1
|
Yoshida A, Yasuda K, Okada H. Changes in the conflicting nongenomic effects of progesterone in rat myometrium during pregnancy. Life Sci 2024; 340:122454. [PMID: 38262574 DOI: 10.1016/j.lfs.2024.122454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
AIMS Although the functions of progesterone in the myometrium are well-established, the nongenomic effects of progesterone in pregnant myometrial contractions are still unclear. Therefore, this study aimed to investigate changes in the nongenomic effects of progesterone during pregnancy. MAIN METHODS Myometrial strips were obtained from non-pregnant, pregnant, and postpartum rats, and the nongenomic effects of progesterone in the myometrium during pregnancy were examined. Additionally, the influence of actinomycin D and cycloheximide and the effects of Org OD-02-0 (a specific membrane progesterone receptor (mPR) agonist) in the myometrium were investigated. Moreover, DNA microarray and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to identify genes involved in progesterone-induced effects in the myometrium. KEY FINDINGS Progesterone did not cause rhythmic contractions in non-pregnant myometrium but induced rhythmic contractions in pregnant myometrium, with the effects peaking at 20 d + 8 h of pregnancy. However, myometrial contractions decreased after delivery and were restored to non-pregnant levels at 7 d postpartum. Additionally, progesterone stably inhibited high KCl-induced myometrial contractions during pregnancy. Moreover, the nongenomic effects of progesterone were unaffected by actinomycin D or cycloheximide, and Org OD-02-0 effectively mimicked these effects. DNA microarray analysis and qRT-PCR revealed a significant increase in mPRβ gene expression during pregnancy. However, mPRα, mPRγ, mPRδ, and mPRε expression levels remained unchanged. SIGNIFICANCE The stimulatory nongenomic effect of progesterone, which was inducible and mPRβ-dependent during pregnancy, may be involved in parturition. The inhibitory effect, which was constitutive and depended on other mPRs, may be involved in pregnancy maintenance.
Collapse
Affiliation(s)
- Aya Yoshida
- Department of Obstetrics and Gynecology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Katsuhiko Yasuda
- Department of Obstetrics and Gynecology, Kansai Medical University, Hirakata, Osaka, Japan.
| | - Hidetaka Okada
- Department of Obstetrics and Gynecology, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
2
|
Dzialach L, Sobolewska J, Zak Z, Respondek W, Witek P. Prolactin-secreting pituitary adenomas: male-specific differences in pathogenesis, clinical presentation and treatment. Front Endocrinol (Lausanne) 2024; 15:1338345. [PMID: 38370355 PMCID: PMC10870150 DOI: 10.3389/fendo.2024.1338345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Prolactinomas (PRLomas) constitute approximately half of all pituitary adenomas and approximately one-fifth of them are diagnosed in males. The clinical presentation of PRLomas results from direct prolactin (PRL) action, duration and severity of hyperprolactinemia, and tumor mass effect. Male PRLomas, compared to females, tend to be larger and more invasive, are associated with higher PRL concentration at diagnosis, present higher proliferative potential, are more frequently resistant to standard pharmacotherapy, and thus may require multimodal approach, including surgical resection, radiotherapy, and alternative medical agents. Therefore, the management of PRLomas in men is challenging in many cases. Additionally, hyperprolactinemia is associated with a significant negative impact on men's health, including sexual function and fertility potential, bone health, cardiovascular and metabolic complications, leading to decreased quality of life. In this review, we highlight the differences in pathogenesis, clinical presentation and treatment of PRLomas concerning the male sex.
Collapse
Affiliation(s)
- Lukasz Dzialach
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Sobolewska
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Zak
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| | - Wioleta Respondek
- Department of Internal Medicine, Endocrinology and Diabetes, Mazovian Brodnowski Hospital, Warsaw, Poland
| | - Przemysław Witek
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Abeledo-Machado A, Peña-Zanoni M, Bornancini D, Díaz-Torga G. Revealing Sexual Dimorphism in Prolactin Regulation From Early Postnatal Development to Adulthood in Murine Models. J Endocr Soc 2023; 8:bvad146. [PMID: 38045876 PMCID: PMC10690727 DOI: 10.1210/jendso/bvad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 12/05/2023] Open
Abstract
Serum prolactin (PRL) levels exhibit a gradual rise both in male and female rats from birth to adulthood, with females consistently displaying higher levels compared to age-matched males. This pattern has traditionally been attributed to the development and maturation of endocrine and neuroendocrine networks responsible for regulating PRL synthesis and secretion. However, the effect of dopamine (DA), which acts as an inhibitory factor on lactotroph function, also increases from birth to puberty, particularly in females. Nonetheless, the secretion of PRL remains higher in females compared to males. On the other hand, the observed sex differences in serum PRL levels during early postnatal development cannot be attributed to the influence of estradiol (E2). While serum E2 levels gradually increase after birth, only after 45 days of life do the disparities in E2 levels between females and males become evident. These observations collectively suggest that neither the maturation of hypothalamic DA regulation nor the rise in E2 levels can account for the progressive and sustained elevation in serum PRL levels and the observed sexual dimorphism during postnatal development. This review highlights the importance of recent discoveries in animal models that shed light on inhibitory mechanisms in the control of PRL secretion within the pituitary gland itself, that is intrapituitary mechanisms, with a specific emphasis on the role of transforming growth factor β1 and activins in PRL secretion.
Collapse
Affiliation(s)
- Alejandra Abeledo-Machado
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, CONICET, Buenos Aires 1428, Argentina
| | - Milagros Peña-Zanoni
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, CONICET, Buenos Aires 1428, Argentina
| | - Dana Bornancini
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, CONICET, Buenos Aires 1428, Argentina
| | - Graciela Díaz-Torga
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, CONICET, Buenos Aires 1428, Argentina
| |
Collapse
|
4
|
Hornung RS, Kinchington PR, Umorin M, Kramer PR. PAQR8 and PAQR9 expression is altered in the ventral tegmental area of aged rats infected with varicella zoster virus. Mol Pain 2023; 19:17448069231202598. [PMID: 37699860 PMCID: PMC10515525 DOI: 10.1177/17448069231202598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Infection with varicella zoster virus (VZV) results in chicken pox and reactivation of VZV results in herpes zoster (HZ) or what is often referred to as shingles. Patients with HZ experience decreased motivation and increased emotional distress consistent with functions of the ventral tegmental area (VTA) of the brain. In addition, activity within the ventral tegmental area is altered in patients with HZ. HZ primarily affects individuals that are older and the VTA changes with age. To begin to determine if the VTA has a role in HZ symptoms, a screen of 10,000 genes within the VTA in young and old male rats was completed after injecting the whisker pad with VZV. The two genes that had maximal change were membrane progesterone receptors PAQR8 (mPRβ) and PAQR9 (mPRε). Neurons and non-neuronal cells expressed both PAQR8 and PAQR9. PAQR8 and PAQR9 protein expression was significantly reduced after VZV injection of young males. In old rats PAQR9 protein expression was significantly increased after VZV injection and PAQR9 protein expression was reduced in aged male rats versus young rats. Consistent with previous results, pain significantly increased after VZV injection of the whisker pad and aged animals showed significantly more pain than young animals. Our data suggests that PAQR8 and PAQR9 expression is altered by VZV injection and that these changes are affected by age.
Collapse
Affiliation(s)
- Rebecca S Hornung
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, USA
| | - Paul R Kinchington
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mikhail Umorin
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, USA
| | - Phillip R Kramer
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, USA
| |
Collapse
|
5
|
Thomas P, Pang Y, Camilletti MA, Castelnovo LF. Functions of Membrane Progesterone Receptors (mPRs, PAQRs) in Nonreproductive Tissues. Endocrinology 2022; 163:6679267. [PMID: 36041040 DOI: 10.1210/endocr/bqac147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/19/2022]
Abstract
Gender differences in a wide variety of physiological parameters have implicated the ovarian hormones, estrogens and progesterone, in the regulation of numerous nonreproductive tissue functions. Rapid, nongenomic (nonclassical) progesterone actions mediated by membrane progesterone receptors (mPRs), which belong to the progestin and adipoQ receptor family, have been extensively investigated in reproductive and nonreproductive tissues since their discovery in fish ovaries 20 years ago. The 5 mPR subtypes (α, β, γ, δ, ε) are widely distributed in vertebrate tissues and are often expressed in the same cells as the nuclear progesterone receptor (PR) and progesterone receptor membrane component 1, thereby complicating investigations of mPR-specific functions. Nevertheless, mPR-mediated progesterone actions have been identified in a wide range of reproductive and nonreproductive tissues and distinguished from nuclear PR-mediated ones by knockdown of these receptors with siRNA in combination with a pharmacological approach using mPR- and PR-specific agonists. There are several recent reviews on the roles of the mPRs in vertebrate reproduction and cancer, but there have been no comprehensive assessments of mPR functions in nonreproductive tissues. Therefore, this article briefly reviews mPR functions in a broad range of nonreproductive tissues. The evidence that mPRs mediate progesterone and progestogen effects on neuroprotection, lordosis behavior, respiratory control of apnea, olfactory responses to pheromones, peripheral nerve regeneration, regulation of prolactin secretion in prolactinoma, immune functions, and protective functions in vascular endothelial and smooth muscle cells is critically reviewed. The ubiquitous expression of mPRs in vertebrate tissues suggests mPRs regulate many additional nonreproductive functions that remain to be identified.
Collapse
Affiliation(s)
- Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Yefei Pang
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | | | - Luca F Castelnovo
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
6
|
Abeledo-Machado A, Peña-Zanoni M, Bornancini D, Camilletti MA, Faraoni EY, Marcial A, Rulli S, Alhenc-Gelas F, Díaz-Torga GS. Sex-specific Regulation of Prolactin Secretion by Pituitary Bradykinin Receptors. Endocrinology 2022; 163:6648127. [PMID: 35863039 DOI: 10.1210/endocr/bqac108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/19/2022]
Abstract
Sex differences in the control of prolactin secretion are well documented. Sex-related differences in intrapituitary factors regulating lactotroph function have recently attracted attention. Sex differences in prolactinoma development are well documented in clinic, prolactinomas being more frequent in women but more aggressive in men, for poorly understood reasons. Kallikrein, the enzyme releasing kinins has been found in the pituitary, but there is no information on pituitary kinin receptors and their function. In the present work, we characterized pituitary bradykinin receptors (BRs) at the messenger RNA and protein levels in 2 mouse models of prolactinoma, Drd2 receptor gene inactivation and hCGβ gene overexpression, in both males and females, wild type or genomically altered. BR B2 (B2R) accounted for 97% or more of total pituitary BRs in both models, regardless of genotype, and was present in lactotrophs, somatotrophs, and gonadotrophs. Male pituitaries displayed higher level of B2R than females, regardless of genotype. Pituitary B2R gene expression was downregulated by estrogen in both males and females but only in females by dopamine. Activation of B1R or B2R by selective pharmacological agonists induced prolactin release in male pituitaries but inhibited prolactin secretion in female pituitaries. Increased B2R content was observed in pituitaries of mutated animals developing prolactinomas, compared to their respective wild-type controls. The present study documents a novel sex-related difference in the control of prolactin secretion and suggests that kinins are involved, through B2R activation, in lactotroph function and prolactinoma development.
Collapse
Affiliation(s)
- Alejandra Abeledo-Machado
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Milagros Peña-Zanoni
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Dana Bornancini
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - María Andrea Camilletti
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Erika Yanil Faraoni
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Agustina Marcial
- Laboratorio de Endocrinología Molecular de la Reproducción, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Susana Rulli
- Laboratorio de Endocrinología Molecular de la Reproducción, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Francois Alhenc-Gelas
- INSERM U1138, Universite Paris-Cite, Sorbonne Universite, Centre de Recherche des Cordeliers, Paris, France
| | - Graciela Susana Díaz-Torga
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| |
Collapse
|
7
|
Marciniak E, Młotkowska P, Roszkowicz-Ostrowska K, Ciska E, Misztal T. Involvement of neurosteroids in the control of prolactin secretion in sheep under basal, stressful and pregnancy conditions. Theriogenology 2022; 190:73-80. [DOI: 10.1016/j.theriogenology.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022]
|
8
|
Kelder J, Pang Y, Dong J, Schaftenaar G, Thomas P. Molecular modeling, mutational analysis and steroid specificity of the ligand binding pocket of mPRα (PAQR7): Shared ligand binding with AdipoR1 and its structural basis. J Steroid Biochem Mol Biol 2022; 219:106082. [PMID: 35189329 DOI: 10.1016/j.jsbmb.2022.106082] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022]
Abstract
The 7-transmembrane architecture of adiponectin receptors (AdipoRs), determined from their X-ray crystal structures, was used for homology modeling of another progesterone and adipoQ receptor (PAQR) family member, membrane progesterone receptor alpha (mPRα). The mPRα model identified excess positively charged residues on the cytosolic side, suggesting it has the same membrane orientation as AdipoRs with an intracellular N-terminus. The homology model showed identical amino acid residues to those forming the zinc binding pocket in AdipoRs, which strongly implies that zinc is also present in mPRα. The homology model showed a critical H-bond interaction between the glutamine (Q) residue at 206 in the binding pocket and the 20-carbonyl of progesterone. Mutational analysis showed no progesterone binding to the arginine (R) 206 mutant and modeling predicted this was due to the strong positive charge of arginine stabilizing the presence of an oleic acid (C18:1) molecule in the binding pocket, as observed in the X-rays of AdipoRs. High Zn2+ concentrations are predicted to form a salt with the carboxylate group of the oleic acid, thereby eliminating its binding to the free fatty acid (FFA) binding pocket, and allowing progesterone to bind. This is supported by experiments showing 100 µM Zn2+ addition restored [3H]-progesterone binding of the Q206R mutant to levels in WT mPRα and increased [3H]-progesterone binding to mPRγ and AdipoR1 which have arginine residues in this region. The model predicts hydrophobic interactions of progesterone with amino acid residues surrounding the binding pocket, including valine 146 in TM3, which when mutated into a polar serine resulted in a complete loss of [3H]-progesterone binding. The mPRα model showed there is no hydrogen bond donor in the vicinity of the 3-keto group of progesterone and ligand structure-activity studies with 3-deoxy steroids revealed that, unlike the nuclear progesterone receptor, the 3-carbonyl oxygen is not essential for binding to mPRα. Interestingly, the small synthetic AdipoR agonist, AdipoRon, displayed binding affinity for mPRα and mimicked progesterone signaling, whereas D-e-MAPP, a ceramidase inhibitor, blocked progesterone signaling. Thus, critical residues around the binding pocket and steroid structures that bind mPRα, as well as similarities with AdipoRs, can be predicted from the homology model.
Collapse
Affiliation(s)
- Jan Kelder
- Theoretical & Computational Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Yefei Pang
- University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Jing Dong
- University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Gijs Schaftenaar
- Theoretical & Computational Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Peter Thomas
- University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
9
|
Xia Z, Xiao J, Dai Z, Chen Q. Membrane progesterone receptor α (mPRα) enhances hypoxia-induced vascular endothelial growth factor secretion and angiogenesis in lung adenocarcinoma through STAT3 signaling. J Transl Med 2022; 20:72. [PMID: 35123491 PMCID: PMC8817580 DOI: 10.1186/s12967-022-03270-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/22/2022] [Indexed: 12/27/2022] Open
Abstract
Lung cancer remains a huge challenge to public health because of its high incidence and mortality, and lung adenocarcinoma (LUAD) is the main subtype of lung cancer. Hypoxia-induced vascular endothelial growth factor (VEGF) release and angiogenesis have been regarded as critical events in LUAD carcinogenesis. In the present study, membrane progesterone receptor α (mPRα) is deregulated within LUAD tissue samples; increased mPRα contributes to a higher microvessel density (MVD) in LUAD tissues. mPRα knockdown in A549 and PC-9 cells significantly inhibited STAT3 phosphorylation, as well as HIF1α and VEGF protein levels, decreasing cancer cell migration and invasion. The in vivo xenograft model further confirmed that mPRα enhanced the aggressiveness of LUAD cells. Furthermore, mPRα knockdown significantly inhibited hypoxia-induced upregulation in HIF1α and VEGF levels, as well as LUAD cell migration and invasion. Under the hypoxic condition, conditioned medium (CM) derived from mPRα knockdown A549 cells, namely si-mPRα-CM, significantly inhibited HUVEC migration and tube formation and decreased VEGF level in the culture medium. In contrast, CM derived from mPRα-overexpressing A549 cells, namely mPRα-CM, further enhanced HUVEC migration and tube formation and increased VEGF level under hypoxia, which was partially reversed by STAT3 inhibitor Stattic. In conclusion, in LUAD cells, highly expressed mPRα enhances the activation of cAMP/JAK/STAT3 signaling and increases HIF1α-induced VEGF secretion into the tumor microenvironment, promoting HUVEC migration and tube formation under hypoxia.
Collapse
|
10
|
Goncharov AI, Levina IS, Shliapina VL, Morozov IA, Rubtsov PM, Zavarzin IV, Smirnova OV, Shchelkunova TA. Cytotoxic Effects of the Selective Ligands of Membrane Progesterone Receptors in Human Pancreatic Adenocarcinoma Cells BxPC3. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1446-1460. [PMID: 34906046 DOI: 10.1134/s0006297921110080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Progesterone and its synthetic analogues act on cells through different types of receptors, affecting proliferation and apoptosis. These compounds exert their effect through the nuclear receptors and the insufficiently studied membrane progesterone receptors (mPRs) belonging to the progestin and adiponectin Q receptor (PAQR) family. We have identified two selective ligands of mPRs that activate only this type of progesterone receptors - 19-hydroxypregn-4-en-20-one (LS-01) and 19-hydroxy-5β-pregn-3-en-20-one (LS-02). The goal of this work is to study the effect of these compounds on proliferation and death of human pancreatic adenocarcinoma cells BxPC3 and involvement of the two kinases (p38 MAPK and JNK) in signaling pathways activated by progestins through mPRs. It was shown that progesterone and the compound LS-01 significantly (p < 0.05) inhibited the BxPC3 cell viability, with JNK serving as a mediator. The identified targets of these two steroids are the genes of the proteins Ki67, cyclin D1, PCNA, and p21. Progesterone and the compound LS-01 significantly (p < 0.05) stimulate DNA fragmentation, enhancing the cell death. The p38 mitogen-activated protein kinase (MAPK) is a key mediator of this process. The BCL2A1 protein gene was identified as a target of both steroids. The compound LS-02 significantly (p < 0.05) alters membrane permeability and changes the exposure of phosphatidylserine on the outer membrane leaflet, also enhancing the cell death. This compound acts on these processes by activating both kinases, JNK and p38 MAPK. The compound LS-02 targets the genes encoding the proteins HRK, caspase 9, and DAPK.
Collapse
Affiliation(s)
- Alexey I Goncharov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Inna S Levina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | | | - Ivan A Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Petr M Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Igor V Zavarzin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga V Smirnova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | |
Collapse
|
11
|
Bibi S, Shah M, Malik MO, Goosens KA. T3 is linked to stress-associated reduction of prolactin in lactating women. J Neuroendocrinol 2021; 33:e13003. [PMID: 34241933 DOI: 10.1111/jne.13003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/01/2021] [Accepted: 06/13/2021] [Indexed: 11/26/2022]
Abstract
The relationship between stress responses and lactation is bidirectional. Breastfeeding confers many benefits to maternal health, including attenuated hypothalamic-pituitary-adrenal axis responsiveness to stress. However, increased stress burden can impair lactation. The mechanisms that underlie these relationships are poorly understood. The present study aimed to compare breastfeeding habits, as well as subjective and objective measures of stress, in employed and non-employed lactating women and assess the relationships between these measures and prolactin (PRL), thyroid hormones (thyroid-stimulating hormone, triiodothyronine [T3] and thyroxine), vasopressin and cortisol levels. A dexamethasone suppression test was also administered to determine the sensitivity of the hypothalamic-pituitary-adrenal axis to negative-feedback. We report that lactating employed women had lower breastfeeding rates and lower PRL than lactating non-employed women. They also had a significantly higher stress burden, indicated by elevations in blood pressure and evening cortisol, relative to lactating non-employed women. In regression analyses that controlled for feeding modality and breastfeeding duration, we found these factors differentially affected PRL in the two groups and there were significant differences in PRL across groups that were not accounted for by these factors. A mediation regression analysis suggested that group differences in PRL were best explained by differences in T3 and income levels, rather than breastfeeding duration or other variables. Our data fit a speculative model in which elevated maternal stress increases cortisol, which suppresses T3, leading to decreased PRL. The decreases in PRL are associated with higher rates of bottlefeeding, which may further contribute to decreased PRL.
Collapse
Affiliation(s)
- Safia Bibi
- Department of Physiology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Mohsin Shah
- Department of Physiology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Muhammad Omar Malik
- Department of Physiology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Ki Ann Goosens
- Department of Psychiatry and Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Levina IS, Kuznetsov YV, Shchelkunova TA, Zavarzin IV. Selective ligands of membrane progesterone receptors as a key to studying their biological functions in vitro and in vivo. J Steroid Biochem Mol Biol 2021; 207:105827. [PMID: 33497793 DOI: 10.1016/j.jsbmb.2021.105827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/18/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
Progesterone modulates many processes in the body, acting through nuclear receptors (nPR) in various organs and tissues. However, a number of effects are mediated by membrane progesterone receptors (mPRs), which are members of the progestin and adipoQ (PAQR) receptor family. These receptors are found in most tissues and immune cells. They are expressed in various cancer cells and appear to play an important role in the development of tumors. The role of mPRs in the development of insulin resistance and metabolic syndrome has also attracted attention. Since progesterone efficiently binds to both nPRs and mPRs, investigation of the functions of the mPRs both at the level of the whole body and at the cell level requires ligands that selectively interact with mPRs, but not with nPRs, with an affinity comparable with that of the natural hormone. The development of such ligands faces difficulties primarily due to the lack of data on the three-dimensional structure of the ligand-binding site of mPR. This review is the first attempt to summarize available data on the structures of compounds interacting with mPRs and analyze them in terms of the differences in binding to membrane and nuclear receptors. Based on the identified main structural fragments of molecules, which affect the efficiency of binding to mPRs and are responsible for the selectivity of interactions, we propose directions of modification of the steroid scaffold to create new selective mPRs ligands.
Collapse
Affiliation(s)
- Inna S Levina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russia.
| | - Yury V Kuznetsov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russia
| | - Tatiana A Shchelkunova
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119234, Russia
| | - Igor V Zavarzin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp. 47, Moscow, 119991, Russia
| |
Collapse
|
13
|
Thomas P, Pang Y. Anti-apoptotic Actions of Allopregnanolone and Ganaxolone Mediated Through Membrane Progesterone Receptors (PAQRs) in Neuronal Cells. Front Endocrinol (Lausanne) 2020; 11:417. [PMID: 32670200 PMCID: PMC7331777 DOI: 10.3389/fendo.2020.00417] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
The neurosteroids progesterone and allopregnanolone regulate numerous neuroprotective functions in neural tissues including inhibition of epileptic seizures and cell death. Many of progesterone's actions are mediated through the nuclear progesterone receptor (PR), while allopregnanolone is widely considered to be devoid of hormonal activity and instead acts through modulation of GABA-A receptor activity. However, allopregnanolone can also exert hormonal actions in neuronal cells through binding and activating membrane progesterone receptors (mPRs) belonging to the progestin and adipoQ receptor (PAQR) family. The distribution and functions of the five mPR subtypes (α, β, γ, δ, ε) in neural tissues are briefly reviewed. mPRδ has the highest binding affinity for allopregnanolone and is highly expressed throughout the human brain. Low concentrations (20 nM) of allopregnanolone act through mPRδ to stimulate G protein (Gs)-dependent signaling pathways resulting in reduced cell death and apoptosis in mPRδ-transfected cells. The 3-methylated synthetic analog of allopregnanolone, ganaxolone, is currently undergoing clinical trials as a promising GABA-A receptor-selective antiepileptic drug (AED). New data show that low concentrations (20 nM) of ganaxolone also activate mPRδ signaling and exert anti-apoptotic actions through this receptor. Preliminary evidence suggests that ganaxolone can also exert neuroprotective effects by activating inhibitory G protein (Gi)-dependent signaling through mPRα and/or mPRβ in neuronal cells. The results indicate that mPRs are likely intermediaries in multiple actions of natural and synthetic neurosteroids in the brain. Potential off-target effects of ganaxolone through activation of mPRs in patients receiving long-term treatment for epilepsy and other disorders should be considered and warrant further investigation.
Collapse
|
14
|
Camilletti MA, Abeledo-Machado A, Faraoni EY, Thomas P, Díaz-Torga G. New insights into progesterone actions on prolactin secretion and prolactinoma development. Steroids 2019; 152:108496. [PMID: 31521709 DOI: 10.1016/j.steroids.2019.108496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Progesterone (P4) has controversial physiological effects on the regulation of the lactotroph population. While some studies have shown a negative role for P4 in prolactin secretion and lactotroph proliferation, antagonizing estradiol effects, others demonstrated a proliferative role of P4 at the pituitary level. Usually, progesterone actions in the pituitary gland were studied through their classical, genomic pathways triggered by nuclear progesterone receptors (nPRs). However, in 2003, the scene became more complex with the discovery of another group of progesterone receptors involved in rapid, non-genomic P4 effects: the membrane progesterone receptors (mPRs), which are members of the progesterone and adipoQ receptor (PAQR) family. This review examines the historical background and current data on the study of progesterone actions on PRL secretion providing new evidence of P4 effects at the hypothalamic and at the pituitary level through non-classic P4-receptors. In addition, we explore the role of progesterone in the development of experimental prolactinomas, a controversial topic in the literature.
Collapse
Affiliation(s)
- María A Camilletti
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | | | - Erika Y Faraoni
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, USA
| | - Graciela Díaz-Torga
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Roelfsema F, Yang RJ, Bowers CY, Veldhuis JD. Modulating Effects of Progesterone on Spontaneous Nocturnal and Ghrelin-Induced GH Secretion in Postmenopausal Women. J Clin Endocrinol Metab 2019; 104:2385-2394. [PMID: 30721950 PMCID: PMC6505453 DOI: 10.1210/jc.2018-02639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/31/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Oral administration of estradiol (E2) generally increases GH secretion in postmenopausal women. Oral administration of E2 is associated with a decrease in IGF-1, whereas parenteral or transdermally administered E2 may have no effect on GH. The effect of progesterone (P4) on GH secretion has rarely been studied. We hypothesized that moderately increased serum E2 levels stimulate GH and that P4 modulates E2-stimulated GH secretion. STUDY DESIGN Four parallel groups of randomly assigned postmenopausal women (n = 40). Treatments were saline placebo and oral placebo, saline placebo and oral micronized P4 (3 × 200 mg/d IM), E2 (5 mg IM) and oral placebo, and E2 IM and oral micronized P4. Outcome measures were overnight GH secretion (10 hours), stimulated (ghrelin, 0.3 µg/kg IV bolus) GH secretion, and CT-estimated visceral fat. RESULTS Intramuscular E2 administration did not alter nocturnal and ghrelin-stimulated GH secretion. Nocturnal GH secretion was not changed by P4 administration. However, P4 diminished ghrelin-stimulated pulsatile GH release with or without E2 (average, 7.20 ± 2.14 and 9.58 ± 1.97 µg/L/2 h, respectively; P = 0.045). Respective outcomes for mean GH concentrations and GH peak amplitudes were 0.97 ± 0.31 and 1.52 μg/L ± 0.29 (P = 0.025) and 2.76 ± 1.04 and 3.95 μg/L ± 0.90 (P = 0.031). Ghrelin-stimulated GH secretion correlated negatively with P4 concentration with or without correction for visceral fat area in the regression equation (R = 0.49, P = 0.04, β = -0.040 ± 0.016). CONCLUSIONS Low-range physiological E2 concentrations do not affect spontaneous or ghrelin-stimulated pulsatile GH secretion. Conversely, P4 inhibits ghrelin-stimulated GH secretion in a concentration-dependent fashion. The mechanistic aspects and physiological significance of natural P4's regulation of ghrelin-evoked GH secretion require further study.
Collapse
Affiliation(s)
- Ferdinand Roelfsema
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Leiden University Medical Center, Leiden, Netherlands
| | - Rebecca J Yang
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota
| | - Cyril Y Bowers
- Department of Internal Medicine, Endocrine Division, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Johannes D Veldhuis
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota
- Correspondence and Reprint Requests: Johannes D. Veldhuis, MD, Endocrine Research Unit, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905. E-mail:
| |
Collapse
|
16
|
Camilletti MA, Abeledo-Machado A, Perez PA, Faraoni EY, De Fino F, Rulli SB, Ferraris J, Pisera D, Gutierrez S, Thomas P, Díaz-Torga G. mPRs represent a novel target for PRL inhibition in experimental prolactinomas. Endocr Relat Cancer 2019; 26:497-510. [PMID: 30856609 DOI: 10.1530/erc-18-0409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022]
Abstract
Membrane progesterone receptors are known to mediate rapid nongenomic progesterone effects in different cell types. Recent evidence revealed that mPRα is highly expressed in the rat pituitary, being primarily localized in lactotrophs, acting as an intermediary of P4-inhibitory actions on prolactin secretion. The role of mPRs in prolactinoma development remains unclear. We hypothesize that mPR agonists represent a novel tool for hyperprolactinemia treatment. To this end, pituitary expression of mPRs was studied in three animal models of prolactinoma. Expression of mPRs and nuclear receptor was significantly decreased in tumoral pituitaries compared to normal ones. However, the relative proportion of mPRα and mPRβ was highly increased in prolactinomas. Interestingly, the selective mPR agonist (Org OD 02-0) significantly inhibited PRL release in both normal and tumoral pituitary explants, displaying a more pronounced effect in tumoral tissues. As P4 also regulates PRL secretion indirectly, by acting on dopaminergic neurons, we studied mPR involvement in this effect. We found that the hypothalamus has a high expression of mPRs. Interestingly, both P4 and OrgOD 02-0 increased dopamine release in hypothalamus explants. Moreover, in an in vivo treatment, that allows both, pituitary and hypothalamus actions, the mPR agonist strongly reduced the hyperprolactinemia in transgenic females carrying prolactinoma. Finally, we also found and interesting gender difference: males express higher levels of pituitary mPRα/β, a sex that does not develop prolactinoma in these mice models. Taken together, these findings suggest mPRs activation could represent a novel tool for hyperprolactinemic patients, especially those that present resistance to dopaminergic drugs.
Collapse
Affiliation(s)
| | | | - Pablo A Perez
- Centro de Microscopia Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Erika Y Faraoni
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Fernanda De Fino
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Susana B Rulli
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Jimena Ferraris
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - Daniel Pisera
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - Silvina Gutierrez
- Centro de Microscopia Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, USA
| | - Graciela Díaz-Torga
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| |
Collapse
|
17
|
Yang Q, Wang Y, Zhang S, Tang J, Li F, Yin J, Li Y, Fu J, Li B, Luo Y, Xue W, Zhu F. Biomarker Discovery for Immunotherapy of Pituitary Adenomas: Enhanced Robustness and Prediction Ability by Modern Computational Tools. Int J Mol Sci 2019; 20:E151. [PMID: 30609812 PMCID: PMC6337483 DOI: 10.3390/ijms20010151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 12/15/2022] Open
Abstract
Pituitary adenoma (PA) is prevalent in the general population. Due to its severe complications and aggressive infiltration into the surrounding brain structure, the effective management of PA is required. Till now, no drug has been approved for treating non-functional PA, and the removal of cancerous cells from the pituitary is still under experimental investigation. Due to its superior specificity and safety profile, immunotherapy stands as one of the most promising strategies for dealing with PA refractory to the standard treatment, and various studies have been carried out to discover immune-related gene markers as target candidates. However, the lists of gene markers identified among different studies are reported to be highly inconsistent because of the greatly limited number of samples analyzed in each study. It is thus essential to substantially enlarge the sample size and comprehensively assess the robustness of the identified immune-related gene markers. Herein, a novel strategy of direct data integration (DDI) was proposed to combine available PA microarray datasets, which significantly enlarged the sample size. First, the robustness of the gene markers identified by DDI strategy was found to be substantially enhanced compared with that of previous studies. Then, the DDI of all reported PA-related microarray datasets were conducted to achieve a comprehensive identification of PA gene markers, and 66 immune-related genes were discovered as target candidates for PA immunotherapy. Finally, based on the analysis of human protein⁻protein interaction network, some promising target candidates (GAL, LMO4, STAT3, PD-L1, TGFB and TGFBR3) were proposed for PA immunotherapy. The strategy proposed together with the immune-related markers identified in this study provided a useful guidance for the development of novel immunotherapy for PA.
Collapse
Affiliation(s)
- Qingxia Yang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jing Tang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jiayi Yin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yi Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jianbo Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bo Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Yongchao Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Feng Zhu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|