1
|
Royan MR, Hodne K, Nourizadeh-Lillabadi R, Weltzien FA, Henkel C, Fontaine R. Day length regulates gonadotrope proliferation and reproduction via an intra-pituitary pathway in the model vertebrate Oryzias latipes. Commun Biol 2024; 7:388. [PMID: 38553567 PMCID: PMC10980775 DOI: 10.1038/s42003-024-06059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/16/2024] [Indexed: 04/01/2024] Open
Abstract
In seasonally breeding mammals and birds, the production of the hormones that regulate reproduction (gonadotropins) is controlled by a complex pituitary-brain-pituitary pathway. Indeed, the pituitary thyroid-stimulating hormone (TSH) regulates gonadotropin expression in pituitary gonadotropes, via dio2-expressing tanycytes, hypothalamic Kisspeptin, RFamide-related peptide, and gonadotropin-releasing hormone neurons. However, in fish, how seasonal environmental signals influence gonadotropins remains unclear. In addition, the seasonal regulation of gonadotrope (gonadotropin-producing cell) proliferation in the pituitary is, to the best of our knowledge, not elucidated in any vertebrate group. Here, we show that in the vertebrate model Japanese medaka (Oryzias latipes), a long day seasonally breeding fish, photoperiod (daylength) not only regulates hormone production by the gonadotropes but also their proliferation. We also reveal an intra-pituitary pathway that regulates gonadotrope cell number and hormone production. In this pathway, Tsh regulates gonadotropes via folliculostellate cells within the pituitary. This study suggests the existence of an alternative regulatory mechanism of seasonal gonadotropin production in fish.
Collapse
Affiliation(s)
- Muhammad Rahmad Royan
- Department of Preclinical Science and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Kjetil Hodne
- Department of Preclinical Science and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Department of Preclinical Science and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Finn-Arne Weltzien
- Department of Preclinical Science and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Christiaan Henkel
- Department of Preclinical Science and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Romain Fontaine
- Department of Preclinical Science and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
2
|
Chen Q, Leshkowitz D, Li H, van Impel A, Schulte-Merker S, Amit I, Rizzoti K, Levkowitz G. Neural plate progenitors give rise to both anterior and posterior pituitary cells. Dev Cell 2023; 58:2652-2665.e6. [PMID: 37683631 DOI: 10.1016/j.devcel.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 05/14/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
The pituitary is the master neuroendocrine gland, which regulates body homeostasis. It consists of the anterior pituitary/adenohypophysis harboring hormones producing cells and the posterior pituitary/neurohypophysis, which relays the passage of hormones from the brain to the periphery. It is accepted that the adenohypophysis originates from the oral ectoderm (Rathke's pouch), whereas the neural ectoderm contributes to the neurohypophysis. Single-cell transcriptomics of the zebrafish pituitary showed that cyp26b1-positive astroglial pituicytes of the neurohypophysis and prop1-positive adenohypophyseal progenitors expressed common markers implying lineage relatedness. Genetic tracing identifies that, in contrast to the prevailing dogma, neural plate precursors of zebrafish (her4.3+) and mouse (Sox1+) contribute to both neurohypophyseal and a subset of adenohypophyseal cells. Pituicyte-derived retinoic-acid-degrading enzyme Cyp26b1 fine-tunes differentiation of prop1+ progenitors into hormone-producing cells. These results challenge the notion that adenohypophyseal cells are exclusively derived from non-neural ectoderm and demonstrate that crosstalk between neuro- and adeno-hypophyseal cells affects differentiation of pituitary cells.
Collapse
Affiliation(s)
- Qiyu Chen
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel
| | - Dena Leshkowitz
- Life Science Core Facilities, Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel
| | - Hanjie Li
- Department of Systems Immunology, Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel; Present address: CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Andreas van Impel
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, Cells-in-Motion Cluster of Excellence, WWU Münster, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, Cells-in-Motion Cluster of Excellence, WWU Münster, Münster, Germany
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel
| | - Karine Rizzoti
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London, UK
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, PO Box 26, Rehovot 7610001, Israel.
| |
Collapse
|
3
|
Rizzoti K, Chakravarty P, Sheridan D, Lovell-Badge R. SOX9-positive pituitary stem cells differ according to their position in the gland and maintenance of their progeny depends on context. SCIENCE ADVANCES 2023; 9:eadf6911. [PMID: 37792947 PMCID: PMC10550238 DOI: 10.1126/sciadv.adf6911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Stem cell (SC) differentiation and maintenance of resultant progeny underlie cell turnover in many organs, but it is difficult to pinpoint the contribution of either process. In the pituitary, a central regulator of endocrine axes, adult SCs undergo activation after target organ ablation, providing a well-characterized paradigm to study an adaptative response in a multi-organ system. Here, we used single-cell technologies to characterize SC heterogeneity and mobilization together with lineage tracing. We show that SC differentiation occurs more frequently than thought previously. In adaptative conditions, differentiation increases and is more diverse than demonstrated by the lineage tracing experiments. Detailed examination of SC progeny suggests that maintenance of selected nascent cells underlies SC output, highlighting a trophic role for the microenvironment. Analyses of cell trajectories further predict pathways and potential regulators. Our model provides a valuable system to study the influence of evolving states on the mechanisms of SC mobilization.
Collapse
Affiliation(s)
- Karine Rizzoti
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Daniel Sheridan
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
4
|
Bian Y, Hahn H, Uhmann A. The hidden hedgehog of the pituitary: hedgehog signaling in development, adulthood and disease of the hypothalamic-pituitary axis. Front Endocrinol (Lausanne) 2023; 14:1219018. [PMID: 37476499 PMCID: PMC10355329 DOI: 10.3389/fendo.2023.1219018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Hedgehog signaling plays pivotal roles in embryonic development, adult homeostasis and tumorigenesis. However, its engagement in the pituitary gland has been long underestimated although Hedgehog signaling and pituitary embryogenic development are closely linked. Thus, deregulation of this signaling pathway during pituitary development results in malformation of the gland. Research of the last years further implicates a regulatory role of Hedgehog signaling in the function of the adult pituitary, because its activity is also interlinked with homeostasis, hormone production, and most likely also formation of neoplasms of the gland. The fact that this pathway can be efficiently targeted by validated therapeutic strategies makes it a promising candidate for treating pituitary diseases. We here summarize the current knowledge about the importance of Hedgehog signaling during pituitary development and review recent data that highlight the impact of Hedgehog signaling in the healthy and the diseased adult pituitary gland.
Collapse
|
5
|
Liu SM, Ifebi B, Johnson F, Xu A, Ho J, Yang Y, Schwartz G, Jo YH, Chua S. The gut signals to AGRP-expressing cells of the pituitary to control glucose homeostasis. J Clin Invest 2023; 133:e164185. [PMID: 36787185 PMCID: PMC10065075 DOI: 10.1172/jci164185] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Glucose homeostasis can be improved after bariatric surgery, which alters bile flow and stimulates gut hormone secretion, particularly FGF15/19. FGFR1 expression in AGRP-expressing cells is required for bile acids' ability to improve glucose control. We show that the mouse Agrp gene has 3 promoter/enhancer regions that direct transcription of each of their own AGRP transcripts. One of these Agrp promoters/enhancers, Agrp-B, is regulated by bile acids. We generated an Agrp-B knockin FLP/knockout allele. AGRP-B-expressing cells are found in endocrine cells of the pars tuberalis and coexpress diacylglycerol lipase B - an endocannabinoid biosynthetic enzyme - distinct from pars tuberalis thyrotropes. AGRP-B expression is also found in the folliculostellate cells of the pituitary's anterior lobe. Mice without AGRP-B were protected from glucose intolerance induced by high-fat feeding but not from excess weight gain. Chemogenetic inhibition of AGRP-B cells improved glucose tolerance by enhancing glucose-stimulated insulin secretion. Inhibition of the AGRP-B cells also caused weight loss. The improved glucose tolerance and reduced body weight persisted up to 6 weeks after cessation of the DREADD-mediated inhibition, suggesting the presence of a biological switch for glucose homeostasis that is regulated by long-term stability of food availability.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunlei Yang
- Department of Medicine
- Department of Neuroscience, and
| | - Gary Schwartz
- Department of Medicine
- Department of Neuroscience, and
| | - Young Hwan Jo
- Department of Medicine
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, New York, USA
| | | |
Collapse
|
6
|
Fletcher PA, Smiljanic K, Prévide RM, Constantin S, Sherman AS, Coon SL, Stojilkovic SS. The astroglial and stem cell functions of adult rat folliculostellate cells. Glia 2023; 71:205-228. [PMID: 36093576 PMCID: PMC9772113 DOI: 10.1002/glia.24267] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023]
Abstract
The mammalian pituitary gland is a complex organ consisting of hormone-producing cells, anterior lobe folliculostellate cells (FSCs), posterior lobe pituicytes, vascular pericytes and endothelial cells, and Sox2-expressing stem cells. We present single-cell RNA sequencing and immunohistofluorescence analyses of pituitary cells of adult female rats with a focus on the transcriptomic profiles of nonhormonal cell types. Samples obtained from whole pituitaries and separated anterior and posterior lobe cells contained all expected pituitary resident cell types and lobe-specific vascular cell subpopulations. FSCs and pituicytes expressed S100B, ALDOC, EAAT1, ALDH1A1, and VIM genes and proteins, as well as other astroglial marker genes, some common and some cell type-specific. We also found that the SOX2 gene and protein were expressed in ~15% of pituitary cells, including FSCs, pituicytes, and a fraction of hormone-producing cells, arguing against its stem cell specificity. FSCs comprised two Sox2-expressing subclusters; FS1 contained more cells but lower genetic diversity, while FS2 contained proliferative cells, shared genes with hormone-producing cells, and expressed genes consistent with stem cell niche formation, regulation of cell proliferation and stem cell pluripotency, including the Hippo and Wnt pathways. FS1 cells were randomly distributed in the anterior and intermediate lobes, while FS2 cells were localized exclusively in the marginal zone between the anterior and intermediate lobes. These data indicate the identity of the FSCs as anterior pituitary-specific astroglia, with FS1 cells representing differentiated cells equipped for classical FSC roles and FS2 cells exhibiting additional stem cell-like features.
Collapse
Affiliation(s)
- Patrick A. Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Kosara Smiljanic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Rafael M. Prévide
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Stephanie Constantin
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Arthur S. Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD 20892
| | - Steven L. Coon
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, 20892
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD 20892
| |
Collapse
|
7
|
RC-4BC cells express nicotinic and muscarinic acetylcholine receptors. PLoS One 2022; 17:e0279284. [PMID: 36525419 PMCID: PMC9757584 DOI: 10.1371/journal.pone.0279284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Acetylcholine is one of the most important endogenous neurotransmitters in a range of organisms spanning different animal phyla. Within pituitary gland it acts as autocrine and paracrine signal. In a current study we assessed expression profile of the different subunits of nicotinic as well as muscarinic acetylcholine receptors in RC-4BC cells, which are derived from rat pituitary gland tumor. Our findings indicate that β2, δ, and M2 subunits are expressed by the cells with the lowest Ct values compared to other tested subunits. The detected Ct values were 26.6±0.16, 27.95±0.5, and 28.8±0.25 for β2, δ, and M2 subunits, respectively.
Collapse
|
8
|
Le Tissier PR, Murray JF, Mollard P. A New Perspective on Regulation of Pituitary Plasticity: The Network of SOX2-Positive Cells May Coordinate Responses to Challenge. Endocrinology 2022; 163:6609891. [PMID: 35713880 PMCID: PMC9273012 DOI: 10.1210/endocr/bqac089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Indexed: 11/19/2022]
Abstract
Plasticity of function is required for each of the anterior pituitary endocrine axes to support alterations in the demand for hormone with physiological status and in response to environmental challenge. This plasticity is mediated at the pituitary level by a change in functional cell mass resulting from a combination of alteration in the proportion of responding cells, the amount of hormone secreted from each cell, and the total number of cells within an endocrine cell population. The functional cell mass also depends on its organization into structural and functional networks. The mechanisms underlying alteration in gland output depend on the strength of the stimulus and are axis dependent but in all cases rely on sensing of output of the functional cell mass and its regulation. Here, we present evidence that the size of pituitary cell populations is constrained and suggest this is mediated by a form of quorum sensing. We propose that pituitary cell quorum sensing is mediated by interactions between the networks of endocrine cells and hormone-negative SOX2-positive (SOX2+ve) cells and speculate that the latter act as both a sentinel and actuator of cell number. Evidence for a role of the network of SOX2+ve cells in directly regulating secretion from multiple endocrine cell networks suggests that it also regulates other aspects of the endocrine cell functional mass. A decision-making role of SOX2+ve cells would allow precise coordination of pituitary axes, essential for their appropriate response to physiological status and challenge, as well as prioritization of axis modification.
Collapse
Affiliation(s)
- Paul R Le Tissier
- Correspondence: Paul R. Le Tissier, PhD, Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Bldg, 15 George Square, Edinburgh EH8 9XD, UK.
| | - Joanne F Murray
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Patrice Mollard
- Correspondence: Patrice Mollard, PhD, Institute of Functional Genomics, University of Montpellier, 141 rue de la Cardonille, F-34093, CNRS, INSERM, Montpellier, France.
| |
Collapse
|