1
|
Guo R, Xie X, Ren Q, Liew PX. New insights on extramedullary granulopoiesis and neutrophil heterogeneity in the spleen and its importance in disease. J Leukoc Biol 2024:qiae220. [PMID: 39514106 DOI: 10.1093/jleuko/qiae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Neutrophils are traditionally viewed as uncomplicated exterminators that arrive quickly at sites of infection, kill pathogens, and then expire. However, recent studies employing modern transcriptomics coupled with novel imaging modalities have discovered that neutrophils exhibit significant heterogeneity within organs and have complex functional roles ranging from tissue homeostasis to cancer and chronic pathologies. This has revised the view that neutrophils are simplistic butchers, and there has been a resurgent interest in neutrophils. The spleen was described as a granulopoietic organ more than 4 decades ago, and studies indicate that neutrophils are briefly retained in the spleen before returning to circulation after proliferation. Transcriptomic studies have discovered that splenic neutrophils are heterogeneous and distinct compared with those in blood. This suggests that a unique hematopoietic niche exists in the splenic microenvironment, i.e., capable of programming neutrophils in the spleen. During severe systemic inflammation with an increased need of neutrophils, the spleen can adapt by producing neutrophils through emergency granulopoiesis. In this review, we describe the structure and microanatomy of the spleen and examine how cells within the splenic microenvironment help to regulate splenic granulopoiesis. A focus is placed on exploring the increase in splenic granulopoiesis to meet host needs during infection and inflammation. Emerging technologies such as single-cell RNA sequencing, which provide valuable insight into splenic neutrophil development and heterogeneity, are also discussed. Finally, we examine how tumors subvert this natural pathway in the spleen to generate granulocytic suppressor cells to promote tumor growth.
Collapse
Affiliation(s)
- Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Xuemei Xie
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115, United States
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin 300020, China
- Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences, 288 Nanjing Road, Heping District, Tianjin 300020, China
| | - Pei Xiong Liew
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, United States
- Department of Cellular Biology and Anatomy, Augusta University, 1434 Laney Walker Blvd, Augusta, GA 30912, United States
| |
Collapse
|
2
|
Liu M, Xing Y, Tan J, Chen X, Xue Y, Qu L, Ma J, Jin X. Comprehensive summary: the role of PBX1 in development and cancers. Front Cell Dev Biol 2024; 12:1442052. [PMID: 39129784 PMCID: PMC11310070 DOI: 10.3389/fcell.2024.1442052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
PBX1 is a transcription factor that can promote the occurrence of various tumors and play a reg-ulatory role in tumor growth, metastasis, invasion, and drug resistance. Furthermore, a variant generated by fusion of E2A and PBX1, E2A-PBX1, has been found in 25% of patients with childhood acute lymphoblastic leukemia. Thus, PBX1 is a potential therapeutic target for many cancers. Here, we describe the structure of PBX1 and E2A-PBX1 as well as the molecular mecha-nisms whereby these proteins promote tumorigenesis to provide future research directions for developing new treatments. We show that PBX1 and E2A-PBX1 induce the development of highly malignant and difficult-to-treat solid and blood tumors. The development of specific drugs against their targets may be a good therapeutic strategy for PBX1-related cancers. Furthermore, we strongly recommend E2A-PBX1 as one of the genes for prenatal screening to reduce the incidence of childhood hematological malignancies.
Collapse
Affiliation(s)
- Mingsheng Liu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yan Xing
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jiufeng Tan
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xiaoliang Chen
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yaming Xue
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Licheng Qu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jianchao Ma
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xuefei Jin
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| |
Collapse
|
3
|
Schultheis H, Bentsen M, Heger V, Looso M. Uncovering uncharacterized binding of transcription factors from ATAC-seq footprinting data. Sci Rep 2024; 14:9275. [PMID: 38654130 DOI: 10.1038/s41598-024-59989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Transcription factors (TFs) are crucial epigenetic regulators, which enable cells to dynamically adjust gene expression in response to environmental signals. Computational procedures like digital genomic footprinting on chromatin accessibility assays such as ATACseq can be used to identify bound TFs in a genome-wide scale. This method utilizes short regions of low accessibility signals due to steric hindrance of DNA bound proteins, called footprints (FPs), which are combined with motif databases for TF identification. However, while over 1600 TFs have been described in the human genome, only ~ 700 of these have a known binding motif. Thus, a substantial number of FPs without overlap to a known DNA motif are normally discarded from FP analysis. In addition, the FP method is restricted to organisms with a substantial number of known TF motifs. Here we present DENIS (DE Novo motIf diScovery), a framework to generate and systematically investigate the potential of de novo TF motif discovery from FPs. DENIS includes functionality (1) to isolate FPs without binding motifs, (2) to perform de novo motif generation and (3) to characterize novel motifs. Here, we show that the framework rediscovers artificially removed TF motifs, quantifies de novo motif usage during an early embryonic development example dataset, and is able to analyze and uncover TF activity in organisms lacking canonical motifs. The latter task is exemplified by an investigation of a scATAC-seq dataset in zebrafish which covers different cell types during hematopoiesis.
Collapse
Affiliation(s)
- Hendrik Schultheis
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mette Bentsen
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Vanessa Heger
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
4
|
Kimura T, Panaroni C, Rankin EB, Purton LE, Wu JY. Loss of Parathyroid Hormone Receptor Signaling in Osteoprogenitors Is Associated With Accumulation of Multiple Hematopoietic Lineages in the Bone Marrow. J Bone Miner Res 2022; 37:1321-1334. [PMID: 35490308 PMCID: PMC11479576 DOI: 10.1002/jbmr.4568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022]
Abstract
Osteoblasts and their progenitors play an important role in the support of hematopoiesis within the bone marrow (BM) microenvironment. We have previously reported that parathyroid hormone receptor (PTH1R) signaling in osteoprogenitors is required for normal B cell precursor differentiation, and for trafficking of maturing B cells out of the BM. Cells of the osteoblast lineage have been implicated in the regulation of several other hematopoietic cell populations, but the effects of PTH1R signaling in osteoprogenitors on other maturing hematopoietic populations have not been investigated. Here we report that numbers of maturing myeloid, T cell, and erythroid populations were increased in the BM of mice lacking PTH1R in Osx-expressing osteoprogenitors (PTH1R-OsxKO mice; knockout [KO]). This increase in maturing hematopoietic populations was not associated with an increase in progenitor populations or proliferation. The spleens of PTH1R-OsxKO mice were small with decreased numbers of all hematopoietic populations, suggesting that trafficking of mature hematopoietic populations between BM and spleen is impaired in the absence of PTH1R in osteoprogenitors. RNA sequencing (RNAseq) of osteoprogenitors and their descendants in bone and BM revealed increased expression of vascular cell adhesion protein 1 (VCAM-1) and C-X-C motif chemokine ligand 12 (CXCL12), factors that are involved in trafficking of several hematopoietic populations. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Takaharu Kimura
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA, USA
| | - Cristina Panaroni
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Louise E Purton
- St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- The University of Melbourne, Department of Medicine at St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Joy Y Wu
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Liu Y, Ao X, Zhou X, Du C, Kuang S. The regulation of PBXs and their emerging role in cancer. J Cell Mol Med 2022; 26:1363-1379. [PMID: 35068042 PMCID: PMC8899182 DOI: 10.1111/jcmm.17196] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/11/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Pre‐B‐cell leukaemia transcription factor (PBX) proteins are a subfamily of evolutionarily conserved, atypical homeodomain transcription factors that belong to the superfamily of three amino acid loop extension (TALE) homeodomain proteins. Members of the PBX family play crucial roles in regulating multiple pathophysiological processes, such as the development of organs, congenital cardiac defects and carcinogenesis. The dysregulation of PBXs has been shown to be closely associated with many diseases, particularly cancer. However, the detailed mechanisms of PBX dysregulation in cancer progression are still inconclusive. In this review, we summarize the recent advances in the structures, functions and regulatory mechanisms of PBXs, and discuss their underlying mechanisms in cancer progression. We also highlight the great potential of PBXs as biomarkers for the early diagnosis and prognostic evaluation of cancer as well as their therapeutic applications. The information reviewed here may expand researchers’ understanding of PBXs and could strengthen the clinical implication of PBXs in cancer treatment.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Xiang Ao
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Xuehao Zhou
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Chengcheng Du
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Shouxiang Kuang
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| |
Collapse
|
6
|
Rajavel A, Schmitt AO, Gültas M. Computational Identification of Master Regulators Influencing Trypanotolerance in Cattle. Int J Mol Sci 2021; 22:ijms22020562. [PMID: 33429951 PMCID: PMC7827104 DOI: 10.3390/ijms22020562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
African Animal Trypanosomiasis (AAT) is transmitted by the tsetse fly which carries pathogenic trypanosomes in its saliva, thus causing debilitating infection to livestock health. As the disease advances, a multistage progression process is observed based on the progressive clinical signs displayed in the host’s body. Investigation of genes expressed with regular monotonic patterns (known as Monotonically Expressed Genes (MEGs)) and of their master regulators can provide important clue for the understanding of the molecular mechanisms underlying the AAT disease. For this purpose, we analysed MEGs for three tissues (liver, spleen and lymph node) of two cattle breeds, namely trypanosusceptible Boran and trypanotolerant N’Dama. Our analysis revealed cattle breed-specific master regulators which are highly related to distinguish the genetic programs in both cattle breeds. Especially the master regulators MYC and DBP found in this study, seem to influence the immune responses strongly, thereby susceptibility and trypanotolerance of Boran and N’Dama respectively. Furthermore, our pathway analysis also bolsters the crucial roles of these master regulators. Taken together, our findings provide novel insights into breed-specific master regulators which orchestrate the regulatory cascades influencing the level of trypanotolerance in cattle breeds and thus could be promising drug targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Abirami Rajavel
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.R.); (A.O.S.)
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.R.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075 Göttingen, Germany
| | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.R.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075 Göttingen, Germany
- Correspondence:
| |
Collapse
|
7
|
Wang F, Ren D, Liang X, Ke S, Zhang B, Hu B, Song X, Wang X. A long noncoding RNA cluster-based genomic locus maintains proper development and visual function. Nucleic Acids Res 2020; 47:6315-6329. [PMID: 31127312 PMCID: PMC6614851 DOI: 10.1093/nar/gkz444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 01/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) represent a group of regulatory RNAs that play critical roles in numerous cellular events, but their functional importance in development remains largely unexplored. Here, we discovered a series of previously unidentified gene clusters harboring conserved lncRNAs at the nonimprinting regions in brain (CNIBs). Among the seven identified CNIBs, human CNIB1 locus is located at Chr 9q33.3 and conserved from Danio rerio to Homo sapiens. Chr 9q33.3-9q34.11 microdeletion has previously been linked to human nail-patella syndrome (NPS) which is frequently accompanied by developmental and visual deficiencies. By generating CNIB1 deletion alleles in zebrafish, we demonstrated the requirement of CNIB1 for proper growth and development, and visual activities. Furthermore, we found that the role of CNIB1 on visual activity is mediated through a regulator of ocular development-lmx1bb. Collectively, our study shows that CNIB1 lncRNAs are important for zebrafish development and provides an lncRNA cluster-mediated pathophysiological mechanism for human Chr 9q33.3-9q34.11 microdeletion syndrome.
Collapse
Affiliation(s)
- Fei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dalong Ren
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaolin Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shengwei Ke
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bowen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiangting Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Selleri L, Zappavigna V, Ferretti E. 'Building a perfect body': control of vertebrate organogenesis by PBX-dependent regulatory networks. Genes Dev 2019; 33:258-275. [PMID: 30824532 PMCID: PMC6411007 DOI: 10.1101/gad.318774.118] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pbx genes encode transcription factors that belong to the TALE (three-amino-acid loop extension) superclass of homeodomain proteins. We have witnessed a surge in information about the roles of this gene family as leading actors in the transcriptional control of development. PBX proteins represent a clear example of how transcription factors can regulate developmental processes by combinatorial properties, acting within multimeric complexes to implement activation or repression of transcription depending on their interaction partners. Here, we revisit long-emphasized functions of PBX transcription factors as cofactors for HOX proteins, major architects of the body plan. We further discuss new knowledge on roles of PBX proteins in different developmental contexts as upstream regulators of Hox genes-as factors that interact with non-HOX proteins and can work independently of HOX-as well as potential pioneer factors. Committed to building a perfect body, PBX proteins govern regulatory networks that direct essential morphogenetic processes and organogenesis in vertebrate development. Perturbations of PBX-dependent networks can cause human congenital disease and cancer.
Collapse
Affiliation(s)
- Licia Selleri
- Program in Craniofacial Biology, University of California at San Francisco, San Francisco, California 94143, USA
- Institute of Human Genetics, University of California at San Francisco, San Francisco, California 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143, USA
- Department of Orofacial Sciences, University of California at San Francisco, San Francisco, California 94143, USA
- Department of Anatomy, University of California at San Francisco, San Francisco, California 94143, USA
| | - Vincenzo Zappavigna
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elisabetta Ferretti
- The Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
9
|
Niche-induced extramedullary hematopoiesis in the spleen is regulated by the transcription factor Tlx1. Sci Rep 2018; 8:8308. [PMID: 29844356 PMCID: PMC5974313 DOI: 10.1038/s41598-018-26693-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
Extramedullary hematopoiesis (EMH) in postnatal life is a pathological process in which the differentiation of hematopoietic stem/progenitor cells (HSPCs) occurs outside the bone marrow (BM) to respond to hematopoietic emergencies. The spleen is a major site for EMH; however, the cellular and molecular nature of the stromal cell components supporting HSPC maintenance, the niche for EMH in the spleen remain poorly understood compared to the growing understanding of the BM niche at the steady-state as well as in emergency hematopoiesis. In the present study, we demonstrate that mesenchymal progenitor-like cells expressing Tlx1, an essential transcription factor for spleen organogenesis, and selectively localized in the perifollicular region of the red pulp of the spleen, are a major source of HSPC niche factors. Consistently, overexpression of Tlx1 in situ induces EMH, which is associated with mobilization of HSPC into the circulation and their recruitment into the spleen where they proliferate and differentiate. The alterations in the splenic microenvironment induced by Tlx1 overexpression in situ phenocopy lipopolysaccharide (LPS)-induced EMH, and the conditional loss of Tlx1 abolished LPS-induced splenic EMH. These findings indicate that activation of Tlx1 expression in the postnatal splenic mesenchymal cells is critical for the development of splenic EMH.
Collapse
|
10
|
Golub R, Tan J, Watanabe T, Brendolan A. Origin and Immunological Functions of Spleen Stromal Cells. Trends Immunol 2018; 39:503-514. [PMID: 29567327 DOI: 10.1016/j.it.2018.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 01/20/2023]
Abstract
The mammalian spleen is a peripheral lymphoid organ that plays a central role in host defense. Consequently, the lack of spleen is often associated with immunodeficiency and increased risk of overwhelming infections. Growing evidence suggests that non-hematopoietic stromal cells are central players in spleen development, organization, and immune functions. In addition to its immunological role, the spleen also provides a site for extramedullary hematopoiesis (EMH) in response to injuries. A deeper understanding of the biology of stromal cells is therefore essential to fully comprehend how these cells modulate the immune system during normal and pathological conditions. Here, we review the specificities of the different mouse spleen stromal cell subsets and complement the murine studies with human data when available.
Collapse
Affiliation(s)
- Rachel Golub
- Unit for Lymphopoiesis, Immunology Department, INSERM U1223, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Institut Pasteur, Paris, France.
| | - Jonathan Tan
- Clem Jones Research Centre for Regenerative Medicine, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Australia
| | - Takeshi Watanabe
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Andrea Brendolan
- Unit of Lymphoid Organ Development, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|