1
|
Nørkær E, Gobbo S, Roald T, Starrfelt R. Disentangling developmental prosopagnosia: A scoping review of terms, tools and topics. Cortex 2024; 176:161-193. [PMID: 38795651 DOI: 10.1016/j.cortex.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
The goal of this preregistered scoping review is to create an overview of the research on developmental prosopagnosia (DP). Through analysis of all empirical studies of DP in adults, we investigate 1) how DP is conceptualized and defined, 2) how individuals are classified with DP and 3) which aspects of DP are investigated in the literature. We reviewed 224 peer-reviewed studies of DP. Our analysis of the literature reveals that while DP is predominantly defined as a lifelong face recognition impairment in the absence of acquired brain injury and intellectual/cognitive problems, there is far from consensus on the specifics of the definition with some studies emphasizing e.g., deficits in face perception, discrimination and/or matching as core characteristics of DP. These differences in DP definitions is further reflected in the vast heterogeneity in classification procedures. Only about half of the included studies explicitly state how they classify individuals with DP, and these studies adopt 40 different assessment tools. The two most frequently studied aspects of DP are the role of holistic processing and the specificity of face processing, and alongside a substantial body of neuroimaging studies of DP, this paints a picture of a research field whose scientific interests and aims are rooted in cognitive neuropsychology and neuroscience. We argue that these roots - alongside the heterogeneity in DP definition and classification - may have limited the scope and interest of DP research unnecessarily, and we point to new avenues of research for the field.
Collapse
Affiliation(s)
- Erling Nørkær
- Department of Psychology, University of Copenhagen, Denmark.
| | - Silvia Gobbo
- Department of Psychology, Università degli Studi di Milano-Bicocca, Italy
| | - Tone Roald
- Department of Psychology, University of Copenhagen, Denmark
| | | |
Collapse
|
2
|
Volfart A, Rossion B. The neuropsychological evaluation of face identity recognition. Neuropsychologia 2024; 198:108865. [PMID: 38522782 DOI: 10.1016/j.neuropsychologia.2024.108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Facial identity recognition (FIR) is arguably the ultimate form of recognition for the adult human brain. Even if the term prosopagnosia is reserved for exceptionally rare brain-damaged cases with a category-specific abrupt loss of FIR at adulthood, subjective and objective impairments or difficulties of FIR are common in the neuropsychological population. Here we provide a critical overview of the evaluation of FIR both for clinicians and researchers in neuropsychology. FIR impairments occur following many causes that should be identified objectively by both general and specific, behavioral and neural examinations. We refute the commonly used dissociation between perceptual and memory deficits/tests for FIR, since even a task involving the discrimination of unfamiliar face images presented side-by-side relies on cortical memories of faces in the right-lateralized ventral occipito-temporal cortex. Another frequently encountered confusion is between specific deficits of the FIR function and a more general impairment of semantic memory (of people), the latter being most often encountered following anterior temporal lobe damage. Many computerized tests aimed at evaluating FIR have appeared over the last two decades, as reviewed here. However, despite undeniable strengths, they often suffer from ecological limitations, difficulties of instruction, as well as a lack of consideration for processing speed and qualitative information. Taking into account these issues, a recently developed behavioral test with natural images manipulating face familiarity, stimulus inversion, and correct response times as a key variable appears promising. The measurement of electroencephalographic (EEG) activity in the frequency domain from fast periodic visual stimulation also appears as a particularly promising tool to complete and enhance the neuropsychological assessment of FIR.
Collapse
Affiliation(s)
- Angélique Volfart
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Australia.
| | - Bruno Rossion
- Centre for Biomedical Technologies, Queensland University of Technology, Australia; Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France.
| |
Collapse
|
3
|
Faghel-Soubeyrand S, Richoz AR, Waeber D, Woodhams J, Caldara R, Gosselin F, Charest I. Neural computations in prosopagnosia. Cereb Cortex 2024; 34:bhae211. [PMID: 38795358 PMCID: PMC11127037 DOI: 10.1093/cercor/bhae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/27/2024] Open
Abstract
We report an investigation of the neural processes involved in the processing of faces and objects of brain-lesioned patient PS, a well-documented case of pure acquired prosopagnosia. We gathered a substantial dataset of high-density electrophysiological recordings from both PS and neurotypicals. Using representational similarity analysis, we produced time-resolved brain representations in a format that facilitates direct comparisons across time points, different individuals, and computational models. To understand how the lesions in PS's ventral stream affect the temporal evolution of her brain representations, we computed the temporal generalization of her brain representations. We uncovered that PS's early brain representations exhibit an unusual similarity to later representations, implying an excessive generalization of early visual patterns. To reveal the underlying computational deficits, we correlated PS' brain representations with those of deep neural networks (DNN). We found that the computations underlying PS' brain activity bore a closer resemblance to early layers of a visual DNN than those of controls. However, the brain representations in neurotypicals became more akin to those of the later layers of the model compared to PS. We confirmed PS's deficits in high-level brain representations by demonstrating that her brain representations exhibited less similarity with those of a DNN of semantics.
Collapse
Affiliation(s)
- Simon Faghel-Soubeyrand
- Département de psychologie, Université de Montréal, 90 av. Vincent D’indy, Montreal, H2V 2S9, Canada
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Woodstock Rd, Oxford OX2 6GG
| | - Anne-Raphaelle Richoz
- Département de psychologie, Université de Fribourg, RM 01 bu. C-3.117Rue P.A. de Faucigny 21700 Fribourg, Switzerland
| | - Delphine Waeber
- Département de psychologie, Université de Fribourg, RM 01 bu. C-3.117Rue P.A. de Faucigny 21700 Fribourg, Switzerland
| | - Jessica Woodhams
- School of Psychology, University of Birmingham, Hills Building, Edgbaston Park Rd, Birmingham B15 2TT, UK
| | - Roberto Caldara
- Département de psychologie, Université de Fribourg, RM 01 bu. C-3.117Rue P.A. de Faucigny 21700 Fribourg, Switzerland
| | - Frédéric Gosselin
- Département de psychologie, Université de Montréal, 90 av. Vincent D’indy, Montreal, H2V 2S9, Canada
| | - Ian Charest
- Département de psychologie, Université de Montréal, 90 av. Vincent D’indy, Montreal, H2V 2S9, Canada
| |
Collapse
|
4
|
Xu Y, Zeng K, Dong L, Zheng X, Si Y. Understanding older adults' smartphone addiction in the digital age: empirical evidence from China. Front Public Health 2023; 11:1136494. [PMID: 37483945 PMCID: PMC10360404 DOI: 10.3389/fpubh.2023.1136494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background Despite the fact that an increasing number of older adults are addicted to smartphones, the existing addiction literature still focuses primarily on adolescents. To address this issue, this study draws from the perspectives of subjective cognitive decline and family relationship conflict to examine older adults' smartphone addiction based on their key characteristics. Methods This study investigates the effects of subjective cognitive decline and family relationship conflict on older adults' smartphone addiction through a survey of 371 subjects in China. Results The results show that subjective cognitive decline and family relationship conflict affect older adults' smartphone addiction through a sense of alienation. In addition, older adults' perceived power moderates the relationship between alienation and smartphone addiction. Discussion This study offers new perspectives on the study of smartphone addiction from the perspective of older adults, and sheds light on how to improve the older adults' quality of life in their later years.
Collapse
Affiliation(s)
- Yujing Xu
- School of Management, Zhejiang University of Technology, Hangzhou, China
| | - Kai Zeng
- School of Management, Zhejiang University of Technology, Hangzhou, China
| | - Lucong Dong
- School of Management, Zhejiang University of Technology, Hangzhou, China
| | - Xiaofen Zheng
- School of Management, Zhejiang University of Technology, Hangzhou, China
| | - Yuxiu Si
- School of Economics, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
5
|
Rossion B, Jacques C, Jonas J. Intracerebral Electrophysiological Recordings to Understand the Neural Basis of Human Face Recognition. Brain Sci 2023; 13:354. [PMID: 36831897 PMCID: PMC9954066 DOI: 10.3390/brainsci13020354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Understanding how the human brain recognizes faces is a primary scientific goal in cognitive neuroscience. Given the limitations of the monkey model of human face recognition, a key approach in this endeavor is the recording of electrophysiological activity with electrodes implanted inside the brain of human epileptic patients. However, this approach faces a number of challenges that must be overcome for meaningful scientific knowledge to emerge. Here we synthesize a 10 year research program combining the recording of intracerebral activity (StereoElectroEncephaloGraphy, SEEG) in the ventral occipito-temporal cortex (VOTC) of large samples of participants and fast periodic visual stimulation (FPVS), to objectively define, quantify, and characterize the neural basis of human face recognition. These large-scale studies reconcile the wide distribution of neural face recognition activity with its (right) hemispheric and regional specialization and extend face-selectivity to anterior regions of the VOTC, including the ventral anterior temporal lobe (VATL) typically affected by magnetic susceptibility artifacts in functional magnetic resonance imaging (fMRI). Clear spatial dissociations in category-selectivity between faces and other meaningful stimuli such as landmarks (houses, medial VOTC regions) or written words (left lateralized VOTC) are found, confirming and extending neuroimaging observations while supporting the validity of the clinical population tested to inform about normal brain function. The recognition of face identity - arguably the ultimate form of recognition for the human brain - beyond mere differences in physical features is essentially supported by selective populations of neurons in the right inferior occipital gyrus and the lateral portion of the middle and anterior fusiform gyrus. In addition, low-frequency and high-frequency broadband iEEG signals of face recognition appear to be largely concordant in the human association cortex. We conclude by outlining the challenges of this research program to understand the neural basis of human face recognition in the next 10 years.
Collapse
Affiliation(s)
- Bruno Rossion
- CNRS, CRAN, Université de Lorraine, F-54000 Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, F-54000 Nancy, France
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Corentin Jacques
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Jacques Jonas
- CNRS, CRAN, Université de Lorraine, F-54000 Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, F-54000 Nancy, France
| |
Collapse
|
6
|
Estudillo AJ, Lee YJ, Álvarez-Montesinos JA, García-Orza J. High-frequency transcranial random noise stimulation enhances unfamiliar face matching of high resolution and pixelated faces. Brain Cogn 2023; 165:105937. [PMID: 36462222 DOI: 10.1016/j.bandc.2022.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Face identification is useful for social interactions and its impairment can lead to severe social and mental problems. This ability is also remarkably important in applied settings, including eyewitness identification and ID verification. Several studies have demonstrated the potential of Transcranial Random Noise Stimulation (tRNS) to enhance different cognitive skills. However, research has produced inconclusive results about the effectiveness of tRNS to improve face identification. The present study aims to further explore the effect of tRNS on face identification using an unfamiliar face matching task. Observers firstly received either high-frequency bilateral tRNS or sham stimulation for 20 min. The stimulation targeted occipitotemporal areas, which have been previously involved in face processing. In a subsequent stage, observers were asked to perform an unfamiliar face matching task consisting of unaltered and pixelated face pictures. Compared to the sham stimulation group, the high-frequency tRNS group showed better unfamiliar face matching performance with both unaltered and pixelated faces. Our results show that a single high-frequency tRNS session might suffice to improve face identification abilities. These results have important consequences for the treatment of face recognition disorders, and potential applications in those scenarios whereby the identification of faces is primordial.
Collapse
Affiliation(s)
| | - Ye Ji Lee
- University of Nottingham Malaysia, Malaysia
| | | | | |
Collapse
|
7
|
Blank H, Alink A, Büchel C. Multivariate functional neuroimaging analyses reveal that strength-dependent face expectations are represented in higher-level face-identity areas. Commun Biol 2023; 6:135. [PMID: 36725984 PMCID: PMC9892564 DOI: 10.1038/s42003-023-04508-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Perception is an active inference in which prior expectations are combined with sensory input. It is still unclear how the strength of prior expectations is represented in the human brain. The strength, or precision, of a prior could be represented with its content, potentially in higher-level sensory areas. We used multivariate analyses of functional resonance imaging data to test whether expectation strength is represented together with the expected face in high-level face-sensitive regions. Participants were trained to associate images of scenes with subsequently presented images of different faces. Each scene predicted three faces, each with either low, intermediate, or high probability. We found that anticipation enhances the similarity of response patterns in the face-sensitive anterior temporal lobe to response patterns specifically associated with the image of the expected face. In contrast, during face presentation, activity increased for unexpected faces in a typical prediction error network, containing areas such as the caudate and the insula. Our findings show that strength-dependent face expectations are represented in higher-level face-identity areas, supporting hierarchical theories of predictive processing according to which higher-level sensory regions represent weighted priors.
Collapse
Affiliation(s)
- Helen Blank
- grid.13648.380000 0001 2180 3484Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Arjen Alink
- grid.13648.380000 0001 2180 3484Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Büchel
- grid.13648.380000 0001 2180 3484Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
8
|
Lee SM, Tibon R, Zeidman P, Yadav PS, Henson R. Effects of face repetition on ventral visual stream connectivity using dynamic causal modelling of fMRI data. Neuroimage 2022; 264:119708. [PMID: 36280098 DOI: 10.1016/j.neuroimage.2022.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Stimulus repetition normally causes reduced neural activity in brain regions that process that stimulus. Some theories claim that this "repetition suppression" reflects local mechanisms such as neuronal fatigue or sharpening within a region, whereas other theories claim that it results from changed connectivity between regions, following changes in synchrony or top-down predictions. In this study, we applied dynamic causal modeling (DCM) on a public fMRI dataset involving repeated presentations of faces and scrambled faces to test whether repetition affected local (self-connections) and/or between-region connectivity in left and right early visual cortex (EVC), occipital face area (OFA) and fusiform face area (FFA). Face "perception" (faces versus scrambled faces) modulated nearly all connections, within and between regions, including direct connections from EVC to FFA, supporting a non-hierarchical view of face processing. Face "recognition" (familiar versus unfamiliar faces) modulated connections between EVC and OFA/FFA, particularly in the left hemisphere. Most importantly, immediate and delayed repetition of stimuli were also best captured by modulations of connections between EVC and OFA/FFA, but not self-connections of OFA/FFA, consistent with synchronization or predictive coding theories, though also possibly reflecting local mechanisms like synaptic depression.
Collapse
Affiliation(s)
- Sung-Mu Lee
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Roni Tibon
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom; School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Pranay S Yadav
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Richard Henson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
9
|
Rossion B. Twenty years of investigation with the case of prosopagnosia PS to understand human face identity recognition. Part II: Neural basis. Neuropsychologia 2022; 173:108279. [PMID: 35667496 DOI: 10.1016/j.neuropsychologia.2022.108279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Patient PS sustained her dramatic brain injury in 1992, the same year as the first report of a neuroimaging study of human face recognition. The present paper complements the review on the functional nature of PS's prosopagnosia (part I), illustrating how her case study directly, i.e., through neuroimaging investigations of her brain structure and activity, but also indirectly, through neural studies performed on other clinical cases and neurotypical individuals, inspired and constrained neural models of human face recognition. In the dominant right hemisphere for face recognition in humans, PS's main lesion concerns (inputs to) the inferior occipital gyrus (IOG), in a region where face-selective activity is typically found in normal individuals ('Occipital Face Area', OFA). Her case study initially supported the criticality of this region for face identity recognition (FIR) and provided the impetus for transcranial magnetic stimulation (TMS), intracerebral electrical stimulation, and cortical surgery studies that have generally supported this view. Despite PS's right IOG lesion, typical face-selectivity is found anteriorly in the middle portion of the fusiform gyrus, a hominoid structure (termed the right 'Fusiform Face Area', FFA) that is widely considered to be the most important region for human face recognition. This finding led to the original proposal of direct anatomico-functional connections from early visual cortices to the FFA, bypassing the IOG/OFA (lulu), a hypothesis supported by further neuroimaging studies of PS, other neurological cases and neuro-typical individuals with original visual stimulation paradigms, data recordings and analyses. The proposal of a lack of sensitivity to face identity in PS's right FFA due to defective reentrant inputs from the IOG/FFA has also been supported by other cases, functional connectivity and cortical surgery studies. Overall, neural studies of, and based on, the case of prosopagnosia PS strongly question the hierarchical organization of the human neural face recognition system, supporting a more flexible and dynamic view of this key social brain function.
Collapse
Affiliation(s)
- Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France; CHRU-Nancy, Service de Neurologie, F-5400, France; Psychological Sciences Research Institute, Institute of Neuroscience, University of Louvain, Belgium.
| |
Collapse
|
10
|
Rossion B. Twenty years of investigation with the case of prosopagnosia PS to understand human face identity recognition. Part I: Function. Neuropsychologia 2022; 173:108278. [DOI: 10.1016/j.neuropsychologia.2022.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/28/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
11
|
Volfart A, Yan X, Maillard L, Colnat-Coulbois S, Hossu G, Rossion B, Jonas J. Intracerebral electrical stimulation of the right anterior fusiform gyrus impairs human face identity recognition. Neuroimage 2022; 250:118932. [PMID: 35085763 DOI: 10.1016/j.neuroimage.2022.118932] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 01/23/2023] Open
Abstract
Brain regions located between the right fusiform face area (FFA) in the middle fusiform gyrus and the temporal pole may play a critical role in human face identity recognition but their investigation is limited by a large signal drop-out in functional magnetic resonance imaging (fMRI). Here we report an original case who is suddenly unable to recognize the identity of faces when electrically stimulated on a focal location inside this intermediate region of the right anterior fusiform gyrus. The reliable transient identity recognition deficit occurs without any change of percept, even during nonverbal face tasks (i.e., pointing out the famous face picture among three options; matching pictures of unfamiliar or familiar faces for their identities), and without difficulty at recognizing visual objects or famous written names. The effective contact is associated with the largest frequency-tagged electrophysiological signals of face-selectivity and of familiar and unfamiliar face identity recognition. This extensive multimodal investigation points to the right anterior fusiform gyrus as a critical hub of the human cortical face network, between posterior ventral occipito-temporal face-selective regions directly connected to low-level visual cortex, the medial temporal lobe involved in generic memory encoding, and ventral anterior temporal lobe regions holding semantic associations to people's identity.
Collapse
Affiliation(s)
- Angélique Volfart
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; University of Louvain, Psychological Sciences Research Institute, B-1348 Louvain-La-Neuve, Belgium
| | - Xiaoqian Yan
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; University of Louvain, Psychological Sciences Research Institute, B-1348 Louvain-La-Neuve, Belgium; Stanford University, Department of Psychology, CA 94305 Stanford, USA
| | - Louis Maillard
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| | - Sophie Colnat-Coulbois
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000 Nancy, France
| | - Gabriela Hossu
- Université de Lorraine, CHRU-Nancy, CIC-IT, F-54000 Nancy, France; Université de Lorraine, Inserm, IADI, F-54000 Nancy, France
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; University of Louvain, Psychological Sciences Research Institute, B-1348 Louvain-La-Neuve, Belgium; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| | - Jacques Jonas
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France.
| |
Collapse
|
12
|
Is human face recognition lateralized to the right hemisphere due to neural competition with left-lateralized visual word recognition? A critical review. Brain Struct Funct 2021; 227:599-629. [PMID: 34731327 DOI: 10.1007/s00429-021-02370-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
The right hemispheric lateralization of face recognition, which is well documented and appears to be specific to the human species, remains a scientific mystery. According to a long-standing view, the evolution of language, which is typically substantiated in the left hemisphere, competes with the cortical space in that hemisphere available for visuospatial processes, including face recognition. Over the last decade, a specific hypothesis derived from this view according to which neural competition in the left ventral occipito-temporal cortex with selective representations of letter strings causes right hemispheric lateralization of face recognition, has generated considerable interest and research in the scientific community. Here, a systematic review of studies performed in various populations (infants, children, literate and illiterate adults, left-handed adults) and methodologies (behavior, lesion studies, (intra)electroencephalography, neuroimaging) offers little if any support for this reading lateralized neural competition hypothesis. Specifically, right-lateralized face-selective neural activity already emerges at a few months of age, well before reading acquisition. Moreover, consistent evidence of face recognition performance and its right hemispheric lateralization being modulated by literacy level during development or at adulthood is lacking. Given the absence of solid alternative hypotheses and the key role of neural competition in the sensory-motor cortices for selectivity of representations, learning, and plasticity, a revised language-related neural competition hypothesis for the right hemispheric lateralization of face recognition should be further explored in future research, albeit with substantial conceptual clarification and advances in methodological rigor.
Collapse
|
13
|
Rice GE, Kerry SJ, Robotham RJ, Leff AP, Lambon Ralph MA, Starrfelt R. Category-selective deficits are the exception and not the rule: Evidence from a case-series of 64 patients with ventral occipito-temporal cortex damage. Cortex 2021; 138:266-281. [PMID: 33770511 PMCID: PMC8064027 DOI: 10.1016/j.cortex.2021.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/30/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
The organisational principles of the visual ventral stream are still highly debated, particularly the relative association/dissociation between word and face recognition and the degree of lateralisation of the underlying processes. Reports of dissociations between word and face recognition stem from single case-studies of category selective impairments, and neuroimaging investigations of healthy participants. Despite the historical reliance on single case-studies, more recent group studies have highlighted a greater commonality between word and face recognition. Studying individual patients with rare selective deficits misses (a) important variability between patients, (b) systematic associations between task performance, and (c) patients with mild, severe and/or non-selective impairments; meaning that the full spectrum of deficits is unknown. The Back of the Brain project assessed the range and specificity of visual perceptual impairment in 64 patients with posterior cerebral artery stroke recruited based on lesion localization and not behavioural performance. Word, object, and face processing were measured with comparable tests across different levels of processing to investigate associations and dissociations across domains. We present two complementary analyses of the extensive behavioural battery: (1) a data-driven analysis of the whole patient group, and (2) a single-subject case-series analysis testing for deficits and dissociations in each individual patient. In both analyses, the general organisational principle was of associations between words, objects, and faces even following unilateral lesions. The majority of patients either showed deficits across all domains or in no domain, suggesting a spectrum of visuo-perceptual deficits post stroke. Dissociations were observed, but they were the exception and not the rule: Category-selective impairments were found in only a minority of patients, all of whom showed disproportionate deficits for words. Interestingly, such selective word impairments were found following both left and right hemisphere lesions. This large-scale investigation of posterior cerebral artery stroke patients highlights the bilateral representation of visual perceptual function.
Collapse
Affiliation(s)
- Grace E Rice
- MRC Cognition and Brain Sciences Unit (CBU), University of Cambridge, UK
| | - Sheila J Kerry
- University College London Queen Square Institute of Neurology, UK
| | - Ro J Robotham
- Department of Psychology, University of Copenhagen, Denmark
| | - Alex P Leff
- University College London Queen Square Institute of Neurology, UK
| | | | - Randi Starrfelt
- Department of Psychology, University of Copenhagen, Denmark.
| |
Collapse
|
14
|
Jonas J, Rossion B. Intracerebral electrical stimulation to understand the neural basis of human face identity recognition. Eur J Neurosci 2021; 54:4197-4211. [PMID: 33866613 DOI: 10.1111/ejn.15235] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Recognizing people's identity by their faces is a key function in the human species, supported by regions of the ventral occipito-temporal cortex (VOTC). In the last decade, there have been several reports of perceptual face distortion during direct electrical stimulation (DES) with subdural electrodes positioned over a well-known face-selective VOTC region of the right lateral middle fusiform gyrus (LatMidFG; i.e., the "Fusiform Face Area", FFA). However, transient impairments of face identity recognition (FIR) have been extremely rare and only behaviorally quantified during DES with intracerebral (i.e., depth) electrodes in stereo-electroencephalography (SEEG). The three detailed cases reported so far, summarized here, were specifically impaired at FIR during DES inside different anatomical VOTC regions of the right hemisphere: the inferior occipital gyrus (IOG) and the LatMidFG, as well as a region that lies at the heart of a large magnetic susceptibility artifact in functional magnetic resonance imaging (fMRI): the anterior fusiform gyrus (AntFG). In the first two regions, the eloquent electrode contacts were systematically associated with the highest face-selective and (unfamiliar) face individuation responses as measured with intracerebral electrophysiology. Stimulation in the right AntFG did not lead to perceptual changes but also caused an inability to remember having been presented face pictures, as if the episode was never recorded in memory. These observations support the view of an extensive network of face-selective VOTC regions subtending human FIR, with at least three critical nodes in the right hemisphere associated with differential intrinsic and extrinsic patterns of reentrant connectivity.
Collapse
Affiliation(s)
- Jacques Jonas
- Université de Lorraine, CNRS, CRAN, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy, France
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy, France
| |
Collapse
|
15
|
Rossion B. What are superior face identity recognizers (SFIR) made of? Neuropsychologia 2021; 158:107807. [PMID: 33636153 DOI: 10.1016/j.neuropsychologia.2021.107807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
In her Viewpoint paper, Meike Ramon proposes a stringent operational definition to identify people who excel at face identity recognition, i.e., super face identity recognizers (SFIR). Based on difficulties at defining cases of prosopagnosia and prosopdysgnosia, I suggest adding exclusion criteria and emphasizing domain-specificity of SFIR's performance. In future work to characterize this special population, implicit electrophysiological measures obtained during fast periodic visual stimulation may be particularly valuable, providing valid, objective, sensitive, and reliable indexes of face identity recognition.
Collapse
Affiliation(s)
- Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France; CHRU-Nancy, Service de Neurologie, F-54000, France.
| |
Collapse
|
16
|
Estudillo AJ, Wong HK. Associations between self-reported and objective face recognition abilities are only evident in above- and below-average recognisers. PeerJ 2021; 9:e10629. [PMID: 33510971 PMCID: PMC7808263 DOI: 10.7717/peerj.10629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022] Open
Abstract
The 20-Item Prosopagnosia Items (PI-20) was recently introduced as a self-report measure of face recognition abilities and as an instrument to help the diagnosis of prosopagnosia. In general, studies using this questionnaire have shown that observers have moderate to strong insights into their face recognition abilities. However, it remains unknown whether these insights are equivalent for the whole range of face recognition abilities. The present study investigates this issue using the Mandarin version of the PI-20 and the Cambridge Face Memory Test Chinese (CFMT-Chinese). Our results showed a moderate negative association between the PI-20 and the CFMT-Chinese. However, this association was driven by people with low and high face recognition ability, but absent in people within the typical range of face recognition performance. The implications of these results for the study of individual differences and the diagnosis of prosopagnosia are discussed.
Collapse
Affiliation(s)
- Alejandro J Estudillo
- Department of Psychology, Bournemouth University, Bournemouth, UK.,School of Psychology, University of Nottingham-Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Hoo Keat Wong
- School of Psychology, University of Nottingham-Malaysia Campus, Semenyih, Selangor, Malaysia
| |
Collapse
|
17
|
Fisher K, Towler J, Rossion B, Eimer M. Neural responses in a fast periodic visual stimulation paradigm reveal domain-general visual discrimination deficits in developmental prosopagnosia. Cortex 2020; 133:76-102. [DOI: 10.1016/j.cortex.2020.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/01/2020] [Accepted: 09/01/2020] [Indexed: 02/02/2023]
|
18
|
Jacques C, Rossion B, Volfart A, Brissart H, Colnat-Coulbois S, Maillard L, Jonas J. The neural basis of rapid unfamiliar face individuation with human intracerebral recordings. Neuroimage 2020; 221:117174. [DOI: 10.1016/j.neuroimage.2020.117174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/19/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022] Open
|
19
|
Rossion B. Are facing body dyads as special as (single) faces for the human brain? Cortex 2020; 135:S0010-9452(20)30356-7. [PMID: 34756372 PMCID: PMC7530582 DOI: 10.1016/j.cortex.2020.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/24/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Bruno Rossion
- Université de Lorraine, CNRS, CRAN, Nancy, France; CHRU-Nancy, Service de Neurologie, France.
| |
Collapse
|
20
|
Rossion B, Retter TL, Liu‐Shuang J. Understanding human individuation of unfamiliar faces with oddball fast periodic visual stimulation and electroencephalography. Eur J Neurosci 2020; 52:4283-4344. [DOI: 10.1111/ejn.14865] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/19/2020] [Accepted: 05/30/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Bruno Rossion
- CNRS, CRAN UMR7039 Université de Lorraine F‐54000Nancy France
- Service de Neurologie, CHRU‐Nancy Université de Lorraine F‐54000Nancy France
| | - Talia L. Retter
- Department of Behavioural and Cognitive Sciences Faculty of Language and Literature Humanities, Arts and Education University of Luxembourg Luxembourg Luxembourg
| | - Joan Liu‐Shuang
- Institute of Research in Psychological Science Institute of Neuroscience Université de Louvain Louvain‐la‐Neuve Belgium
| |
Collapse
|
21
|
Lochy A, Schiltz C, Rossion B. The right hemispheric dominance for face perception in preschool children depends on the visual discrimination level. Dev Sci 2020; 23:e12914. [PMID: 31618490 PMCID: PMC7379294 DOI: 10.1111/desc.12914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Accepted: 10/08/2019] [Indexed: 01/08/2023]
Abstract
The developmental origin of human adults' right hemispheric dominance in response to face stimuli remains unclear, in particular because young infants' right hemispheric advantage in face-selective response is no longer present in preschool children, before written language acquisition. Here we used fast periodic visual stimulation (FPVS) with scalp electroencephalography (EEG) to test 52 preschool children (5.5 years old) at two different levels of face discrimination: discrimination of faces against objects, measuring face-selectivity, or discrimination between individual faces. While the contrast between faces and nonface objects elicits strictly bilateral occipital responses in children, strengthening previous observations, discrimination of individual faces in the same children reveals a strong right hemispheric lateralization over the occipitotemporal cortex. Picture-plane inversion of the face stimuli significantly decreases the individual discrimination response, although to a much smaller extent than in older children and adults tested with the same paradigm. However, there is only a nonsignificant trend for a decrease in right hemispheric lateralization with inversion. There is no relationship between the right hemispheric lateralization in individual face discrimination and preschool levels of readings abilities. The observed difference in the right hemispheric lateralization obtained in the same population of children with two different paradigms measuring neural responses to faces indicates that the level of visual discrimination is a key factor to consider when making inferences about the development of hemispheric lateralization of face perception in the human brain.
Collapse
Affiliation(s)
- Aliette Lochy
- Cognitive Science and Assessment InstituteEducation, Culture, Cognition, and Society Research UnitUniversity of LuxemburgEsch‐sur AlzetteLuxembourg
| | - Christine Schiltz
- Cognitive Science and Assessment InstituteEducation, Culture, Cognition, and Society Research UnitUniversity of LuxemburgEsch‐sur AlzetteLuxembourg
| | - Bruno Rossion
- IPSYUniversité Catholique de LouvainLouvain‐La‐NeuveBelgium
- CNRSCRANUniversité de LorraineNancyFrance
- CHRU‐NancyUniversité de LorraineNancyFrance
| |
Collapse
|
22
|
Yan X, Zimmermann FGS, Rossion B. An implicit neural familiar face identity recognition response across widely variable natural views in the human brain. Cogn Neurosci 2020; 11:143-156. [DOI: 10.1080/17588928.2020.1712344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaoqian Yan
- CNRS, CRAN, Université de Lorraine, Nancy, France
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Belgium
| | - Friederike GS Zimmermann
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Belgium
- BG Klinikum Humburg, Neurologie, Hamburg, Germany
| | - Bruno Rossion
- CNRS, CRAN, Université de Lorraine, Nancy, France
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Belgium
- CHRU-Nancy, Service de Neurologie, France
| |
Collapse
|
23
|
The cortical face network of the prosopagnosic patient PS with fast periodic stimulation in fMRI. Cortex 2019; 119:528-542. [DOI: 10.1016/j.cortex.2018.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/01/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022]
|
24
|
Zimmermann FGS, Yan X, Rossion B. An objective, sensitive and ecologically valid neural measure of rapid human individual face recognition. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181904. [PMID: 31312474 PMCID: PMC6599768 DOI: 10.1098/rsos.181904] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Humans may be the only species able to rapidly and automatically recognize a familiar face identity in a crowd of unfamiliar faces, an important social skill. Here, by combining electroencephalography (EEG) and fast periodic visual stimulation (FPVS), we introduce an ecologically valid, objective and sensitive neural measure of this human individual face recognition function. Natural images of various unfamiliar faces are presented at a fast rate of 6 Hz, allowing one fixation per face, with variable natural images of a highly familiar face identity, a celebrity, appearing every seven images (0.86 Hz). Following a few minutes of stimulation, a high signal-to-noise ratio neural response reflecting the generalized discrimination of the familiar face identity from unfamiliar faces is observed over the occipito-temporal cortex at 0.86 Hz and harmonics. When face images are presented upside-down, the individual familiar face recognition response is negligible, being reduced by a factor of 5 over occipito-temporal regions. Differences in the magnitude of the individual face recognition response across different familiar face identities suggest that factors such as exposure, within-person variability and distinctiveness mediate this response. Our findings of a biological marker for fast and automatic recognition of individual familiar faces with ecological stimuli open an avenue for understanding this function, its development and neural basis in neurotypical individual brains along with its pathology. This should also have implications for the use of facial recognition measures in forensic science.
Collapse
Affiliation(s)
- Friederike G. S. Zimmermann
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Louvain-la-Neuve, Belgium
- BG Klinikum Hamburg, Bergedorfer Straße 10, 21033 Hamburg, Germany
| | - Xiaoqian Yan
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Louvain-la-Neuve, Belgium
| | - Bruno Rossion
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Louvain-la-Neuve, Belgium
- Université de Lorraine, CNRS, CRAN, 54000 Nancy, France
- CHRU-Nancy, Service de Neurologie, 54000 Nancy, France
| |
Collapse
|
25
|
Barton JJS, Albonico A, Susilo T, Duchaine B, Corrow SL. Object recognition in acquired and developmental prosopagnosia. Cogn Neuropsychol 2019; 36:54-84. [PMID: 30947609 DOI: 10.1080/02643294.2019.1593821] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Whether face and object recognition are dissociated in prosopagnosia continues to be debated: a recent review highlighted deficiencies in prior studies regarding the evidence for such a dissociation. Our goal was to study cohorts with acquired and developmental prosopagnosia with a complementary battery of tests of object recognition that address prior limitations, as well as evaluating for residual effects of object expertise. We studied 15 subjects with acquired and 12 subjects with developmental prosopagnosia on three tests: the Old/New Tests, the Cambridge Bicycle Memory Test, and the Expertise-adjusted Test of Car Recognition. Most subjects with developmental prosopagnosia were normal on the Old/New Tests: for acquired prosopagnosia, subjects with occipitotemporal lesions often showed impairments while those with anterior temporal lesions did not. Ten subjects showed a putative classical dissociation between the Cambridge Face and Bicycle Memory Tests, seven of whom had normal reaction times. Both developmental and acquired groups showed reduced car recognition on the expertise-adjusted test, though residual effects of expertise were still evident. Two subjects with developmental prosopagnosia met criteria for normal object recognition across all tests. We conclude that strong evidence for intact object recognition can be found in a few subjects but the majority show deficits, particularly those with the acquired form. Both acquired and developmental forms show residual but reduced object expertise effects.
Collapse
Affiliation(s)
- Jason J S Barton
- a Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology , University of British Columbia , Vancouver , Canada
| | - Andrea Albonico
- a Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology , University of British Columbia , Vancouver , Canada
| | - Tirta Susilo
- b School of Psychology , Victoria University of Wellington , Wellington , New Zealand
| | - Brad Duchaine
- c Department of Psychological and Brain Sciences , Dartmouth College , Hanover , NH , USA
| | - Sherryse L Corrow
- a Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology , University of British Columbia , Vancouver , Canada.,d Department of Psychology , Bethel University , Minneapolis , MN , USA
| |
Collapse
|