1
|
Pai SK. Why women may be more prone to Alzheimer's disease. AGING BRAIN 2024; 6:100121. [PMID: 39044776 PMCID: PMC11263948 DOI: 10.1016/j.nbas.2024.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Affiliation(s)
- Sadashiva K Pai
- Science Mission LLC, Founder & CEO, 3424 Canyon Lake Dr, Little Elm, TX 75068, United States
| |
Collapse
|
2
|
Latorre-Leal M, Rodriguez-Rodriguez P, Franchini L, Nikolidakis O, Daniilidou M, Delac L, Varshney MK, Arroyo-García LE, Eroli F, Winblad B, Blennow K, Zetterberg H, Kivipelto M, Pacciarini M, Wang Y, Griffiths WJ, Björkhem I, Matton A, Nalvarte I, Merino-Serrais P, Cedazo-Minguez A, Maioli S. CYP46A1-mediated cholesterol turnover induces sex-specific changes in cognition and counteracts memory loss in ovariectomized mice. SCIENCE ADVANCES 2024; 10:eadj1354. [PMID: 38266095 PMCID: PMC10807813 DOI: 10.1126/sciadv.adj1354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The brain-specific enzyme CYP46A1 controls cholesterol turnover by converting cholesterol into 24S-hydroxycholesterol (24OH). Dysregulation of brain cholesterol turnover and reduced CYP46A1 levels are observed in Alzheimer's disease (AD). In this study, we report that CYP46A1 overexpression in aged female mice leads to enhanced estrogen signaling in the hippocampus and improved cognitive functions. In contrast, age-matched CYP46A1 overexpressing males show anxiety-like behavior, worsened memory, and elevated levels of 5α-dihydrotestosterone in the hippocampus. We report that, in neurons, 24OH contributes to these divergent effects by activating sex hormone signaling, including estrogen receptors. CYP46A1 overexpression in female mice protects from memory impairments induced by ovariectomy while having no effects in gonadectomized males. Last, we measured cerebrospinal fluid levels of 24OH in a clinical cohort of patients with AD and found that 24OH negatively correlates with neurodegeneration markers only in women. We suggest that CYP46A1 activation is a valuable pharmacological target for enhancing estrogen signaling in women at risk of developing neurodegenerative diseases.
Collapse
Affiliation(s)
- María Latorre-Leal
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Rodriguez-Rodriguez
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Luca Franchini
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Orestis Nikolidakis
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Makrina Daniilidou
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Ljerka Delac
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Mukesh K. Varshney
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Luis E. Arroyo-García
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Eroli
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Winblad
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
- University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Miia Kivipelto
- Department of Neurobiology Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | | | - Yuqin Wang
- Swansea University Medical School, SA2 8PP Swansea, UK
| | | | - Ingemar Björkhem
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Anna Matton
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Nalvarte
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Paula Merino-Serrais
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, UPM, Madrid, Spain
| | - Angel Cedazo-Minguez
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Silvia Maioli
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Hormonal factors moderate the associations between vascular risk factors and white matter hyperintensities. Brain Imaging Behav 2022; 17:172-184. [PMID: 36542288 DOI: 10.1007/s11682-022-00751-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
To examine the moderation effects of hormonal factors on the associations between vascular risk factors and white matter hyperintensities in men and women, separately. White matter hyperintensities were automatically segmented and quantified in the UK Biobank dataset (N = 18,294). Generalised linear models were applied to examine (1) the main effects of vascular and hormonal factors on white matter hyperintensities, and (2) the moderation effects of hormonal factors on the relationship between vascular risk factors and white matter hyperintensities volumes. In men with testosterone levels one standard deviation higher than the mean value, smoking was associated with 27.8% higher white matter hyperintensities volumes in the whole brain. In women with a shorter post-menopause duration (one standard deviation below the mean), diabetes and higher pulse wave velocity were associated with 28.8% and 2.0% more deep white matter hyperintensities, respectively. These findings highlighted the importance of considering hormonal risk factors in the prevention and management of white matter hyperintensities.
Collapse
|
4
|
Salwierz P, Davenport C, Sumra V, Iulita MF, Ferretti MT, Tartaglia MC. Sex and gender differences in dementia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:179-233. [PMID: 36038204 DOI: 10.1016/bs.irn.2022.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The dementia landscape has undergone a striking paradigm shift. The advances in understanding of neurodegeneration and proteinopathies has changed our approach to patients with cognitive impairment. Firstly, it has recently been shown that the various proteinopathies that are the cause of the dementia begin to build up long before the appearance of any obvious symptoms. This has cemented the idea that there is an urgency in diagnosis as it occurs very late in the pathophysiology of these diseases. Secondly, that accurate diagnosis is required to deliver targeted therapies, that is precision medicine. With this latter point, the realization that various factors of a person need to be considered as they may impact the presentation and progression of disease has risen to the forefront. Two of these factors aside from race and age are biological sex and gender (social construct), as both can have tremendous impact on manifestation of disease. This chapter will cover what is known and remains to be known on the interaction of sex and gender with some of the major causes of dementia.
Collapse
Affiliation(s)
- Patrick Salwierz
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Carly Davenport
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Vishaal Sumra
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - M Florencia Iulita
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Women's Brain Project, Guntershausen, Switzerland
| | | | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Memory Clinic, Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
5
|
Shen X, Raghavan S, Przybelski SA, Lesnick TG, Ma S, Reid RI, Graff-Radford J, Mielke MM, Knopman DS, Petersen RC, Jack CR, Simon GJ, Vemuri P. Causal structure discovery identifies risk factors and early brain markers related to evolution of white matter hyperintensities. Neuroimage Clin 2022; 35:103077. [PMID: 35696810 PMCID: PMC9194644 DOI: 10.1016/j.nicl.2022.103077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/25/2022] [Accepted: 06/03/2022] [Indexed: 11/25/2022]
Abstract
Our goal was to understand the complex relationship between age, sex, midlife risk factors, and early white matter changes measured by diffusion tensor imaging (DTI) and their role in the evolution of longitudinal white matter hyperintensities (WMH). We identified 1564 participants (1396 cognitively unimpaired, 151 mild cognitive impairment and 17 dementia participants) with age ranges of 30-90 years from the population-based sample of Mayo Clinic Study of Aging. We used computational causal structure discovery and regression analyses to evaluate the predictors of WMH and DTI, and to ascertain the mediating effect of DTI on WMH. We further derived causal graphs to understand the complex interrelationships between midlife protective factors, vascular risk factors, diffusion changes, and WMH. Older age, female sex, and hypertension were associated with higher baseline and progression of WMH as well as DTI measures (P ≤ 0.003). The effects of hypertension and sex on WMH were partially mediated by microstructural changes measured on DTI. Higher midlife physical activity was predictive of lower WMH through a direct impact on better white matter tract integrity as well as an indirect effect through reducing the risk of hypertension by lowering BMI. This study identified key risks factors, early brain changes, and pathways that may lead to the evolution of WMH.
Collapse
Affiliation(s)
- Xinpeng Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA; Departments of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Robert I Reid
- Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | - Michelle M Mielke
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA; Departments of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - György J Simon
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
6
|
Kehmeier MN, Walker AE. Sex Differences in Large Artery Stiffness: Implications for Cerebrovascular Dysfunction and Alzheimer’s Disease. FRONTIERS IN AGING 2021; 2. [PMID: 35072153 PMCID: PMC8782423 DOI: 10.3389/fragi.2021.791208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Two in every three Alzheimer’s disease diagnoses are females, calling attention to the need to understand sexual dimorphisms with aging and neurodegenerative disease progression. Dysfunction and damage to the vasculature with aging are strongly linked to Alzheimer’s disease. With aging there is an increase in stiffness of the large elastic arteries, and this stiffening is associated with cerebrovascular dysfunction and cognitive impairment. However, it is unclear how the deleterious effects of arterial stiffness may differ between females and males. While environmental, chromosomal, and sex hormone factors influence aging, there is evidence that the deficiency of estrogen post-menopause in females is a contributor to vascular aging and Alzheimer’s disease progression. The purpose of this mini review is to describe the recent developments in our understanding of sex differences in large artery stiffness, cerebrovascular dysfunction, and cognitive impairment, and their intricate relations. Furthermore, we will focus on the impact of the loss of estrogen post-menopause as a potential driving factor for these outcomes. Overall, a better understanding of how sex differences influence aging physiology is crucial to the prevention and treatment of neurodegenerative diseases.
Collapse
|
7
|
Alqarni A, Jiang J, Crawford JD, Koch F, Brodaty H, Sachdev P, Wen W. Sex differences in risk factors for white matter hyperintensities in non-demented older individuals. Neurobiol Aging 2020; 98:197-204. [PMID: 33307330 DOI: 10.1016/j.neurobiolaging.2020.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
White matter hyperintensities (WMH) are generally considered to be associated with cerebral small vessel disease, especially, in older age. Although significant sex differences have been reported in the severity of WMH, it is not yet known if the risk factors for WMH differ in men and women. In this study, magnetic resonance imaging brain scans from 2 Australian cohorts were analyzed to extract WMH volumes. The objective of this study is to examine the moderation effect by sex in the association between known risk factors and WMH. The burden of WMH was significantly higher in women compared to men, especially in the deep WMH (DWMH). In the generalized linear model that included the interaction between sex and body mass index (BMI), there was a differential association of BMI with DWMH in men and women in the exploratory sample, that is, the Sydney Memory and Aging Study, n = 432, aged between 70 and 90. The finding of a higher BMI associated with a higher DWMH in men compared to women was replicated in the Older Australian Twins Study sample, n = 179, aged between 65 and 90. The risk factors of WMH pathology are suggested to have a different impact on the aging brains of men and women.
Collapse
Affiliation(s)
- Abdullah Alqarni
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia; Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - John D Crawford
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Forrest Koch
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia; Dementia Centre for Research Collaboration, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Miller VM, Jayachandran M, Barnes JN, Mielke MM, Kantarci K, Rocca WA. Risk factors of neurovascular ageing in women. J Neuroendocrinol 2020; 32:e12777. [PMID: 31397036 PMCID: PMC6982564 DOI: 10.1111/jne.12777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/24/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022]
Abstract
Biological sex and changes in sex hormones throughout life influence all aspects of health and disease. In women, changes in sex hormonal status reflect ovarian function, pregnancy and the use of exogenous hormonal treatments. Longitudinal data from defined cohorts of women will help to identify mechanisms by which the hormonal milieu contributes to cerebrovascular ageing, brain structure and ultimately cognition. This review summarises the phenotypes of three cohorts of women identified through the medical records-linkage system of the Rochester Epidemiology Project and the Mayo Clinic Specialized Center of Research Excellence (SCORE) on Sex Differences: (i) menopausal women with histories of normotensive or hypertensive pregnancies; (ii) women who had bilateral oophorectomy ≤45 years of age; and (iii) women who experienced natural menopause and used menopausal hormone treatments for 4 years. Data from these cohorts will influence the design of follow-up studies concerning how sex hormonal status affects neurovascular ageing in women.
Collapse
Affiliation(s)
- Virginia M. Miller
- Departments of Surgery and Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Muthuvel Jayachandran
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
- Division of Nephrology and Hematology ResearchDepartment of Internal MedicineMayo ClinicRochesterMNUSA
| | - Jill N. Barnes
- Department of KinesiologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Michelle M. Mielke
- Division of EpidemiologyDepartment of Health Sciences Research and Department of NeurologyMayo ClinicRochesterMNUSA
| | | | - Walter A. Rocca
- Division of EpidemiologyDepartment of Health Sciences Research and Department of NeurologyMayo ClinicRochesterMNUSA
| |
Collapse
|
9
|
Panzica G, Melcangi RC. Neuroactive steroids and the new decade. J Neuroendocrinol 2020; 32:e12832. [PMID: 31943411 DOI: 10.1111/jne.12832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Giancarlo Panzica
- Dipartimento di Neuroscienze "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi (NICO), Università degli Studi di Torino, Orbassano, Italy
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|