roles in the regulation of feeding behavior, including relaxin-3, which acts via the relaxin-family peptide-3 receptor (RXFP3). Using a model of binge-eating, we demonstrated that relaxin-3/RXFP3 signaling in the hypothalamic paraventricular nucleus (PVN) is necessary for the expression of binge-eating behavior in female rats. Moreover, we elucidated the neuronal mechanism of RLN3/RXFP3 signaling in PVN in male and female rats and characterized sex differences in the RLN3 innervation of the PVN. These findings increase our understanding of the brain circuits and neurotransmitters involved in binge-eating disorder pathology and identify RXFP3 as a therapeutic target for binge-like eating disorders.
Collapse
Affiliation(s)
- Alan Kania
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Agata Szlaga
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Patryk Sambak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Anna Gugula
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Ewa Blasiak
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | | | - Mohammad Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Grzegorz Hess
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Andrew L Gundlach
- Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, 3010 Victoria, Australia
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| |
Collapse
|
6
|
Yang L, Li Y, Wu Y, Sun S, Song Q, Wei J, Sun L, Li M, Wang D, Zhou L. Rln3a is a prerequisite for spermatogenesis and fertility in male fish. J Steroid Biochem Mol Biol 2020; 197:105517. [PMID: 31678357 DOI: 10.1016/j.jsbmb.2019.105517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/10/2019] [Accepted: 10/25/2019] [Indexed: 02/05/2023]
Abstract
The essential roles of Relaxin3 (RLN3) in energy homeostasis had been well investigated, while the mechanisms of RLN3 regulating reproduction remain to be elusive in mammals. Although two rln3 paralogues have been characterized in several teleosts, their functions still remain largely unknown. In this study, two paralogous rln3 genes, represented as rln3a and rln3b, were identified from the testis of Nile tilapia (Oreochromis niloticus). Rln3a was dominantly expressed in testis, while the most abundant rln3b expression was in brain. In situ hybridization demonstrated that rln3a is abundantly expressed in the Leydig cells of the testis. To understand the role of Rln3 in the testicular development, homologous null-rln3a gene mutant line was constructed by CRISPR/Cas9 technology. Morphological observation demonstrated that null mutation of rln3a gene caused testicular hypertrophy and a significant increase of GSI. However, a significant decrease of spermatogenic cells at different phases, i.e. spermatogonia, spermatocytes, spermatids and sperms was found. Silencing of rln3a gene repressed the expression of key genes in germ cell and Leydig cell. Deficiency of Rln3a led to the significant decrease of 11-KT production, which stimulated the up-regulation of both FSH and LH production in the pituitary via a negative feedback manner possibly. Mutation of rln3a in XY fish led to the hypogonadism with sperm deformation, significant decrease of fertility, and sperm motility, revealing as the high mortality of the offspring obtained by crossing the wild type female and rln3a-/- XY fish. Interestingly, recombinant human RLN3 injection significantly enhanced the sperm motility in rln3a-/- XY fish. Moreover, hCG treatment stimulated the expression of steroidogenic enzyme genes and 11-KT production, which were repressed by rln3a mutation in XY fish. Taken together, this study, for the first time by using a gene knockout model, proved that Rln3a is an indispensable mediator for androgen production in testis via HPG axis, and plays an essential role in spermatogenesis, sperm motility and male fertility in fish.
Collapse
Affiliation(s)
- Lanying Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yanlong Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - You Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shaohua Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qiang Song
- Chongqing Three Gorges Central Hospital, Chongqing, 400715, China
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Lee HS, Postan M, Song A, Clark RJ, Bathgate RAD, Haugaard-Kedström LM, Rosengren KJ. Development of Relaxin-3 Agonists and Antagonists Based on Grafted Disulfide-Stabilized Scaffolds. Front Chem 2020; 8:87. [PMID: 32133341 PMCID: PMC7039932 DOI: 10.3389/fchem.2020.00087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
Relaxin-3 is a neuropeptide with important roles in metabolism, arousal, learning and memory. Its cognate receptor is the relaxin family peptide-3 (RXFP3) receptor. Relaxin-3 agonist and antagonist analogs have been shown to be able to modulate food intake in rodent models. The relaxin-3 B-chain is sufficient for receptor interactions, however, in the absence of a structural support, linear relaxin-3 B-chain analogs are rapidly degraded and thus unsuitable as drug leads. In this study, two different disulfide-stabilized scaffolds were used for grafting of important relaxin-3 B-chain residues to improve structure and stability. The use of both Veronica hederifolia Trypsin inhibitor (VhTI) and apamin grafting resulted in agonist and antagonist analogs with improved helicity. VhTI grafted peptides showed poor binding and low potency at RXFP3, on the other hand, apamin variants retained significant activity. These variants also showed improved half-life in serum from ~5 min to >6 h, and thus are promising RXFP3 specific pharmacological tools and drug leads for neuropharmacological diseases.
Collapse
Affiliation(s)
- Han Siean Lee
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Postan
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Angela Song
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Richard J Clark
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ross A D Bathgate
- Florey Department of Neuroscience and Mental Health, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Linda M Haugaard-Kedström
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - K Johan Rosengren
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Blasiak A, Gundlach AL, Hess G, Lewandowski MH. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control. Front Neurosci 2017; 11:127. [PMID: 28373831 PMCID: PMC5357634 DOI: 10.3389/fnins.2017.00127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/01/2017] [Indexed: 12/23/2022] Open
Abstract
Many physiological processes fluctuate throughout the day/night and daily fluctuations are observed in brain and peripheral levels of several hormones, neuropeptides and transmitters. In turn, mediators under the “control” of the “master biological clock” reciprocally influence its function. Dysregulation in the rhythmicity of hormone release as well as hormone receptor sensitivity and availability in different tissues, is a common risk-factor for multiple clinical conditions, including psychiatric and metabolic disorders. At the same time circadian rhythms remain in a strong, reciprocal interaction with the hypothalamic-pituitary-adrenal (HPA) axis. Recent findings point to a role of circadian disturbances and excessive stress in the development of obesity and related food consumption and metabolism abnormalities, which constitute a major health problem worldwide. Appetite, food intake and energy balance are under the influence of several brain neuropeptides, including the orexigenic agouti-related peptide, neuropeptide Y, orexin, melanin-concentrating hormone and relaxin-3. Importantly, orexigenic neuropeptide neurons remain under the control of the circadian timing system and are highly sensitive to various stressors, therefore the potential neuronal mechanisms through which disturbances in the daily rhythmicity and stress-related mediator levels contribute to food intake abnormalities rely on reciprocal interactions between these elements.
Collapse
Affiliation(s)
- Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University Krakow, Poland
| | - Andrew L Gundlach
- Neuropeptides Division, The Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia; Florey Department of Neuroscience and Mental Health, The University of MelbourneParkville, VIC, Australia
| | - Grzegorz Hess
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian UniversityKrakow, Poland; Institute of Pharmacology, Polish Academy of SciencesKrakow, Poland
| | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University Krakow, Poland
| |
Collapse
|
9
|
Calvez J, de Ávila C, Timofeeva E. Sex-specific effects of relaxin-3 on food intake and body weight gain. Br J Pharmacol 2016; 174:1049-1060. [PMID: 27245781 DOI: 10.1111/bph.13530] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 01/06/2023] Open
Abstract
Relaxin-3 (RLN3) is a neuropeptide that is strongly expressed in the pontine nucleus incertus (NI) and binds with high affinity to its cognate receptor RXFP3. Central administration of RLN3 in rats increases food intake and adiposity. In humans, RLN3 polymorphism has been associated with obesity and hypercholesterolaemia. Emerging evidence suggests that the effects of RLN3 may have sex-specific aspects. Thus, the RLN3 knockout female but not male mice are hypoactive. RLN3 produced stronger orexigenic and obesogenic effects in female rats compared with male rats. In addition, female rats demonstrated higher sensitivity to lower doses of RLN3. Repeated cycles of food restriction and stress were accompanied by an increase in RLN3 expression and hyperphagia in female but not in male rats. Furthermore, stress-induced binge eating in female rats was blocked by an RXFP3 receptor antagonist. RLN3 increased the expression of corticotropin releasing factor in the paraventricular hypothalamic nucleus in male but not in female rats. Conversely, in female rats, RLN3 increased the expression of orexin in the lateral hypothalamus. There is evidence that orexin directly activates the RLN3 neurons in the NI. The positive reinforcement of the RLN3 effects by orexin may intensify behavioural activation and feeding in females. Sex-specific effects of RLN3 may also depend on differential expression of RXFP3 receptors in the brain. Given the higher sensitivity of females to the orexigenic effects of RLN3 and the stress-induced activation of RLN3, the overall data suggest a possible role for RLN3 in eating disorders that show a higher propensity in women. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Juliane Calvez
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Camila de Ávila
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Elena Timofeeva
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
| |
Collapse
|