1
|
Kotaich F, Caillol D, Bomont P. Neurofilaments in health and Charcot-Marie-Tooth disease. Front Cell Dev Biol 2023; 11:1275155. [PMID: 38164457 PMCID: PMC10758125 DOI: 10.3389/fcell.2023.1275155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024] Open
Abstract
Neurofilaments (NFs) are the most abundant component of mature neurons, that interconnect with actin and microtubules to form the cytoskeleton. Specifically expressed in the nervous system, NFs present the particularity within the Intermediate Filament family of being formed by four subunits, the neurofilament light (NF-L), medium (NF-M), heavy (NF-H) proteins and α-internexin or peripherin. Here, we review the current knowledge on NF proteins and neurofilaments, from their domain structures and their model of assembly to the dynamics of their transport and degradation along the axon. The formation of the filament and its behaviour are regulated by various determinants, including post-transcriptional (miRNA and RBP proteins) and post-translational (phosphorylation and ubiquitination) modifiers. Altogether, the complex set of modifications enable the neuron to establish a stable but elastic NF array constituting the structural scaffold of the axon, while permitting the local expression of NF proteins and providing the dynamics necessary to fulfil local demands and respond to stimuli and injury. Thus, in addition to their roles in mechano-resistance, radial axonal outgrowth and nerve conduction, NFs control microtubule dynamics, organelle distribution and neurotransmission at the synapse. We discuss how the studies of neurodegenerative diseases with NF aggregation shed light on the biology of NFs. In particular, the NEFL and NEFH genes are mutated in Charcot-Marie-Tooth (CMT) disease, the most common inherited neurological disorder of the peripheral nervous system. The clinical features of the CMT forms (axonal CMT2E, CMT2CC; demyelinating CMT1F; intermediate I-CMT) with symptoms affecting the central nervous system (CNS) will allow us to further investigate the physiological roles of NFs in the brain. Thus, NF-CMT mouse models exhibit various degrees of sensory-motor deficits associated with CNS symptoms. Cellular systems brought findings regarding the dominant effect of NF-L mutants on NF aggregation and transport, although these have been recently challenged. Neurofilament detection without NF-L in recessive CMT is puzzling, calling for a re-examination of the current model in which NF-L is indispensable for NF assembly. Overall, we discuss how the fundamental and translational fields are feeding each-other to increase but also challenge our knowledge of NF biology, and to develop therapeutic avenues for CMT and neurodegenerative diseases with NF aggregation.
Collapse
Affiliation(s)
| | | | - Pascale Bomont
- ERC team, NeuroMyoGene Institute-Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| |
Collapse
|
2
|
Truong AT, Luong ATL, Nguyen LH, Nguyen HV, Nguyen DN, Nguyen NTM. A novel single-point mutation of NEFH and biallelic SACS mutation presenting as intermediate form Charcot-Marie-Tooth: A case report in Vietnam. Surg Neurol Int 2022; 13:553. [PMID: 36600740 PMCID: PMC9805609 DOI: 10.25259/sni_803_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Background Charcot-Marie-Tooth disease (CMT) is among the most common group of inherited neuromuscular diseases. SACS mutations were demonstrated to cause autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). However, there have been few case reports regarding to NEFH and SACS gene mutation to CMT in Vietnamese patients, and the diagnosis of CMT and ARSACS in the clinical setting still overlapped. Case Description We report two patients presenting with sensorimotor neuropathy without cerebellar ataxia, spasticity and other neurological features, being diagnosed with intermediate form CMT by electrophysiological and clinical examination and neuroimaging. By whole-exome sequencing panel of two affected members, and PCR Sanger on NEFH and SACS genes to confirm the presence of selected variants on their parents, we identified a novel missense variant NEFH c.1925C>T (inherited from the mother) in an autosomal dominant heterozygous state, and two recessive SACS variants (SACS c.13174C>T, causing missense variant, and SACS c.11343del, causing frameshift variant) (inherited one from the mother and another from the father) in these two patients. Clinical and electrophysiological findings on these patients did not match classical ARSACS. To the best of our knowledge, this is the first case report of two affected siblings diagnosed with CMT carrying both a novel NEFH variant and biallelic SACS variants. Conclusion We concluded that this novel NEFH variant is likely benign, and biallelic SACS mutation (c.13174C>T and c.11343del) is likely pathogenic for intermediate form CMT. This study is also expected to emphasize the current knowledge of intermediate form CMT, ARSACS, and the phenotypic spectrum of NEFH-related and SACS-related disorders. We expect to give a new understanding of CMT; however, further research should be conducted to provide a more thorough knowledge of the pathogenesis of CMT in the future.
Collapse
Affiliation(s)
- Anh Tuan Truong
- Department of Clinical Medicine, Nam Dinh University of Nursing, Nam Dinh, Vietnam
| | - Anh Thi Lan Luong
- Department of Medical Biology and Genetics, Hanoi Medical University, Hanoi, Vietnam
| | - Linh Hai Nguyen
- Department of Neurology, Hanoi Medical University, Hanoi, Vietnam.,Corresponding author: Linh Hai Nguyen, Department of Neurology, Hanoi Medical University, Hanoi, Vietnam.
| | - Huong Van Nguyen
- Department of Neurology, Hanoi Medical University, Hanoi, Vietnam
| | - Diep Ngoc Nguyen
- Institute of Theoretical and Applied Research (ITAR), School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Ngoc Thi Minh Nguyen
- Department of Medical Biology and Genetics, Hanoi Medical University, Hanoi, Vietnam
| |
Collapse
|
3
|
Ando M, Higuchi Y, Okamoto Y, Yuan J, Yoshimura A, Takei J, Taniguchi T, Hiramatsu Y, Sakiyama Y, Hashiguchi A, Matsuura E, Nakagawa H, Sonoda K, Yamashita T, Tamura A, Terasawa H, Mitsui J, Ishiura H, Tsuji S, Takashima H. An NEFH founder mutation causes broad phenotypic spectrum in multiple Japanese families. J Hum Genet 2022; 67:399-403. [DOI: 10.1038/s10038-022-01019-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/28/2021] [Accepted: 01/16/2022] [Indexed: 12/28/2022]
|
4
|
Pipis M, Cortese A, Polke JM, Poh R, Vandrovcova J, Laura M, Skorupinska M, Jacquier A, Juntas-Morales R, Latour P, Petiot P, Sole G, Fromes Y, Shah S, Blake J, Choi BO, Chung KW, Stojkovic T, Rossor AM, Reilly MM. Charcot-Marie-Tooth disease type 2CC due to NEFH variants causes a progressive, non-length-dependent, motor-predominant phenotype. J Neurol Neurosurg Psychiatry 2022; 93:48-56. [PMID: 34518334 PMCID: PMC8685631 DOI: 10.1136/jnnp-2021-327186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/08/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Neurofilaments are the major scaffolding proteins for the neuronal cytoskeleton, and variants in NEFH have recently been described to cause axonal Charcot-Marie-Tooth disease type 2CC (CMT2CC). METHODS In this large observational study, we present phenotype-genotype correlations on 30 affected and 3 asymptomatic mutation carriers from eight families. RESULTS The majority of patients presented in adulthood with motor-predominant and lower limb-predominant symptoms and the average age of onset was 31.0±15.1 years. A prominent feature was the development of proximal weakness early in the course of the disease. The disease progressed rapidly, unlike other Charcot-Marie-Tooth disease (CMT) subtypes, and half of the patients (53%) needed to use a wheelchair on average 24.1 years after symptom onset. Furthermore, 40% of patients had evidence of early ankle plantarflexion weakness, a feature which is observed in only a handful of CMT subtypes. Neurophysiological studies and MRI of the lower limbs confirmed the presence of a non-length-dependent neuropathy in the majority of patients.All families harboured heterozygous frameshift variants in the last exon of NEFH, resulting in a reading frameshift to an alternate open reading frame and the translation of approximately 42 additional amino acids from the 3' untranslated region (3'-UTR). CONCLUSIONS This phenotype-genotype study highlights the unusual phenotype of CMT2CC, which is more akin to spinal muscular atrophy rather than classic CMT. Furthermore, the study will enable more informative discussions on the natural history of the disease and will aid in NEFH variant interpretation in the context of the disease's unique molecular genetics.
Collapse
Affiliation(s)
- Menelaos Pipis
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea Cortese
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - James M Polke
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Roy Poh
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jana Vandrovcova
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Matilde Laura
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Mariola Skorupinska
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Arnaud Jacquier
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Universite de Lyon, Lyon, France
| | - Raul Juntas-Morales
- Clinique du Motoneurone et Pathologies Neuromusculaires, CHRU de Montpellier, Montpellier, France
| | - Philippe Latour
- Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Philippe Petiot
- Neurologie et Explorations Fonctionnelles Neurologiques, Centre de Référence Maladies Neuromusculaires, Hospices Civils de Lyon, Lyon, France
| | - Guilhem Sole
- Centre de Référence des Maladies Neuromusculaires, CHU Bordeaux GH Pellegrin, Bordeaux, France
| | - Yves Fromes
- Institut de Myologie, Laboratoire RMN, Hôpital Pitié-Salpêtrière, Paris, France
| | - Sachit Shah
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Julian Blake
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norfolk, UK
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Tanya Stojkovic
- AP-HP, Reference Center for Neuromuscular Disorders, University Hospital Pitié Salpêtrière, Paris, France
- Centre de Recherche en Myologie, Inserm UMRS974, Sorbonne Universite, Paris, France
| | - Alexander M Rossor
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
5
|
Aruta F, Severi D, Iovino A, Spina E, Barghigiani M, Ruggiero L, Iodice R, Santorelli FM, Manganelli F, Tozza S. Proximal weakness involvement in the first Italian case of Charcot-Marie-Tooth 2CC harboring a novel frameshift variant in NEFH. J Peripher Nerv Syst 2021; 26:231-234. [PMID: 33987933 DOI: 10.1111/jns.12454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
Charcot-Marie-Tooth (CMT) diseases are a clinically and genetically heterogeneous group of disorders. Different variants in the neurofilament heavy chain (NEFH) gene have been described to cause the CMT2CC subtype. Here we report the first Italian patient affected by CMT2CC, harboring a novel variant in NEFH. In describing our patient, we also reviewed previously CMT2CC individuals, and suggested to consider NEFH variant if patients have an axonal sensory-motor neuropathy with a prominent proximal muscles involvement with early requirement of walking aids or wheelchair, remembering a motor neuron disorder.
Collapse
Affiliation(s)
- Francesco Aruta
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | - Daniele Severi
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | - Aniello Iovino
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | - Emanuele Spina
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | | | - Lucia Ruggiero
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | - Rosa Iodice
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | | | - Fiore Manganelli
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| | - Stefano Tozza
- Department of Neuroscience, Reproductive and Odontostomatological Science, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
6
|
A novel missense pathogenic variant in NEFH causing rare Charcot-Marie-Tooth neuropathy type 2CC. Neurol Sci 2020; 42:757-763. [PMID: 32780247 DOI: 10.1007/s10072-020-04595-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
The purpose of this research is to explore the underlying genes of Charcot-Marie-Tooth (CMT). Technologies such as electrophysiological testing and gene sequencing have been applied. We identified a novel variant NEFH c.2215C>T(p.P739S)(HGNC:7737) in a heterozygous state, which was considered to be pathogenic for CMT2CC(OMIM:616924).The proband and his brothers presented with muscle atrophy of hand and calf and moderately decreased conduction velocities. By whole exome sequencing analysis, we found the novel missense pathogenic variant in the proband, his brother and mother. This report broadened current knowledge about intermediate CMT and the phenotypic spectrum of defects associated with NEFH. In addition, the proband carried other five variants {HSPD1c.695C>A (p.S232X), FLNCc.1073A>G (p.N358S), GUSBc.323C>A (p.P108Q), ACY1 c.1063-1G>A and APTX c.484-2A>T}, which have not been reported until now. The NEFH c.2215C>T (p.P739S) give us a new understanding of CMT, which might provide new therapeutic targets in the future.
Collapse
|
7
|
Gentile F, Scarlino S, Falzone YM, Lunetta C, Tremolizzo L, Quattrini A, Riva N. The Peripheral Nervous System in Amyotrophic Lateral Sclerosis: Opportunities for Translational Research. Front Neurosci 2019; 13:601. [PMID: 31293369 PMCID: PMC6603245 DOI: 10.3389/fnins.2019.00601] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) has been considered as a disorder of the motor neuron (MN) cell body, recent evidences show the non-cell-autonomous pathogenic nature of the disease. Axonal degeneration, loss of peripheral axons and destruction of nerve terminals are early events in the disease pathogenic cascade, anticipating MN degeneration, and the onset of clinical symptoms. Therefore, although ALS and peripheral axonal neuropathies should be differentiated in clinical practice, they also share damage to common molecular pathways, including axonal transport, RNA metabolism and proteostasis. Thus, an extensive evaluation of the molecular events occurring in the peripheral nervous system (PNS) could be fundamental to understand the pathogenic mechanisms of ALS, favoring the discovery of potential disease biomarkers, and new therapeutic targets.
Collapse
Affiliation(s)
- Francesco Gentile
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Scarlino
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Lucio Tremolizzo
- Neurology Unit, ALS Clinic, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
8
|
Ikenberg E, Reilich P, Abicht A, Heller C, Schoser B, Walter MC. Charcot-Marie-Tooth disease type 2CC due to a frameshift mutation of the neurofilament heavy polypeptide gene in an Austrian family. Neuromuscul Disord 2019; 29:392-397. [PMID: 30992180 DOI: 10.1016/j.nmd.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/12/2022]
Abstract
Neurofilaments are structural components of motor axons. Recently different variants resulting in translation of a cryptic amyloidogenic element of the neurofilament-heavy polypeptide (NEFH) gene have been described to cause Charcot-Marie-Tooth disease type 2CC (CMT2CC) by forming amyloidogenic toxic protein aggregation. Until now only few CMT2CC patients have been described. Clinical features include progressive muscle weakness and atrophy mainly affecting the lower limbs, hyporeflexia and distal sensory impairment. In addition to classic CMT features, some patients were reported to have increased serum creatine kinase levels, an electrophysiologic pattern suggestive for myopathies, and pyramidal signs. Ambulation is progressively impaired, most patients are non-ambulant in the 5th decade. Nerve conduction testing shows a symmetrical, distal and proximal sensorimotor axonal neuropathy. Here we describe the first Austrian pedigree suffering from CMT2CC and give an overview on the phenotype of CMT2CC described so far.
Collapse
Affiliation(s)
- Elena Ikenberg
- Friedrich-Baur-Institute, Dep. of Neurology, Ludwig-Maximilians-University of Munich, Ziemssenstraße 1A, 80336 Munich, Germany
| | - Peter Reilich
- Friedrich-Baur-Institute, Dep. of Neurology, Ludwig-Maximilians-University of Munich, Ziemssenstraße 1A, 80336 Munich, Germany
| | - Angela Abicht
- Friedrich-Baur-Institute, Dep. of Neurology, Ludwig-Maximilians-University of Munich, Ziemssenstraße 1A, 80336 Munich, Germany; Medical Genetics Centre - MGZ, Bayerstraße 3, 80335 Munich, Germany
| | - Corina Heller
- CeGaT GmbH und Praxis für Humangenetik, Paul Ehrlich Straße 23, 72076, Tübingen, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Dep. of Neurology, Ludwig-Maximilians-University of Munich, Ziemssenstraße 1A, 80336 Munich, Germany
| | - Maggie C Walter
- Friedrich-Baur-Institute, Dep. of Neurology, Ludwig-Maximilians-University of Munich, Ziemssenstraße 1A, 80336 Munich, Germany.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Charcot-Marie-Tooth disease (CMT) and related neuropathies represent a heterogeneous group of hereditary disorders. The present review will discuss the most recent advances in the field. RECENT FINDINGS Knowledge of CMT epidemiology and frequency of the main associated genes is increasing, with an overall prevalence estimated at 10-28/100 000. In the last years, the huge number of newly uncovered genes, thanks to next-generation sequencing techniques, is challenging the current classification of CMT. During the last 18 months other genes have been associated with CMT, such as PMP2, MORC2, NEFH, MME, and DGAT2. For the most common forms of CMT, numerous promising compounds are under study in cellular and animal models, mainly targeting either the protein degradation pathway or the protein overexpression. Consequently, efforts are devoted to develop responsive outcome measures and biomarkers for this overall slowly progressive disorder, with quantitative muscle MRI resulting the most sensitive-to-change measure. SUMMARY This is a rapidly evolving field where better understanding of pathophysiology is paving the way to develop potentially effective treatments, part of which will soon be tested in patients. Intense research is currently devoted to prepare clinical trials and develop responsive outcome measures.
Collapse
|
10
|
Bian X, Lin P, Li J, Long F, Duan R, Yuan Q, Li Y, Gao F, Gao S, Wei S, Li X, Sun W, Gong Y, Yan C, Liu Q. Whole-Genome Linkage Analysis with Whole-Exome Sequencing Identifies a Novel Frameshift Variant in NEFH in a Chinese Family with Charcot-Marie-Tooth 2: A Novel Variant in NEFH for Charcot-Marie-Tooth 2. NEURODEGENER DIS 2018; 18:74-83. [PMID: 29587262 DOI: 10.1159/000487754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 02/16/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Charcot-Marie-Tooth disease (CMT) is the most common neurodegenerative disorder of the peripheral nervous system. More than 50 genes/loci were found associated with the disease. We found a family with autosomal-dominant CMT2. OBJECTIVE To reveal the pathogenic gene of the family and further investigate the function of the variant. METHODS DNA underwent whole-genome linkage analysis for all family members and whole-exome sequencing for 2 affected members. Neurofilament light polypeptide and wild-type or mutant neurofilament heavy polypeptide (NEFH) were co-transfected into SW13 (vim-) cells. The nefh-knockdown zebrafish model was produced by using morpholino antisense oligonucleotides. RESULTS We identified a novel insertion variant (c.3057insG) in NEFH in the family. The variant led to the loss of a stop codon and an extended 41 amino acids in the protein. Immunofluorescence results revealed that mutant NEFH disrupted the neurofilament network and induced aggregation of NEFH protein. Knockdown of nefh in zebrafish caused a slightly or severely curled tail. The motor ability of nefh-knockdown embryos was impaired or even absent, and the embryos showed developmental defects of axons in motor neurons. The abnormal phenotype and axonal developmental defects could be rescued by injection of human wild-type but not human mutant NEFH mRNA. CONCLUSIONS We identified a novel stop loss variant in NEFH that is likely pathogenic for CMT2, and the results provide further evidence for the role of an aberrant assembly of neurofilament in CMT.
Collapse
Affiliation(s)
- Xianli Bian
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Pengfei Lin
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiangxia Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Feng Long
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Ruonan Duan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Qianqian Yuan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Yan Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Fei Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Shang Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Shijun Wei
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Xi Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Wenjie Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Yaoqin Gong
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
11
|
Khadilkar SV, Patil ND, Kadam ND, Mansukhani KA, Patel BA. Clinico-Electrophysiological and Genetic Overlaps and Magnetic Resonance Imaging Findings in Charcot-Marie- Tooth Disease: A Pilot Study from Western India. Ann Indian Acad Neurol 2017; 20:425-429. [PMID: 29184351 PMCID: PMC5682752 DOI: 10.4103/aian.aian_316_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Charcot–Marie–Tooth (CMT) disease is clinically and genetically heterogeneous. There are no published series describing clinical, electrophysiological, and genetic information on CMT from the Indian subcontinent. Magnetic resonance imaging (MRI) neurography technique provides useful information about the plexus and roots and can be employed in patients with CMT. Settings and Design: A prospective, observational study carried out at a tertiary care hospital in Western India. Subjects and Methods: CMT patients fulfilling the UK Genetic Testing Network criteria were included. They underwent clinical, electrophysiological, radiological, and multigene panel testing. Results: Totally 22 patients (19 males, 3 females; 18 sporadic and 4 familial cases) were studied. Pes cavus (19), hammer toes (16), and scoliosis was seen in 1 patient. Electrophysiology revealed motor predominant neuropathy with 15 demyelinating (10 uniform and 5 multifocal) and 7 axonal patterns. Thickened lumbosacral plexuses on MRI neurography were evident in 6/10 studied patients, all 6 having demyelinating neuropathy. Genetic analysis identified PMP22, GJB1, SH3TC2, HSPB1, SPTLC2, MPZ, AARS, and NEFH gene mutations. Conclusions: This small series documents the pattern of CMT neuropathies as seen in Western India. Clinico-electrophysiological and genetic diagnosis showed general concordance some overlaps and reiterated advantages of gene panel testing in this heterogeneous group of neuropathies. MRI neurography was useful as an additional investigation to detect nerve enlargement in patients with demyelinating neuropathies.
Collapse
Affiliation(s)
| | - Nahush D Patil
- Department of Neurology, Bombay Hospital, Mumbai, Maharashtra, India
| | - Nikhil Dhananjay Kadam
- Department of Neurology, Grant Medical College and Sir J.J. Group of Hospitals, Mumbai, Maharashtra, India
| | | | - Bhagyadhan A Patel
- Department of Neurology, T.N.M.C and B.Y.L Nair CH. Hospitals, Mumbai, Maharashtra, India
| |
Collapse
|