1
|
Park JH, Kwon HM, Nam DE, Kim HJ, Nam SH, Kim SB, Choi BO, Chung KW. INF2 mutations in patients with a broad phenotypic spectrum of Charcot-Marie-Tooth disease and focal segmental glomerulosclerosis. J Peripher Nerv Syst 2023; 28:108-118. [PMID: 36637069 DOI: 10.1111/jns.12530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Abstract
Mutations in INF2 are associated with the complex symptoms of Charcot-Marie-Tooth disease (CMT) and focal segmental glomerulosclerosis (FSGS). To date, more than 100 and 30 genes have been reported to cause these disorders, respectively. This study aimed to identify INF2 mutations in Korean patients with CMT. This study was conducted with 743 Korean families with CMT who were negative for PMP22 duplication. In addition, a family with FSGS was included in this study. INF2 mutations were screened using whole exome sequencing (WES) and filtering processes. As the results, four pathogenic INF2 mutations were identified in families with different clinical phenotypes: p.L78P and p.L132P in families with symptoms of both CMT and FSGS; p.C104Y in a family with CMT; and p.R218Q in a family with FSGS. Moreover, different CMT types were observed in families with CMT symptoms: CMT1 in two families and Int-CMT in another family. Hearing loss was observed in two families with CMT1. Pathogenicity was predicted by in silico analyses, and considerable conformational changes were predicted in the mutant proteins. Two mutations (p.L78P and p.C104Y) were unreported, and three families showed de novo mutations that were putatively occurred from fathers. This study suggests that patients with INF2 mutations show a broad phenotypic spectrum: CMT1, CMT1 + FSGS, CMTDIE + FSGS, and FSGS. Therefore, the genotype-phenotype correlation may be more complex than previously recognized. We believe that this study expands the clinical spectrum of patients with INF2 mutations and will be helpful in the molecular diagnosis of CMT and FSGS.
Collapse
Affiliation(s)
- Jin Hee Park
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Hye Mi Kwon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Da Eun Nam
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Hye Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Soo Hyun Nam
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Cell & Gene Theraphy Institute, Samsung Medical Center, Seoul, South Korea
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Cell & Gene Theraphy Institute, Samsung Medical Center, Seoul, South Korea.,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| |
Collapse
|
2
|
Cipriani S, Guerrero-Valero M, Tozza S, Zhao E, Vollmer V, Beijer D, Danzi M, Rivellini C, Lazarevic D, Pipitone GB, Grosz BR, Lamperti C, Marzoli SB, Carrera P, Devoto M, Pisciotta C, Pareyson D, Kennerson M, Previtali SC, Zuchner S, Scherer SS, Manganelli F, Bähler M, Bolino A. Mutations in MYO9B are associated with Charcot-Marie-Tooth disease type 2 neuropathies and isolated optic atrophy. Eur J Neurol 2023; 30:511-526. [PMID: 36260368 PMCID: PMC10099703 DOI: 10.1111/ene.15601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND PURPOSE Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders caused by mutations in at least 100 genes. However, approximately 60% of cases with axonal neuropathies (CMT2) still remain without a genetic diagnosis. We aimed at identifying novel disease genes responsible for CMT2. METHODS We performed whole exome sequencing and targeted next generation sequencing panel analyses on a cohort of CMT2 families with evidence for autosomal recessive inheritance. We also performed functional studies to explore the pathogenetic role of selected variants. RESULTS We identified rare, recessive variants in the MYO9B (myosin IX) gene in two families with CMT2. MYO9B has not yet been associated with a human disease. MYO9B is an unconventional single-headed processive myosin motor protein with signaling properties, and, consistent with this, our results indicate that a variant occurring in the MYO9B motor domain impairs protein expression level and motor activity. Interestingly, a Myo9b-null mouse has degenerating axons in sciatic nerves and optic nerves, indicating that MYO9B plays an essential role in both peripheral nervous system and central nervous system axons, respectively. The degeneration observed in the optic nerve prompted us to screen for MYO9B mutations in a cohort of patients with optic atrophy (OA). Consistent with this, we found compound heterozygous variants in one case with isolated OA. CONCLUSIONS Novel or very rare variants in MYO9B are associated with CMT2 and isolated OA.
Collapse
Affiliation(s)
- Silvia Cipriani
- Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marta Guerrero-Valero
- Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Tozza
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Edward Zhao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Veith Vollmer
- Institute of Integrative Cell Biology and Physiology, Westfalian Wilhelms University Münster, Münster, Germany
| | - Danique Beijer
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
| | - Matt Danzi
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
| | - Cristina Rivellini
- Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giovanni Battista Pipitone
- Unit of Genomics for the Diagnosis of Human Pathologies and Laboratory of Clinical and Molecular Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Bianca Rose Grosz
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Health and Medicine, University of Sydney, Sydney, Australia
| | - Costanza Lamperti
- Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Bianchi Marzoli
- Neuroophthalmology Service and Ocular Electrophysiology laboratory, Department of Ophthalmology, Scientific Institute, Auxologico Capitanio Hospital, Milan, Italy
| | - Paola Carrera
- Unit of Genomics for the Diagnosis of Human Pathologies and Laboratory of Clinical and Molecular Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marcella Devoto
- Division of Genetics, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- CNR-IRGB, Cagliari, Italy
| | - Chiara Pisciotta
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Health and Medicine, University of Sydney, Sydney, Australia
| | - Stefano C Previtali
- Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stephan Zuchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Martin Bähler
- Institute of Integrative Cell Biology and Physiology, Westfalian Wilhelms University Münster, Münster, Germany
| | - Alessandra Bolino
- Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
3
|
Abstract
Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.
Collapse
Affiliation(s)
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
4
|
Dysregulation of myelin synthesis and actomyosin function underlies aberrant myelin in CMT4B1 neuropathy. Proc Natl Acad Sci U S A 2021; 118:2009469118. [PMID: 33653949 DOI: 10.1073/pnas.2009469118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Charcot-Marie-Tooth type 4B1 (CMT4B1) is a severe autosomal recessive demyelinating neuropathy with childhood onset, caused by loss-of-function mutations in the myotubularin-related 2 (MTMR2) gene. MTMR2 is a ubiquitously expressed catalytically active 3-phosphatase, which in vitro dephosphorylates the 3-phosphoinositides PtdIns3P and PtdIns(3,5)P 2, with a preference for PtdIns(3,5)P 2 A hallmark of CMT4B1 neuropathy are redundant loops of myelin in the nerve termed myelin outfoldings, which can be considered the consequence of altered growth of myelinated fibers during postnatal development. How MTMR2 loss and the resulting imbalance of 3'-phosphoinositides cause CMT4B1 is unknown. Here we show that MTMR2 by regulating PtdIns(3,5)P 2 levels coordinates mTORC1-dependent myelin synthesis and RhoA/myosin II-dependent cytoskeletal dynamics to promote myelin membrane expansion and longitudinal myelin growth. Consistent with this, pharmacological inhibition of PtdIns(3,5)P 2 synthesis or mTORC1/RhoA signaling ameliorates CMT4B1 phenotypes. Our data reveal a crucial role for MTMR2-regulated lipid turnover to titrate mTORC1 and RhoA signaling thereby controlling myelin growth.
Collapse
|
5
|
Sun H, Perez-Gill C, Schlöndorff JS, Subramanian B, Pollak MR. Dysregulated Dynein-Mediated Trafficking of Nephrin Causes INF2-related Podocytopathy. J Am Soc Nephrol 2021; 32:307-322. [PMID: 33443052 PMCID: PMC8054882 DOI: 10.1681/asn.2020081109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/20/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND FSGS caused by mutations in INF2 is characterized by a podocytopathy with mistrafficked nephrin, an essential component of the slit diaphragm. Because INF2 is a formin-type actin nucleator, research has focused on its actin-regulating function, providing an important but incomplete insight into how these mutations lead to podocytopathy. A yeast two-hybridization screen identified the interaction between INF2 and the dynein transport complex, suggesting a newly recognized role of INF2 in regulating dynein-mediated vesicular trafficking in podocytes. METHODS Live cell and quantitative imaging, fluorescent and surface biotinylation-based trafficking assays in cultured podocytes, and a new puromycin aminoglycoside nephropathy model of INF2 transgenic mice were used to demonstrate altered dynein-mediated trafficking of nephrin in INF2 associated podocytopathy. RESULTS Pathogenic INF2 mutations disrupt an interaction of INF2 with dynein light chain 1, a key dynein component. The best-studied mutation, R218Q, diverts dynein-mediated postendocytic sorting of nephrin from recycling endosomes to lysosomes for degradation. Antagonizing dynein-mediated transport can rescue this effect. Augmented dynein-mediated trafficking and degradation of nephrin underlies puromycin aminoglycoside-induced podocytopathy and FSGS in vivo. CONCLUSIONS INF2 mutations enhance dynein-mediated trafficking of nephrin to proteolytic pathways, diminishing its recycling required for maintaining slit diaphragm integrity. The recognition that dysregulated dynein-mediated transport of nephrin in R218Q knockin podocytes opens an avenue for developing targeted therapy for INF2-mediated FSGS.
Collapse
Affiliation(s)
- Hua Sun
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Renal Division, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - Chandra Perez-Gill
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Johannes S Schlöndorff
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Balajikarthick Subramanian
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Martin R. Pollak
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Bayraktar S, Nehrig J, Menis E, Karli K, Janning A, Struk T, Halbritter J, Michgehl U, Krahn MP, Schuberth CE, Pavenstädt H, Wedlich-Söldner R. A Deregulated Stress Response Underlies Distinct INF2-Associated Disease Profiles. J Am Soc Nephrol 2021; 31:1296-1313. [PMID: 32444357 DOI: 10.1681/asn.2019111174] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Monogenic diseases provide favorable opportunities to elucidate the molecular mechanisms of disease progression and improve medical diagnostics. However, the complex interplay between genetic and environmental factors in disease etiologies makes it difficult to discern the mechanistic links between different alleles of a single locus and their associated pathophysiologies. Inverted formin 2 (INF2), an actin regulator, mediates a stress response-calcium mediated actin reset, or CaAR-that reorganizes the actin cytoskeleton of mammalian cells in response to calcium influx. It has been linked to the podocytic kidney disease focal segemental glomerulosclerosis (FSGS), as well as to cases of the neurologic disorder Charcot-Marie-Tooth disease that are accompanied by nephropathy, mostly FSGS. METHODS We used a combination of quantitative live cell imaging and validation in primary patient cells and Drosophila nephrocytes to systematically characterize a large panel of >50 autosomal dominant INF2 mutants that have been reported to cause either FSGS alone or with Charcot-Marie-Tooth disease. RESULTS We found that INF2 mutations lead to deregulated activation of formin and a constitutive stress response in cultured cells, primary patient cells, and Drosophila nephrocytes. We were able to clearly distinguish between INF2 mutations that were linked exclusively to FSGS from those that caused a combination of FSGS and Charcot-Marie-Tooth disease. Furthermore, we were able to identify distinct subsets of INF2 variants that exhibit varying degrees of activation. CONCLUSIONS Our results suggest that CaAR can be used as a sensitive assay for INF2 function and for robust evaluation of diseased-linked variants of formin. More broadly, these findings indicate that cellular profiling of disease-associated mutations has potential to contribute substantially to sequence-based phenotype predictions.
Collapse
Affiliation(s)
- Samet Bayraktar
- Institute of Cell Dynamics and Imaging and Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany.,Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Julian Nehrig
- Institute of Cell Dynamics and Imaging and Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Ekaterina Menis
- Institute of Cell Dynamics and Imaging and Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Kevser Karli
- Medical Cell Biology, Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Annette Janning
- Institute of Cell Dynamics and Imaging and Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Thaddäus Struk
- Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Jan Halbritter
- Division of Nephrology, University of Leipzig, Leipzig, Germany
| | - Ulf Michgehl
- Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Michael P Krahn
- Medical Cell Biology, Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Christian E Schuberth
- Institute of Cell Dynamics and Imaging and Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | | | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging and Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
8
|
Labat-de-Hoz L, Alonso MA. The formin INF2 in disease: progress from 10 years of research. Cell Mol Life Sci 2020; 77:4581-4600. [PMID: 32451589 PMCID: PMC11104792 DOI: 10.1007/s00018-020-03550-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Formins are a conserved family of proteins that primarily act to form linear polymers of actin. Despite their importance to the normal functioning of the cytoskeleton, for a long time, the only two formin genes known to be a genetic cause of human disorders were DIAPH1 and DIAPH3, whose mutation causes two distinct forms of hereditary deafness. In the last 10 years, however, the formin INF2 has emerged as an important target of mutations responsible for the appearance of focal segmental glomerulosclerosis, which are histological lesions associated with glomerulus degeneration that often leads to end-stage renal disease. In some rare cases, focal segmental glomerulosclerosis concurs with Charcot-Marie-Tooth disease, which is a degenerative neurological disorder affecting peripheral nerves. All known INF2 gene mutations causing disease map to the exons encoding the amino-terminal domain. In this review, we summarize the structure, biochemical features and functions of INF2, conduct a systematic and comprehensive analysis of the pathogenic INF2 mutations, including a detailed study exon-by-exon of patient cases and mutations, address the impact of the pathogenic mutations on the structure, regulation and known functions of INF2, draw a series of conclusions that could be useful for INF2-related disease diagnosis, and suggest lines of research for future work on the molecular mechanisms by which INF2 causes disease.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
9
|
Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders. Cells 2020; 9:cells9020358. [PMID: 32033020 PMCID: PMC7072452 DOI: 10.3390/cells9020358] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023] Open
Abstract
Recent observations related to the structure of the cytoskeleton in neurons and novel cytoskeletal abnormalities involved in the pathophysiology of some neurological diseases are changing our view on the function of the cytoskeletal proteins in the nervous system. These efforts allow a better understanding of the molecular mechanisms underlying neurological diseases and allow us to see beyond our current knowledge for the development of new treatments. The neuronal cytoskeleton can be described as an organelle formed by the three-dimensional lattice of the three main families of filaments: actin filaments, microtubules, and neurofilaments. This organelle organizes well-defined structures within neurons (cell bodies and axons), which allow their proper development and function through life. Here, we will provide an overview of both the basic and novel concepts related to those cytoskeletal proteins, which are emerging as potential targets in the study of the pathophysiological mechanisms underlying neurological disorders.
Collapse
|
10
|
Cao L, Kerleau M, Suzuki EL, Wioland H, Jouet S, Guichard B, Lenz M, Romet-Lemonne G, Jegou A. Modulation of formin processivity by profilin and mechanical tension. eLife 2018; 7:34176. [PMID: 29799413 PMCID: PMC5969902 DOI: 10.7554/elife.34176] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/06/2018] [Indexed: 12/22/2022] Open
Abstract
Formins are major regulators of actin networks. They enhance actin filament dynamics by remaining processively bound to filament barbed ends. How biochemical and mechanical factors affect formin processivity are open questions. Monitoring individual actin filaments in a microfluidic flow, we report that formins mDia1 and mDia2 dissociate faster under higher ionic strength and when actin concentration is increased. Profilin, known to increase the elongation rate of formin-associated filaments, surprisingly decreases the formin dissociation rate, by bringing formin FH1 domains in transient contact with the barbed end. In contrast, piconewton tensile forces applied to actin filaments accelerate formin dissociation by orders of magnitude, largely overcoming profilin-mediated stabilization. We developed a model of formin conformations showing that our data indicates the existence of two different dissociation pathways, with force favoring one over the other. How cells limit formin dissociation under tension is now a key question for future studies.
Collapse
Affiliation(s)
- Luyan Cao
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Mikael Kerleau
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Emiko L Suzuki
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Hugo Wioland
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - Sandy Jouet
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | | | - Martin Lenz
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | | | - Antoine Jegou
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| |
Collapse
|
11
|
O’Connor E, Phan V, Cordts I, Cairns G, Hettwer S, Cox D, Lochmüller H, Roos A. MYO9A deficiency in motor neurons is associated with reduced neuromuscular agrin secretion. Hum Mol Genet 2018; 27:1434-1446. [PMID: 29462312 PMCID: PMC5991207 DOI: 10.1093/hmg/ddy054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
Congenital myasthenic syndromes (CMS) are a group of rare, inherited disorders characterized by compromised function of the neuromuscular junction, manifesting with fatigable muscle weakness. Mutations in MYO9A were previously identified as causative for CMS but the precise pathomechanism remained to be characterized. On the basis of the role of MYO9A as an actin-based molecular motor and as a negative regulator of RhoA, we hypothesized that loss of MYO9A may affect the neuronal cytoskeleton, leading to impaired intracellular transport. To investigate this, we used MYO9A-depleted NSC-34 cells (mouse motor neuron-derived cells), revealing altered expression of a number of cytoskeletal proteins important for neuron structure and intracellular transport. On the basis of these findings, the effect on protein transport was determined using a vesicular recycling assay which revealed impaired recycling of a neuronal growth factor receptor. In addition, an unbiased approach utilizing proteomic profiling of the secretome revealed a key role for defective intracellular transport affecting proper protein secretion in the pathophysiology of MYO9A-related CMS. This also led to the identification of agrin as being affected by the defective transport. Zebrafish with reduced MYO9A orthologue expression were treated with an artificial agrin compound, ameliorating defects in neurite extension and improving motility. In summary, loss of MYO9A affects the neuronal cytoskeleton and leads to impaired transport of proteins, including agrin, which may provide a new and unexpected treatment option.
Collapse
Affiliation(s)
- Emily O’Connor
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Vietxuan Phan
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V, Dortmund, Germany
| | - Isabell Cordts
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - George Cairns
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Daniel Cox
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andreas Roos
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V, Dortmund, Germany
| |
Collapse
|
12
|
Hacker B, Schultheiß C, Döring M, Kurzik-Dumke U. Molecular partners of hNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, suggest its involvement in distinct cellular processes relevant to congenital disorders of glycosylation, cancer, neurodegeneration and a variety of further pathologies. Hum Mol Genet 2018; 27:1858-1878. [DOI: 10.1093/hmg/ddy087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/06/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Benedikt Hacker
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Christoph Schultheiß
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Michael Döring
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Ursula Kurzik-Dumke
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
13
|
Abstract
This chapter reviews the diseases of the peripheral nerves from a neuropathologic point of view, with a special focus on specific morphologic changes, and includes a summary of the histopathologic methods available for their diagnosis. As the rate of obesity and the prevalence of type 2 diabetes increase, diabetic neuropathy is the most common cause of peripheral neuropathy. Many systemic disorders with metabolic origin, like amyloidosis, hepatic failure, vitamin deficiencies, uremia, lipid metabolism disorders, and others, can also cause axonal or myelin alterations in the peripheral nervous system. The most notable causes of toxic neuropathies are chemotherapeutic agents, alcohol consumption, and exposure to heavy metals and other environmental or biologic toxins. Inflammatory neuropathies cover infectious neuropathies (Lyme disease, human immunodeficiency virus, leprosy, hepatitis) and neuropathies of autoimmune origin (sarcoidosis, Guillain-Barré syndrome/acute inflammatory demyelinating polyneuropathy, chronic inflammatory demyelinating polyneuropathy, and diverse forms of vasculitis. The increasing number of known diseases causing gene mutations in hereditary peripheral neuropathies requires precise characterization, which includes histopathology.
Collapse
|
14
|
Duchesne M, Mathis S, Richard L, Magdelaine C, Corcia P, Nouioua S, Tazir M, Magy L, Vallat JM. Nerve Biopsy Is Still Useful in Some Inherited Neuropathies. J Neuropathol Exp Neurol 2017; 77:88-99. [DOI: 10.1093/jnen/nlx111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
15
|
Hegsted A, Yingling CV, Pruyne D. Inverted formins: A subfamily of atypical formins. Cytoskeleton (Hoboken) 2017; 74:405-419. [PMID: 28921928 DOI: 10.1002/cm.21409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022]
Abstract
Formins are a family of regulators of actin and microtubule dynamics that are present in almost all eukaryotes. These proteins are involved in many cellular processes, including cytokinesis, stress fiber formation, and cell polarization. Here we review one subfamily of formins, the inverted formins. Inverted formins as a group break several formin stereotypes, having atypical biochemical properties and domain organization, and they have been linked to kidney disease and neuropathy in humans. In this review, we will explore recent research on members of the inverted formin sub-family in mammals, zebrafish, fruit flies, and worms.
Collapse
Affiliation(s)
- Anna Hegsted
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Curtis V Yingling
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - David Pruyne
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
16
|
Weis J, Claeys KG, Roos A, Azzedine H, Katona I, Schröder JM, Senderek J. Towards a functional pathology of hereditary neuropathies. Acta Neuropathol 2017; 133:493-515. [PMID: 27896434 DOI: 10.1007/s00401-016-1645-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 12/11/2022]
Abstract
A growing number of hereditary neuropathies have been assigned to causative gene defects in recent years. The study of human nerve biopsy samples has contributed substantially to the discovery of many of these neuropathy genes. Genotype-phenotype correlations based on peripheral nerve pathology have provided a comprehensive picture of the consequences of these mutations. Intriguingly, several gene defects lead to distinguishable lesion patterns that can be studied in nerve biopsies. These characteristic features include the loss of certain nerve fiber populations and a large spectrum of distinct structural changes of axons, Schwann cells and other components of peripheral nerves. In several instances the lesion patterns are directly or indirectly linked to the known functions of the mutated gene. The present review is designed to provide an overview on these characteristic patterns. It also considers other aspects important for the manifestation and pathology of hereditary neuropathies including the role of inflammation, effects of chemotherapeutic agents and alterations detectable in skin biopsies.
Collapse
Affiliation(s)
- Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Kristl G Claeys
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
- Department of Neurology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
- Department of Neurology, University Hospitals Leuven and University of Leuven (KU Leuven), Leuven, Belgium
| | - Andreas Roos
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Hamid Azzedine
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
| | - J Michael Schröder
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Jan Senderek
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Ziemssenstr. 1a, 80336, Munich, Germany.
| |
Collapse
|
17
|
Intermediate Charcot–Marie–Tooth disease: an electrophysiological reappraisal and systematic review. J Neurol 2017; 264:1655-1677. [DOI: 10.1007/s00415-017-8474-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/13/2023]
|
18
|
Werheid F, Azzedine H, Zwerenz E, Bozkurt A, Moeller MJ, Lin L, Mull M, Häusler M, Schulz JB, Weis J, Claeys KG. Underestimated associated features in CMT neuropathies: clinical indicators for the causative gene? Brain Behav 2016; 6:e00451. [PMID: 27088055 PMCID: PMC4782242 DOI: 10.1002/brb3.451] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/25/2016] [Accepted: 02/02/2016] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Charcot-Marie-Tooth neuropathy (CMT) is a genetically heterogeneous group of peripheral neuropathies. In addition to the classical clinical phenotype, additional features can occur. METHODS We studied a wide range of additional features in a cohort of 49 genetically confirmed CMT patients and performed a systematic literature revision. RESULTS Patients harbored a PMP22 gene alteration (n = 28) or a mutation in MPZ (n = 11), GJB1 (n = 4), LITAF (n = 2), MFN2 (n = 2), INF2 (n = 1), NEFL (n = 1). We identified four novel mutations (3 MPZ, 1 GJB1). A total of 88% presented at least one additional feature. In MPZ patients, we detected hypertrophic nerve roots in 3/4 cases that underwent spinal MRI, and pupillary abnormalities in 27%. In our cohort, restless legs syndrome (RLS) was present in 18%. We describe for the first time RLS associated with LITAF or MFN2 and predominant upper limb involvement with LITAF. Cold-induced hand cramps occurred in 10% (PMP22,MPZ,MFN2), and autonomous nervous system involvement in 18% (PMP22,MPZ, LITAF,MFN2). RLS and respiratory insufficiency were mostly associated with severe neuropathy, and pupillary abnormalities with mild to moderate neuropathy. CONCLUSIONS In CMT patients, additional features occur frequently. Some of them might be helpful in orienting genetic diagnosis. Our data broaden the clinical spectrum and genotype-phenotype associations with CMT.
Collapse
Affiliation(s)
- Friederike Werheid
- Department of Neurology University Hospital RWTH Aachen Aachen Germany; Institute of Neuropathology University Hospital RWTH Aachen Aachen Germany
| | - Hamid Azzedine
- Institute of Neuropathology University Hospital RWTH Aachen Aachen Germany
| | - Eva Zwerenz
- Department of Neurology University Hospital RWTH Aachen Aachen Germany; Institute of Neuropathology University Hospital RWTH Aachen Aachen Germany
| | - Ahmet Bozkurt
- Department of Plastic and Reconstructive Surgery Hand Surgery-Burn Center University Hospital RWTH Aachen Aachen Germany; Department of Plastic & Aesthetic, Reconstructive & Hand Surgery Center for Reconstructive Microsurgery and Peripheral Nerve Surgery (ZEMPEN) Agaplesion Markus Hospital Frankfurt am Main Germany
| | - Marcus J Moeller
- Section Immunology and Nephrology Department of Internal Medicine University Hospital RWTH Aachen Aachen Germany
| | - Lilian Lin
- Department of Neurology University Hospital RWTH Aachen Aachen Germany; Institute of Neuropathology University Hospital RWTH Aachen Aachen Germany
| | - Michael Mull
- Department of Neuroradiology University Hospital RWTH Aachen Aachen Germany
| | - Martin Häusler
- Division of Neuropediatrics and Social Pediatrics Department of Pediatrics University Hospital RWTH Aachen Aachen Germany
| | - Jörg B Schulz
- Department of Neurology University Hospital RWTH Aachen Aachen Germany; JARA - Translational Brain Medicine Aachen Germany
| | - Joachim Weis
- Institute of Neuropathology University Hospital RWTH Aachen Aachen Germany
| | - Kristl G Claeys
- Department of Neurology University Hospital RWTH Aachen Aachen Germany; Institute of Neuropathology University Hospital RWTH Aachen Aachen Germany; Department of Neurology University Hospitals Leuven and University of Leuven (KU Leuven) Leuven Belgium
| |
Collapse
|
19
|
ER sheet–tubule balance is regulated by an array of actin filaments and microtubules. Exp Cell Res 2015; 337:170-8. [DOI: 10.1016/j.yexcr.2015.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/13/2015] [Indexed: 12/28/2022]
|