1
|
Grunstra NDS, Hollinetz F, Bravo Morante G, Zachos FE, Pfaff C, Winkler V, Mitteroecker P, Le Maître A. Convergent evolution in Afrotheria and non-afrotherians demonstrates high evolvability of the mammalian inner ear. Nat Commun 2024; 15:7869. [PMID: 39285191 PMCID: PMC11405882 DOI: 10.1038/s41467-024-52180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Evolutionary convergence in distantly related species is among the most convincing evidence of adaptive evolution. The mammalian ear, responsible for balance and hearing, is not only characterised by its spectacular evolutionary incorporation of several bones of the jaw, it also varies considerably in shape across modern mammals. Using a multivariate approach, we show that in Afrotheria, a monophyletic clade with morphologically and ecologically highly disparate species, inner ear shape has evolved similar adaptations as in non-afrotherian mammals. We identify four eco-morphological trait combinations that underlie this convergence. The high evolvability of the mammalian ear is surprising: Nowhere else in the skeleton are different functional units so close together; it includes the smallest bones of the skeleton, encapsulated within the densest bone. We suggest that this evolvability is a direct consequence of the increased genetic and developmental complexity of the mammalian ear compared to other vertebrates.
Collapse
Affiliation(s)
- Nicole D S Grunstra
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
- Mammal Collection, Natural History Museum Vienna, Vienna, Austria.
| | - Fabian Hollinetz
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | | | - Frank E Zachos
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Mammal Collection, Natural History Museum Vienna, Vienna, Austria
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, NT, Australia
| | - Cathrin Pfaff
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Viola Winkler
- Central Research Laboratories, Natural History Museum Vienna, Vienna, Austria
| | - Philipp Mitteroecker
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| | - Anne Le Maître
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria.
- Laboratoire Paléontologie Evolution Paléoécosystèmes Paléoprimatologie (PALEVOPRIM) - UMR 7262 CNRS INEE, Université de Poitiers, Poitiers, France.
| |
Collapse
|
2
|
Varela L, Tambusso S, Fariña R. Femora nutrient foramina and aerobic capacity in giant extinct xenarthrans. PeerJ 2024; 12:e17815. [PMID: 39131616 PMCID: PMC11316464 DOI: 10.7717/peerj.17815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Nutrient foramina are small openings in the periosteal surface of the mid-shaft region of long bones that traverse the cortical layer and reach the medullary cavity. They are important for the delivery of nutrients and oxygen to bone tissue and are crucial for the repair and remodeling of bones over time. The nutrient foramina in the femur's diaphysis are related to the energetic needs of the femur and have been shown to be related to the maximum metabolic rate (MMR) of taxa. Here, we investigate the relationship between nutrient foramen size and body mass as a proxy to the aerobic capacity of taxa in living and extinct xenarthrans, including living sloths, anteaters, and armadillos, as well as extinct xenarthrans such as glyptodonts, pampatheres, and ground sloths. Seventy femora were sampled, including 20 from extant taxa and 50 from extinct taxa. We obtained the blood flow rate (Q̇) based on foramina area and performed PGLS and phylogenetic ANCOVA in order to explore differences among mammalian groups. Our results show that, among mammals, taxa commonly associated with lower metabolism like living xenarthrans showed relatively smaller foramina, while the foramina of giant extinct xenarthrans like ground sloths and glyptodonts overlapped with non-xenarthran placentals. Consequently, Q̇ estimations indicated aerobic capacities comparable to other placental giant taxa like elephants or some ungulates. Furthermore, the estimation of the MMR for fossil giant taxa showed similar results, with almost all taxa showing high values except for those for which strong semi-arboreal or fossorial habits have been proposed. Moreover, the results are compatible with the diets predicted for extinct taxa, which indicate a strong consumption of grass similar to ungulates and in contrast to the folivorous or insectivorous diets of extant xenarthrans. The ancestral reconstruction of the MMR values indicated a lack of a common pattern for all xenarthrans, strongly supporting the occurrence of low metabolic rates in extant forms due to their particular dietary preferences and arboreal or fossorial habits. Our results highlight the importance of considering different evidence beyond the phylogenetic position of extinct taxa, especially when extinct forms are exceptionally different from their extant relatives. Future studies evaluating the energetic needs of giant extinct xenarthrans should not assume lower metabolic rates for these extinct animals based solely on their phylogenetic position and the observations on their extant relatives.
Collapse
Affiliation(s)
- Luciano Varela
- Department of Paleontology, Universidad de la República, Montevideo, Uruguay
- Servicio Académico Universitario y Centro de Estudio Paleontológicos (SAUCE-P), Universidad de la República, Sauce, Canelones, Uruguay
| | - Sebastián Tambusso
- Department of Paleontology, Universidad de la República, Montevideo, Uruguay
- Servicio Académico Universitario y Centro de Estudio Paleontológicos (SAUCE-P), Universidad de la República, Sauce, Canelones, Uruguay
| | - Richard Fariña
- Department of Paleontology, Universidad de la República, Montevideo, Uruguay
- Servicio Académico Universitario y Centro de Estudio Paleontológicos (SAUCE-P), Universidad de la República, Sauce, Canelones, Uruguay
| |
Collapse
|
3
|
Gaudin TJ, Scaife T. Cranial osteology of a juvenile specimen of Acratocnus ye (Mammalia, Xenarthra, Folivora) and its ontogenetic and phylogenetic implications. Anat Rec (Hoboken) 2023; 306:607-637. [PMID: 36054593 DOI: 10.1002/ar.25062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022]
Abstract
The present study comprises a description of the skull and jaw anatomy of a juvenile specimen of the Antillean sloth Acratocnus ye, from the Holocene of Haiti. Detailed descriptions and illustrations are provided of the skull bones and their sutural connections, which normally fuse in adults. Descriptions are also provided for the mandible and ear ossicles, as well as endocranial surfaces and sinuses exposed by breaks. The anatomy of our juvenile A. ye is compared to that of adult A. ye to assess ontogenetic changes in the skull. Several of these ontogenetic features are significant new observations that impact the relationships within Xenarthra as a whole, or between Xenarthrans and other placental mammals, most notably, the presence of a separate mesethmoid element, the presence of alveoli for a lower deciduous canine and anterior incisor, and the presence of separate rostral and caudal entotympanic elements. A full list of such changes are provided. In addition, the specimen provides information on phylogenetically relevant characters, including features unique to the genus Acratocnus, and features of the clade Choloepodini, including Acratocnus, the smaller extinct Antillean sloth Neocnus, and the extant two-toed sloth Choloepus. Contrary to previous studies, Acratocnus shares as many features with Choloepus as it does with its fellow Antillean form Neocnus in the present study, which is consistent with current morphology-based phylogenetic hypotheses regarding the relationships within Choloepodini. The current study highlights the need for further anatomical and phylogenetic investigations of Antillean sloths (Megalocnidae/Megalonychidae), and juvenile sloths in general.
Collapse
Affiliation(s)
- Timothy J Gaudin
- Department of Biology, Geology & Environmental Science, University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
| | - Thomas Scaife
- Department of Geosciences, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
4
|
Galis F, Van Dooren TJM, van der Geer AAE. Breaking the constraint on the number of cervical vertebrae in mammals: On homeotic transformations in lorises and pottos. Evol Dev 2022; 24:196-210. [PMID: 36316803 PMCID: PMC9788262 DOI: 10.1111/ede.12424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/26/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Mammals almost always have seven cervical vertebrae. The strong evolutionary constraint on changes in this number has been broken in sloths and manatees. We have proposed that the extremely low activity and metabolic rates of these species relax the stabilizing selection against changes in the cervical count. Our hypothesis is that strong stabilizing selection in other mammals is largely indirect and due to associated pleiotropic effects, including juvenile cancers. Additional direct selection can occur due to biomechanical problems (thoracic outlet syndrome). Low metabolic and activity rates are thought to diminish these direct and indirect effects. To test this hypothesis within the primates, we have compared the number of cervical vertebrae of three lorisid species with particularly low activity and metabolic rates with those of more active primate species, including with their phylogenetically closest active relatives, the galagids (bushbabies). In support of our hypothesis, we found that 37.6% of the lorisid specimens had an abnormal cervical count, which is a higher percentage than in the other nine primate families, in which the incidence varied from zero to 2.2%. We conclude that our data support the importance of internal selection in constraining evolvability and of a relaxed stabilizing selection for increasing evolvability. Additionally, we discuss that there is no support for a role of the muscularized diaphragm in the evolutionary constraint.
Collapse
Affiliation(s)
- Frietson Galis
- Naturalis Biodiversity CenterLeidenThe Netherlands,Institute of BiologyLeiden UniversityLeidenThe Netherlands
| | - Tom J. M. Van Dooren
- Naturalis Biodiversity CenterLeidenThe Netherlands,CNRS, Institute of Ecology and Environmental Sciences iEES ParisSorbonne University ParisParisFrance
| | | |
Collapse
|
5
|
Hanson M, Hoffman EA, Norell MA, Bhullar BAS. Response to Comment on "The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization". Science 2022; 376:eabl8181. [PMID: 35737783 DOI: 10.1126/science.abl8181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
David et al. claim that vestibular shape does not reflect function and that we did not use phylogenetic inference methods in our primary analyses. We show that their claims are countered by comparative and direct experimental evidence from across Vertebrata and that their models are empirically unverified. We did use phylogenetic methods to test our hypotheses. Moreover, their phylogenetic correction attempts are methodologically inappropriate.
Collapse
Affiliation(s)
- Michael Hanson
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.,Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Eva A Hoffman
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.,Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
Gheerbrant E, Schmitt A, Billet G. Petrosal and bony labyrinth morphology of the stem paenungulate mammal (Paenungulatomorpha) Ocepeia daouiensis from the Paleocene of Morocco. J Anat 2022; 240:595-611. [PMID: 32735727 PMCID: PMC8930808 DOI: 10.1111/joa.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 11/29/2022] Open
Abstract
Based on high-resolution computed tomography, we describe in detail the petrosal and inner ear anatomy of one of the few known African stem paenungulates (Paenungulatomorpha), Ocepeia daouiensis from the Selandian of the Ouled Abdoun phosphate basin (Morocco). The petrosal of Ocepeia displays some remarkable, probably derived features (among eutherians) such as relatively small pars cochlearis, pars canalicularis labyrinth (including small semicircular canals), a large wing-like pars mastoidea, a large and inflated tegmen tympani, and the dorsoventral orientation of the large canal for the ramus superior. The presence of small semicircular canals in Ocepeia is an interesting shared trait with tenrecoidean afrotherians. Otherwise, and consistent with a general primitive skull morphology, the middle ear and labyrinth of Ocepeia daouiensis is characterised by many plesiomorphic traits close to the eutherian generalised plan. This adds to the rather generalised morphology of the earliest crown paenungulates such as Eritherium, Phosphatherium and Seggeurius to support an ancestral paenungulatomorph morphotype poorly derived from the eutherian pattern. As a result, Ocepeia provides key morphological and fossil data to test phylogenetic relationships of the Afrotheria (including Paenungulatomorpha) at the placental root mostly inferred from molecular studies.
Collapse
Affiliation(s)
- Emmanuel Gheerbrant
- CR2PCentre de Recherche en Paléontologie ParisUMR 7207 (CNRS, MNHN, UPMC, Sorbonne Universités)ParisFrance
| | - Arnaud Schmitt
- CR2PCentre de Recherche en Paléontologie ParisUMR 7207 (CNRS, MNHN, UPMC, Sorbonne Universités)ParisFrance
| | - Guillaume Billet
- CR2PCentre de Recherche en Paléontologie ParisUMR 7207 (CNRS, MNHN, UPMC, Sorbonne Universités)ParisFrance
| |
Collapse
|
7
|
Mackowetzky K, Yoon KH, Mackowetzky EJ, Waskiewicz AJ. Development and evolution of the vestibular apparatuses of the inner ear. J Anat 2021; 239:801-828. [PMID: 34047378 PMCID: PMC8450482 DOI: 10.1111/joa.13459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/07/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The vertebrate inner ear is a labyrinthine sensory organ responsible for perceiving sound and body motion. While a great deal of research has been invested in understanding the auditory system, a growing body of work has begun to delineate the complex developmental program behind the apparatuses of the inner ear involved with vestibular function. These animal studies have helped identify genes involved in inner ear development and model syndromes known to include vestibular dysfunction, paving the way for generating treatments for people suffering from these disorders. This review will provide an overview of known inner ear anatomy and function and summarize the exciting discoveries behind inner ear development and the evolution of its vestibular apparatuses.
Collapse
Affiliation(s)
- Kacey Mackowetzky
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Kevin H. Yoon
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Andrew J. Waskiewicz
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Women & Children’s Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
8
|
Schwab JA, Kriwet J, Weber GW, Pfaff C. Carnivoran hunting style and phylogeny reflected in bony labyrinth morphometry. Sci Rep 2019; 9:70. [PMID: 30635617 PMCID: PMC6329752 DOI: 10.1038/s41598-018-37106-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/30/2018] [Indexed: 11/09/2022] Open
Abstract
Carnivorans are a highly diverse and successful group of mammals, found on the top of the food chain. They originated in the Palaeocene (ca. 60 Ma) and have developed numerous lifestyles, locomotion modes and hunting strategies during their evolutionary history. Mechanosensory organs, such as the inner ear (which houses senses of equilibrium and hearing), represent informative anatomical systems to obtain insights into function, ecology and phylogeny of extant and extinct vertebrates. Using µCT scans, we examined bony labyrinths of a broad sample of various carnivoran species, to obtain new information about hunting behaviours of ancient carnivorans. Bony labyrinths were digitally reconstructed and measurements were taken directly from these 3D models. Principal component analyses generally separated various hunting strategies (pursuit, pounce, ambush and occasional), but also support their phylogenetic relationships (Canoidea vs. Feloidea). The height, width and length of all three semicircular canals show functional morphological adaptations, whereas the diameter of the canals, the height of the cochlea and particularly the angle between the lateral semicircular canal and the cochlea indicate a phylogenetic signal. The results demonstrate that the bony labyrinth provides a powerful ecological proxy reflecting both predatory habits as well as phylogenetic relationships in extinct and extant carnivorans.
Collapse
Affiliation(s)
- Julia A Schwab
- Department of Palaeontology, Faculty of Earth Science, Geography and Astronomy, University of Vienna, Geozentrum, Althanstraße 14, 1090, Vienna, Austria. .,School of GeoSciences, Grant Institute, University of Edinburgh, The King's Buildings, James Hutton Road, Edinburgh, EH9 3JW, UK.
| | - Jürgen Kriwet
- Department of Palaeontology, Faculty of Earth Science, Geography and Astronomy, University of Vienna, Geozentrum, Althanstraße 14, 1090, Vienna, Austria
| | - Gerhard W Weber
- Department of Anthropology & Core Facility for Micro-Computed Tomography, Faculty of Life Science, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Cathrin Pfaff
- Department of Palaeontology, Faculty of Earth Science, Geography and Astronomy, University of Vienna, Geozentrum, Althanstraße 14, 1090, Vienna, Austria
| |
Collapse
|
9
|
Montañez‐Rivera I, Nyakatura JA, Amson E. Bone cortical compactness in 'tree sloths' reflects convergent evolution. J Anat 2018; 233:580-591. [PMID: 30117161 PMCID: PMC6183012 DOI: 10.1111/joa.12873] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2018] [Indexed: 01/15/2023] Open
Abstract
Bone remodeling, one of the main processes that regulate bone microstructure, consists of bone resorption followed by the deposition of secondary bone at the same location. Remodeling intensity varies among taxa, but a characteristically compact cortex is ubiquitous in the long bones of mature terrestrial mammals. A previous analysis found that cortical bone in a few 'tree sloth' (Bradypus and Choloepus) specimens is heavily remodeled and characterized by numerous immature secondary osteons, suggesting that these animals were remodeling their bones at high rate until late in their ontogeny. This study aims at testing if this remodeling is generally present in 'tree sloths', using a quantitative analysis of the humeral cortical compactness (CC) among xenarthrans. The results of the investigation of humeral diaphyseal cross-sections of 26 specimens belonging to 10 xenarthran species including specimens from both extinct and extant species indicate that in 'tree sloths' the CC is significantly lower than in the other sampled xenarthrans. No significant difference was found between the CC of the two genera of 'tree sloths'. Our results are consistent with the hypothesis that the cortical bone of 'tree sloths' in general undergoes intense and balanced remodeling that is maintained until late (possibly throughout) in their ontogeny. In the light of xenarthran phylogeny, low CC represents another convergence between the long-separated 'tree sloth' lineages. Although the exact structural and/or functional demands that are associated with this trait are hitherto unknown, several hypotheses are suggested here, including a relationship to their relatively low metabolism and to the mechanical demands imposed upon the bones by the suspensory posture and locomotion, which was independently acquired by the two genera of 'tree sloths'.
Collapse
Affiliation(s)
- Irene Montañez‐Rivera
- AG Morphologie und FormengeschichteInstitut für BiologieHumboldt UniversitätBerlinGermany
| | - John A. Nyakatura
- AG Morphologie und FormengeschichteInstitut für BiologieHumboldt UniversitätBerlinGermany
- Bild Wissen Gestaltung. Ein interdisziplinäres LaborHumboldt UniversitätBerlinGermany
| | - Eli Amson
- AG Morphologie und FormengeschichteInstitut für BiologieHumboldt UniversitätBerlinGermany
- Bild Wissen Gestaltung. Ein interdisziplinäres LaborHumboldt UniversitätBerlinGermany
- Museum für NaturkundeLeibniz‐Institut für Evolutions‐ und BiodiversitätsforschungBerlinGermany
| |
Collapse
|
10
|
Phylogenetic and functional implications of the ear region anatomy of Glossotherium robustum (Xenarthra, Mylodontidae) from the Late Pleistocene of Argentina. Naturwissenschaften 2018; 105:28. [DOI: 10.1007/s00114-018-1548-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 01/26/2023]
|
11
|
Mennecart B, DeMiguel D, Bibi F, Rössner GE, Métais G, Neenan JM, Wang S, Schulz G, Müller B, Costeur L. Bony labyrinth morphology clarifies the origin and evolution of deer. Sci Rep 2017; 7:13176. [PMID: 29030580 PMCID: PMC5640792 DOI: 10.1038/s41598-017-12848-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/14/2017] [Indexed: 11/08/2022] Open
Abstract
Deer are an iconic group of large mammals that originated in the Early Miocene of Eurasia (ca. 19 Ma). While there is some consensus on key relationships among their members, on the basis of molecular- or morphology-based analyses, or combined approaches, many questions remain, and the bony labyrinth has shown considerable potential for the phylogenetics of this and other groups. Here we examine its shape in 29 species of living and fossil deer using 3D geometric morphometrics and cladistics. We clarify several issues of the origin and evolution of cervids. Our results give new age estimates at different nodes of the tree and provide for the first time a clear distinction of stem and crown Cervidae. We unambiguously attribute the fossil Euprox furcatus (13.8 Ma) to crown Cervidae, pushing back the origin of crown deer to (at least) 4 Ma. Furthermore, we show that Capreolinae are more variable in bony labyrinth shape than Cervinae and confirm for the first time the monophyly of the Old World Capreolinae (including the Chinese water deer Hydropotes) based on morphological characters only. Finally, we provide evidence to support the sister group relationship of Megaloceros giganteus with the fallow deer Dama.
Collapse
Affiliation(s)
- Bastien Mennecart
- Nathurhistorisches Museum Basel, Augustinergasse 2, 4001, Basel, Switzerland.
| | - Daniel DeMiguel
- ICTA-ICP, Edifici Z, c/de les columnes s/n, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departamento de Ciencias de la Tierra, Área de Paleontología.Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | - Faysal Bibi
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science Invalidenstraße 43, 10115, Berlin, Germany
| | - Gertrud E Rössner
- Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Strasse 10, 80333, Munich, Germany
| | - Grégoire Métais
- CR2P - Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements, UMR 7207, Muséum National d'Histoire Naturelle, CNRS, UPMC, Sorbonne Universités. MNHN, CP38, 8 rue Buffon, 75005, Paris, France
| | - James M Neenan
- Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom
| | - Shiqi Wang
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xizhimenwai Street, Beijing, 100044, China
| | - Georg Schulz
- University of Basel, Biomaterials Science Center, Department of Biomedical Engineering, Gewerbestrasse 14, 4123, Allschwil, Switzerland
| | - Bert Müller
- University of Basel, Biomaterials Science Center, Department of Biomedical Engineering, Gewerbestrasse 14, 4123, Allschwil, Switzerland
| | - Loïc Costeur
- Nathurhistorisches Museum Basel, Augustinergasse 2, 4001, Basel, Switzerland
| |
Collapse
|
12
|
Dickson BV, Sherratt E, Losos JB, Pierce SE. Semicircular canals in Anolis lizards: ecomorphological convergence and ecomorph affinities of fossil species. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170058. [PMID: 29134056 PMCID: PMC5666239 DOI: 10.1098/rsos.170058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Anolis lizards are a model system for the study of adaptive radiation and convergent evolution. Greater Antillean anoles have repeatedly evolved six similar forms or ecomorphs: crown-giant, grass-bush, twig, trunk, trunk-crown and trunk-ground. Members of each ecomorph category possess a specific set of morphological, ecological and behavioural characteristics which have been acquired convergently. Here we test whether the semicircular canal system-the organ of balance during movement-is also convergent among ecomorphs, reflecting the shared sensory requirements of their ecological niches. As semicircular canal shape has been shown to reflect different locomotor strategies, we hypothesized that each Anolis ecomorph would have a unique canal morphology. Using three-dimensional semilandmarks and geometric morphometrics, semicircular canal shape was characterized in 41 Anolis species from the Greater Antilles and the relationship between canal shape and ecomorph grouping, phylogenetic history, size, head dimensions, and perch characteristics was assessed. Further, canal morphology of modern species was used to predict the ecomorph affinity of five fossil anoles from the Miocene of the Dominican Republic. Of the covariates tested, our study recovered ecomorph as the single-most important covariate of canal morphology in modern taxa; although phylogenetic history, size, and head dimensions also showed a small, yet significant correlation with shape. Surprisingly, perch characteristics were not found to be significant covariates of canal shape, even though they are important habitat variables. Using posterior probabilities, we found that the fossil anoles have different semicircular canals shapes to modern ecomorph groupings implying extinct anoles may have been interacting with their Miocene environment in different ways to modern Anolis species.
Collapse
Affiliation(s)
- Blake V. Dickson
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Emma Sherratt
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jonathan B. Losos
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Stephanie E. Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
13
|
Recent Progress and Future Prospects in Fossil Xenarthran Studies, with Emphasis on Current Methodology in Sloth Taxonomy. J MAMM EVOL 2017. [DOI: 10.1007/s10914-017-9407-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Fountain ED, Pauli JN, Mendoza JE, Carlson J, Peery MZ. Cophylogenetics and biogeography reveal a coevolved relationship between sloths and their symbiont algae. Mol Phylogenet Evol 2017; 110:73-80. [DOI: 10.1016/j.ympev.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 01/01/2023]
|
15
|
Coutier F, Hautier L, Cornette R, Amson E, Billet G. Orientation of the lateral semicircular canal in Xenarthra and its links with head posture and phylogeny. J Morphol 2017; 278:704-717. [PMID: 28185320 DOI: 10.1002/jmor.20665] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 02/06/2023]
Abstract
The orientation of the semicircular canals of the inner ear in the skull of vertebrates is one of the determinants of the capacity of this system to detect a given rotational movement of the head. Past functional studies on the spatial orientation of the semicircular canals essentially focused on the lateral semicircular canal (LSC), which is supposedly held close to horizontal during rest and/or alert behaviors. However, they generally investigated this feature in only a few and distantly related taxa. Based on 3D-models reconstructed from µCT-scans of skulls, we examined the diversity of orientations of the LSC within one of the four major clades of placental mammals, that is, the superorder Xenarthra, with a data set that includes almost all extant genera and two extinct taxa. We observed a wide diversity of LSC orientations relative to the basicranium at both intraspecific and interspecific scales. The estimated phylogenetic imprint on the orientation of the LSC was significant but rather low within the superorder, though some phylogenetic conservatism was detected for armadillos that were characterized by a strongly tilted LSC. A convergence between extant suspensory sloths was also detected, both genera showing a weakly tilted LSC. Our preliminary analysis of usual head posture in extant xenarthrans based on photographs of living animals further revealed that the LSC orientation in armadillos is congruent with a strongly nose-down head posture. It also portrayed a more complex situation for sloths and anteaters. Finally, we also demonstrate that the conformation of the cranial vault and nuchal crests as well as the orientation of the posterior part of the petrosal may covary with the LSC orientation in Xenarthra. Possible inferences for the head postures of extinct xenarthrans such as giant ground sloths are discussed in the light of these results.
Collapse
Affiliation(s)
- Florence Coutier
- Department of Origines et évolution, Sorbonne Universités, CR2P, UMR CNRS 7207, Univ Paris 06, Muséum national d'Histoire naturelle, 8 rue Buffon, Paris, 75005, France
| | - Lionel Hautier
- Department of Forme, Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, CNRS, IRD, EPHE, Cc 064; place Eugène Bataillon, Montpellier Cedex 5, 34095, France
| | - Raphaël Cornette
- Department of Origines et évolution, Institut de Systématique, Évolution, Biodiversité (ISYEB) - UMR 7205 - CNRS, MNHN, UPMC, EPHE- Muséum national d'Histoire naturelle - Sorbonne Universités, 57 rue Cuvier, CP 30, 75005, Paris, France
| | - Eli Amson
- Humboldt-Universität, AG Morphologie und Formengeschichte, Bild Wissen Gestaltung - ein interdisziplinäres Labor & Institut für Biologie, Philippstraße, 12/13, Berlin, D-10115, Germany
| | - Guillaume Billet
- Department of Origines et évolution, Sorbonne Universités, CR2P, UMR CNRS 7207, Univ Paris 06, Muséum national d'Histoire naturelle, 8 rue Buffon, Paris, 75005, France
| |
Collapse
|
16
|
Selva C, Ladevèze S. Computed microtomography investigation of the skull of Cuvier's famous ‘opossum’ (Marsupialiformes, Herpetotheriidae) from the Eocene of Montmartre. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charlène Selva
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P, UMR 7207); Sorbonne Universités MNHN CNRS UPMC-Paris 6, Muséum national d'Histoire naturelle; 57 rue Cuvier CP 38 F-75005 Paris France
| | - Sandrine Ladevèze
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P, UMR 7207); Sorbonne Universités MNHN CNRS UPMC-Paris 6, Muséum national d'Histoire naturelle; 57 rue Cuvier CP 38 F-75005 Paris France
| |
Collapse
|
17
|
Arnaudo ME, Bona P, Soibelzon LH, Schubert BW. Anatomical study of the auditory region of Arctotherium tarijense (Ursidae, Tremarctinae), an extinct short-faced bear from the Pleistocene of South America. J Anat 2016; 229:825-837. [PMID: 27460048 DOI: 10.1111/joa.12525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2016] [Indexed: 11/28/2022] Open
Abstract
Here we present the most detailed morphological study of the auditory region of a tremarctinae bear, Arctotherium tarijense Ameghino. In addition, we provide new anatomical information of the Tremarctinae inner ear, such as coplanarity and deviation from orthogonality of the semicircular canals, as an approach to infer the head movements which encountered the extinct forms in locomotion. Based on morphological comparisons, A. tarijense exhibits the following particular features: the cavum tympani presents the highest relative volume compared with other ursids; the processus paraoccipitalis has a foramen that is absent in other tremarctines; there is only one (ventral) recess in the anterior region of the cavum tympani; and the recessus epytimpanicus is the smallest for all ursids studied. In relation to the inner ear, A. tarijense shows the lowest values of orthogonality deviation and highest scores of locomotor agility. Based on this, is possible to make a preliminary proposal that this species had a relative high vestibular sensibility and therefore a better ability to explore different kind of habitats. However, this hypothesis might be contrasted among bears taking into account the orientation of each semicircular canal in a phylogenetic framework.
Collapse
Affiliation(s)
- Maria Eugenia Arnaudo
- División Paleontología de Vertebrados-CONICET, Museo de La Plata, La Plata, Argentina
| | - Paula Bona
- División Paleontología de Vertebrados-CONICET, Museo de La Plata, La Plata, Argentina
| | | | - Blaine W Schubert
- Center of Excellence in Paleontology and Department of Geosciences, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
18
|
Amson E, de Muizon C, Gaudin TJ. A reappraisal of the phylogeny of the Megatheria (Mammalia: Tardigrada), with an emphasis on the relationships of the Thalassocninae, the marine sloths. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eli Amson
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P: CNRS, MNHN, UPMC-Paris 06; Sorbonne Universités); Muséum national d'Histoire naturelle; CP38, 57 rue Cuvier 75005 Paris France
- Paläontologisches Institut und Museum; Universität Zürich; Karl Schmid-Strasse 4 CH-8006 Zürich Switzerland
- AG Morphologie und Formengeschichte & Institut für Biologie; Humboldt-Universität; Philippstraße 12/13, Haus 2 D-10115 Berlin Germany
| | - Christian de Muizon
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P: CNRS, MNHN, UPMC-Paris 06; Sorbonne Universités); Muséum national d'Histoire naturelle; CP38, 57 rue Cuvier 75005 Paris France
| | - Timothy J. Gaudin
- Department of Biological & Environmental Sciences; University of Tennessee at Chattanooga; 615 McCallie Ave Chattanooga TN 37403-2598 USA
| |
Collapse
|
19
|
Perier A, Lebrun R, Marivaux L. Different Level of Intraspecific Variation of the Bony Labyrinth Morphology in Slow- Versus Fast-Moving Primates. J MAMM EVOL 2016. [DOI: 10.1007/s10914-016-9323-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Pfaff C, Martin T, Ruf I. Bony labyrinth morphometry indicates locomotor adaptations in the squirrel-related clade (Rodentia, Mammalia). Proc Biol Sci 2016; 282:20150744. [PMID: 26019162 DOI: 10.1098/rspb.2015.0744] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The semicircular canals (SCs) of the inner ear detect angular acceleration and are located in the bony labyrinth of the petrosal bone. Based on high-resolution computed tomography, we created a size-independent database of the bony labyrinth of 50 mammalian species especially rodents of the squirrel-related clade comprising taxa with fossorial, arboreal and gliding adaptations. Our sampling also includes gliding marsupials, actively flying bats, the arboreal tree shrew and subterranean species. The morphometric anatomy of the SCs was correlated to the locomotion mode. Even if the phylogenetic signal cannot entirely be excluded, the main significance for functional morphological studies has been found in the diameter of the SCs, whereas the radius of curvature is of minor interest. Additionally, we found clear differences in the bias angle of the canals between subterranean and gliding taxa, but also between sciurids and glirids. The sensitivity of the inner ear correlates with the locomotion mode, with a higher sensitivity of the SCs in fossorial species than in flying taxa. We conclude that the inner ear of flying and gliding mammals is less sensitive due to the large information flow into this sense organ during locomotion.
Collapse
Affiliation(s)
- Cathrin Pfaff
- Department of Palaeontology, Geozentrum, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Thomas Martin
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 8, Bonn 53115, Germany
| | - Irina Ruf
- Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Abteilung Paläoanthropologie und Messelforschung, Senckenberganlage 25, Frankfurt am Main 60325, Germany
| |
Collapse
|
21
|
Abstract
The inner ear of mammals consists of the cochlea, which is involved with the sense of hearing, and the vestibule and three semicircular canals, which are involved with the sense of balance. Although different regions of the inner ear contribute to different functions, the bony chambers and membranous ducts are morphologically continuous. The gross anatomy of the cochlea that has been related to auditory physiologies includes overall size of the structure, including volume and total spiral length, development of internal cochlear structures, including the primary and secondary bony laminae, morphology of the spiral nerve ganglion, and the nature of cochlear coiling, including total number of turns completed by the cochlear canal and the relative diameters of the basal and apical turns. The overall sizes, shapes, and orientations of the semicircular canals are related to sensitivity to head rotations and possibly locomotor behaviors. Intraspecific variation, primarily in the shape and orientation of the semicircular canals, may provide additional clues to help us better understand form and function of the inner ear.
Collapse
Affiliation(s)
- Eric G. Ekdale
- Department of BiologySan Diego State UniversitySan DiegoCAUSA
- Department of PaleontologySan Diego Natural History MuseumSan DiegoCAUSA
| |
Collapse
|
22
|
Billet G, Hautier L, Lebrun R. Morphological diversity of the bony labyrinth (inner ear) in extant Xenarthrans and its relation to phylogeny. J Mammal 2015. [DOI: 10.1093/jmammal/gyv074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Abstract
We present a survey of the morphological diversity of the bony labyrinth of the inner ear in Xenarthra, including the fossil ground sloth Megatherium. Using a combination of traditional and geometric morphometrics, correlation analyses, and qualitative observations, we attempt to extract independent and informative phylogenetic characters of the bony labyrinth for the superorder. Geometric morphometric analyses demonstrate a strong imprint of phylogenetic history on the shape of the bony labyrinth of xenarthrans and a weak influence of allometry. Discrete characters mapped on a consensus cladogram for xenarthrans show support for many traditional nodes within the superorder and may also provide critical information for problematic nodes within Cingulata. A relatively large lateral semicircular canal may, for instance, represent a synapomorphy for the molecular clade allying fairy armadillos (Chlamyphorinae) to the Tolypeutinae. Striking convergences were detected when comparing Megatherium, the giant ground sloth, with extant armadillos and Chlamyphorus, the pink fairy armadillo, with the extant three- and two-toed sloths. These findings have the potential to help understand the phylogenetic relationships of fossil xenarthrans.
Presentamos un estudio de la diversidad morfológica del laberinto óseo del oído interno de los xenartros, incluyendo el perezoso fósil Megatherium. Utilizamos una combinación de morfométrica tradicional y geométrica, análisis de correlación y observaciones cuantitativas para intentar extraer caracteres filogenéticos independientes e informativos del laberinto óseo para el superorden. Los análisis geométricos morfométricos muestran una fuerte impronta de la historia filogenética de la forma del laberinto óseo de los xenartros y una baja influencia de la alometría. Los caracteres discretos mapeados en un cladograma de consenso para xenartros apoyan varios nodos tradicionales dentro del superorden y podrían también brindar información importante para los nodos problemáticos dentro de los Cingulata. Un canal semicircular lateral relativamente largo podría, por ejemplo, representar una sinapomorfía que apoye el clado molecular que une a los pichiciegos con los Tolypeutinae. Se hallaron notables convergencias al comparar Megatherium con los armadillos actuales, y Chlamyphorus con los perezosos actuales. Estos hallazgos tienen el potencial para ayudar a entender las relaciones filogenéticas de los xenartros fósiles.
Collapse
Affiliation(s)
- Guillaume Billet
- CR2P, UMR CNRS 7207, CP 38, Muséum national d’Histoire naturelle, Univ Paris 06, 8 rue Buffon, 75005 Paris, France (GB)
| | - Lionel Hautier
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (CNRS, UM2, IRD, EPHE), c.c. 064, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France (LH, RL)
| | - Renaud Lebrun
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (CNRS, UM2, IRD, EPHE), c.c. 064, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France (LH, RL)
| |
Collapse
|
23
|
Billet G, de Muizon C, Schellhorn R, Ruf I, Ladevèze S, Bergqvist L. Petrosal and inner ear anatomy and allometry amongst specimens referred to Litopterna (Placentalia). Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12219] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Guillaume Billet
- Steinmann-Institut für Geologie; Mineralogie und Paläontologie; Rheinische Friedrich-Wilhelms-Universität Bonn; Nussallee 8 53115 Bonn Germany
- CR2P - UMR 7207 CNRS; MNHN; Univ Paris 06 - Muséum national d'Histoire naturelle; 8 rue Buffon CP 38 75005 Paris France
| | - Christian de Muizon
- CR2P - UMR 7207 CNRS; MNHN; Univ Paris 06 - Muséum national d'Histoire naturelle; 8 rue Buffon CP 38 75005 Paris France
| | - Rico Schellhorn
- Steinmann-Institut für Geologie; Mineralogie und Paläontologie; Rheinische Friedrich-Wilhelms-Universität Bonn; Nussallee 8 53115 Bonn Germany
| | - Irina Ruf
- Steinmann-Institut für Geologie; Mineralogie und Paläontologie; Rheinische Friedrich-Wilhelms-Universität Bonn; Nussallee 8 53115 Bonn Germany
- Senckenberg Forschungsinstitut und Naturmuseum Frankfurt; Abteilung Paläoanthropologie und Messelforschung; Senckenberganlage 25 60325 Frankfurt am Main Germany
| | - Sandrine Ladevèze
- CR2P - UMR 7207 CNRS; MNHN; Univ Paris 06 - Muséum national d'Histoire naturelle; 8 rue Buffon CP 38 75005 Paris France
| | - Lilian Bergqvist
- Avenida Athos da Silveira Ramos; 274, bloco G; Centro de Ciências Matemáticas e da Natureza; Universidade Federal do Rio de Janeiro; Rio de Janeiro 21941-916 Brasil
| |
Collapse
|
24
|
Ekdale EG, Racicot RA. Anatomical evidence for low frequency sensitivity in an archaeocete whale: comparison of the inner ear of Zygorhiza kochii with that of crown Mysticeti. J Anat 2014; 226:22-39. [PMID: 25400023 DOI: 10.1111/joa.12253] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2014] [Indexed: 11/28/2022] Open
Abstract
The evolution of hearing in cetaceans is a matter of current interest given that odontocetes (toothed whales) are sensitive to high frequency sounds and mysticetes (baleen whales) are sensitive to low and potentially infrasonic noises. Earlier diverging stem cetaceans (archaeocetes) were hypothesized to have had either low or high frequency sensitivity. Through CT scanning, the morphology of the bony labyrinth of the basilosaurid archaeocete Zygorhiza kochii is described and compared to novel information from the inner ears of mysticetes, which are less known than the inner ears of odontocetes. Further comparisons are made with published information for other cetaceans. The anatomy of the cochlea of Zygorhiza is in line with mysticetes and supports the hypothesis that Zygorhiza was sensitive to low frequency noises. Morphological features that support the low frequency hypothesis and are shared by Zygorhiza and mysticetes include a long cochlear canal with a high number of turns, steeply graded curvature of the cochlear spiral in which the apical turn is coiled tighter than the basal turn, thin walls separating successive turns that overlap in vestibular view, and reduction of the secondary bony lamina. Additional morphology of the vestibular system indicates that Zygorhiza was more sensitive to head rotations than extant mysticetes are, which likely indicates higher agility in the ancestral taxon.
Collapse
Affiliation(s)
- Eric G Ekdale
- Department of Biology, San Diego State University, San Diego, CA, USA; Department of Paleontology, San Diego Natural History Museum, San Diego, CA, USA
| | | |
Collapse
|
25
|
Schutz H, Jamniczky HA, Hallgrímsson B, Garland T. Shape-shift: semicircular canal morphology responds to selective breeding for increased locomotor activity. Evolution 2014; 68:3184-98. [PMID: 25130322 DOI: 10.1111/evo.12501] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 07/06/2014] [Indexed: 02/05/2023]
Abstract
Variation in semicircular canal morphology correlates with locomotor agility among species of mammals. An experimental evolutionary mouse model was used to test the hypotheses that semicircular canal morphology (1) evolves in response to selective breeding for increased locomotor activity, (2) exhibits phenotypic plasticity in response to early-onset chronic exercise, and (3) is unique in individuals possessing the minimuscle phenotype. We examined responses in canal morphology to prolonged wheel access and selection in laboratory mice from four replicate lines bred for high voluntary wheel-running (HR) and four nonselected control (C) lines. Linear measurements and a suite of 3D landmarks were obtained from 3D reconstructions of μCT-scanned mouse crania (μCT is microcomputed tomography). Body mass was smaller in HR than C mice and was a significant predictor of both radius of curvature and 3D canal shape. Controlling for body mass, radius of curvature did not differ statistically between HR and C mice, but semicircular canal shape did. Neither chronic wheel access nor minimuscle affected radius of curvature or canal shape These findings suggest that semicircular canal morphology is responsive to evolutionary changes in locomotor behavior, but the pattern of response is potentially different in small- versus large-bodied species.
Collapse
Affiliation(s)
- Heidi Schutz
- Biology Department, Pacific Lutheran University, Tacoma, Washington, 98477; Department of Biology, University of California, Riverside, California, 92521.
| | | | | | | |
Collapse
|
26
|
Osteology and Functional Morphology of the Forelimb of the Marine Sloth Thalassocnus (Mammalia, Tardigrada). J MAMM EVOL 2014. [DOI: 10.1007/s10914-014-9268-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Hautier L, Billet G, Eastwood B, Lane J. Patterns of Morphological Variation of Extant Sloth Skulls and their Implication for Future Conservation Efforts. Anat Rec (Hoboken) 2014; 297:979-1008. [DOI: 10.1002/ar.22916] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/18/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Lionel Hautier
- Laboratoire de Paléontologie; Institut des Sciences de l'Evolution de Montpellier, UMR-CNRS 5554, Cc 064, Université de Montpellier 2, place Eugène Bataillon; Montpellier Cedex France
- Museum of Zoology; University of Cambridge; Cambridge UK
| | - Guillaume Billet
- Muséum national d'Histoire naturelle; CR2P-UMR 7207 CNRS, MNHN, Univ Paris 06, 57 rue Cuvier, CP; 38 75005 Paris France
| | | | - Jemima Lane
- Museum of Zoology; University of Cambridge; Cambridge UK
| |
Collapse
|