1
|
Grimstvedt JS, Shelton AM, Hoerder‐Suabedissen A, Oliver DK, Berndtsson CH, Blankvoort S, Nair RR, Packer AM, Witter MP, Kentros CG. A multifaceted architectural framework of the mouse claustrum complex. J Comp Neurol 2023; 531:1772-1795. [PMID: 37782702 PMCID: PMC10953385 DOI: 10.1002/cne.25539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/04/2023]
Abstract
Accurate anatomical characterizations are necessary to investigate neural circuitry on a fine scale, but for the rodent claustrum complex (CLCX), this has yet to be fully accomplished. The CLCX is generally considered to comprise two major subdivisions, the claustrum (CL) and the dorsal endopiriform nucleus (DEn), but regional boundaries to these areas are debated. To address this, we conducted a multifaceted analysis of fiber- and cytoarchitecture, genetic marker expression, and connectivity using mice of both sexes, to create a comprehensive guide for identifying and delineating borders to CLCX, including an online reference atlas. Our data indicated four distinct subregions within CLCX, subdividing both CL and DEn into two. Additionally, we conducted brain-wide tracing of inputs to CLCX using a transgenic mouse line. Immunohistochemical staining against myelin basic protein (MBP), parvalbumin (PV), and calbindin (CB) revealed intricate fiber-architectural patterns enabling precise delineations of CLCX and its subregions. Myelinated fibers were abundant dorsally in CL but absent ventrally, whereas PV expressing fibers occupied the entire CL. CB staining revealed a central gap within CL, also visible anterior to the striatum. The Nr2f2, Npsr1, and Cplx3 genes expressed specifically within different subregions of the CLCX, and Rprm helped delineate the CL-insular border. Furthermore, cells in CL projecting to the retrosplenial cortex were located within the myelin sparse area. By combining own experimental data with digitally available datasets of gene expression and input connectivity, we could demonstrate that the proposed delineation scheme allows anchoring of datasets from different origins to a common reference framework.
Collapse
Affiliation(s)
- Joachim S. Grimstvedt
- Kavli Institute for Systems NeuroscienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Andrew M. Shelton
- Department of Physiology, Anatomy & GeneticsUniversity of OxfordOxfordUK
| | | | - David K. Oliver
- Department of Physiology, Anatomy & GeneticsUniversity of OxfordOxfordUK
| | - Christin H. Berndtsson
- Kavli Institute for Systems NeuroscienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Stefan Blankvoort
- Kavli Institute for Systems NeuroscienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Rajeevkumar R. Nair
- Kavli Institute for Systems NeuroscienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Adam M. Packer
- Department of Physiology, Anatomy & GeneticsUniversity of OxfordOxfordUK
| | - Menno P. Witter
- Kavli Institute for Systems NeuroscienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Clifford G. Kentros
- Kavli Institute for Systems NeuroscienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
- Institute of NeuroscienceUniversity of OregonEugeneOregonUSA
| |
Collapse
|
2
|
Pirone A, Ciregia F, Lazzarini G, Miragliotta V, Ronci M, Zuccarini M, Zallocco L, Beghelli D, Mazzoni MR, Lucacchini A, Giusti L. Proteomic Profiling Reveals Specific Molecular Hallmarks of the Pig Claustrum. Mol Neurobiol 2023; 60:4336-4358. [PMID: 37095366 PMCID: PMC10293365 DOI: 10.1007/s12035-023-03347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
The present study, employing a comparative proteomic approach, analyzes the protein profile of pig claustrum (CLA), putamen (PU), and insula (IN). Pig brain is an interesting model whose key translational features are its similarities with cortical and subcortical structures of human brain. A greater difference in protein spot expression was observed in CLA vs PU as compared to CLA vs IN. The deregulated proteins identified in CLA resulted to be deeply implicated in neurodegenerative (i.e., sirtuin 2, protein disulfide-isomerase 3, transketolase) and psychiatric (i.e., copine 3 and myelin basic protein) disorders in humans. Metascape analysis of differentially expressed proteins in CLA vs PU comparison suggested activation of the α-synuclein pathway and L1 recycling pathway corroborating the involvement of these anatomical structures in neurodegenerative diseases. The expression of calcium/calmodulin-dependent protein kinase and dihydropyrimidinase like 2, which are linked to these pathways, was validated using western blot analysis. Moreover, the protein data set of CLA vs PU comparison was analyzed by Ingenuity Pathways Analysis to obtain a prediction of most significant canonical pathways, upstream regulators, human diseases, and biological functions. Interestingly, inhibition of presenilin 1 (PSEN1) upstream regulator and activation of endocannabinoid neuronal synapse pathway were observed. In conclusion, this is the first study presenting an extensive proteomic analysis of pig CLA in comparison with adjacent areas, IN and PUT. These results reinforce the common origin of CLA and IN and suggest an interesting involvement of CLA in endocannabinoid circuitry, neurodegenerative, and psychiatric disorders in humans.
Collapse
Affiliation(s)
- Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy.
| | - Federica Ciregia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
- Interuniversitary Consortium for Engineering and Medicine, COIIM, Campobasso, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniela Beghelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
3
|
Wong KLL, Nair A, Augustine GJ. Changing the Cortical Conductor's Tempo: Neuromodulation of the Claustrum. Front Neural Circuits 2021; 15:658228. [PMID: 34054437 PMCID: PMC8155375 DOI: 10.3389/fncir.2021.658228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The claustrum is a thin sheet of neurons that is densely connected to many cortical regions and has been implicated in numerous high-order brain functions. Such brain functions arise from brain states that are influenced by neuromodulatory pathways from the cholinergic basal forebrain, dopaminergic substantia nigra and ventral tegmental area, and serotonergic raphe. Recent revelations that the claustrum receives dense input from these structures have inspired investigation of state-dependent control of the claustrum. Here, we review neuromodulation in the claustrum-from anatomical connectivity to behavioral manipulations-to inform future analyses of claustral function.
Collapse
Affiliation(s)
- Kelly L. L. Wong
- Neuroscience and Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Aditya Nair
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA, United States
| | - George J. Augustine
- Neuroscience and Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
4
|
Pain B, Baquerre C, Coulpier M. Cerebral organoids and their potential for studies of brain diseases in domestic animals. Vet Res 2021; 52:65. [PMID: 33941270 PMCID: PMC8090903 DOI: 10.1186/s13567-021-00931-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
The brain is a complex organ and any model for studying it in its normal and pathological aspects becomes a tool of choice for neuroscientists. The mastering and dissemination of protocols allowing brain organoids development have paved the way for a whole range of new studies in the field of brain development, modeling of neurodegenerative or neurodevelopmental diseases, understanding tumors as well as infectious diseases that affect the brain. While studies are so far limited to the use of human cerebral organoids, there is a growing interest in having similar models in other species. This review presents what is currently developed in this field, with a particular focus on the potential of cerebral organoids for studying neuro-infectious diseases in human and domestic animals.
Collapse
Affiliation(s)
- Bertrand Pain
- Univ Lyon, Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France.
| | - Camille Baquerre
- Univ Lyon, Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Muriel Coulpier
- UMR1161 Virologie, Anses, INRAE, École Nationale Vétérinaire D'Alfort, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
5
|
Grandis A, Gardini A, Tagliavia C, Salamanca G, Graïc JM, De Silva M, Bombardi C. Anatomical organization of the lateral cervical nucleus in Artiodactyls. Vet Res Commun 2021; 45:87-99. [PMID: 33866493 PMCID: PMC8373732 DOI: 10.1007/s11259-021-09788-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/05/2021] [Indexed: 12/02/2022]
Abstract
The presence of the lateral cervical nucleus (LCN) in different mammals, including humans, has been established in a number of anatomical research works. The LCN receives its afferent inputs from the spinocervical tract, and conveys this somatosensory information to the various brain areas, especially the thalamus. In the present study, the organization of the calf and pig LCN was examined through the use of thionine staining and immunohistochemical methods combined with morphometrical analyses. Specifically, the localization of calbindin-D28k (CB-D28k) and neuronal nitric oxide synthase (nNOS) in the LCN was investigated using the immunoperoxidase method. Calf and pig LCN appear as a clearly defined column of gray matter located in the three cranial segments of the cervical spinal cord. Thionine staining shows that polygonal neurons represent the main cell type in both species. The calf and pig LCN contained CB-D28k-immunoreactive (IR) neurons of varying sizes. Large neurons are probably involved in the generation of the cervicothalamic pathway. Small CB-D28k-IR neurons, on the other hand, could act as local interneurons. The immunoreactivity for nNOS was found to be mainly located in thin neuronal processes that could represent the terminal axonal portion of nNOS-IR found in laminae III e IV. This evidence suggests that nitric oxide (NO) could modulate the synaptic activity of the glutamatergic spinocervical tracts. These findings suggest that the LCN of Artiodactyls might play an important role in the transmission of somatosensory information from the spinal cord to the higher centers of the brain.
Collapse
Affiliation(s)
- Annamaria Grandis
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Anna Gardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, PD, Italy
| | - Margherita De Silva
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy.
| |
Collapse
|
6
|
Pirone A, Graïc J, Grisan E, Cozzi B. The claustrum of the sheep and its connections to the visual cortex. J Anat 2021; 238:1-12. [PMID: 32885430 PMCID: PMC7755083 DOI: 10.1111/joa.13302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023] Open
Abstract
The present study analyses the organization and selected neurochemical features of the claustrum and visual cortex of the sheep, based on the patterns of calcium-binding proteins expression. Connections of the claustrum with the visual cortex have been studied by tractography. Parvalbumin-immunoreactive (PV-ir) and Calbindin-immunoreactive (CB-ir) cell bodies increased along the rostro-caudal axis of the nucleus. Calretinin (CR)-labeled somata were few and evenly distributed along the rostro-caudal axis. PV and CB distribution in the visual cortex was characterized by larger round and multipolar cells for PV, and more bitufted neurons for CB. The staining pattern for PV was the opposite of that of CR, which showed densely stained but rare cell bodies. Tractography shows the existence of connections with the caudal visual cortex. However, we detected no contralateral projection in the visuo-claustral interconnections. Since sheep and goats have laterally placed eyes and a limited binocular vision, the absence of contralateral projections could be of prime importance if confirmed by other studies, to rule out the role of the claustrum in stereopsis.
Collapse
Affiliation(s)
- Andrea Pirone
- Department of Veterinary SciencesUniversity of PisaPisaItaly
| | - Jean‐Marie Graïc
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Enrico Grisan
- Department of Information EngineeringUniversity of PadovaVicenzaItaly,School of EngineeringLondon South Bank UniversityLondonUK
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| |
Collapse
|
7
|
Pirone A, Lazzarini G, Lenzi C, Giannessi E, Miragliotta V. Immunolocalization of cannabinoid receptor 1 (CB1), monoglyceride lipase (MGL) and fatty-acid amide hydrolase 1 (FAAH) in the pig claustrum. J Chem Neuroanat 2020; 109:101843. [DOI: 10.1016/j.jchemneu.2020.101843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022]
|
8
|
Baizer JS, Webster CJ, Baker JF. The Claustrum in the Squirrel Monkey. Anat Rec (Hoboken) 2019; 303:1439-1454. [DOI: 10.1002/ar.24253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/21/2019] [Accepted: 06/29/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Joan S. Baizer
- Department of Physiology and BiophysicsJacobs School of Medicine and Biomedical Sciences, University at Buffalo Buffalo New York
| | - Charles J. Webster
- Department of Physiology and BiophysicsJacobs School of Medicine and Biomedical Sciences, University at Buffalo Buffalo New York
| | - James F. Baker
- Department of PhysiologyNorthwestern University Medical School Chicago Illinois
| |
Collapse
|
9
|
Borroto-Escuela DO, Fuxe K. On the G Protein-Coupled Receptor Neuromodulation of the Claustrum. Neurochem Res 2019; 45:5-15. [PMID: 31172348 PMCID: PMC6942600 DOI: 10.1007/s11064-019-02822-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/20/2019] [Accepted: 05/29/2019] [Indexed: 01/22/2023]
Abstract
G protein-coupled receptors modulate the synaptic glutamate and GABA transmission of the claustrum. The work focused on the transmitter–receptor relationships in the claustral catecholamine system and receptor–receptor interactions between kappa opioid receptors (KOR) and SomatostatinR2 (SSTR2) in claustrum. Methods used involved immunohistochemistry and in situ proximity ligation assay (PLA) using confocal microscopy. Double immunolabeling studies on dopamine (DA) D1 receptor (D1R) and tyrosine hydroxylase (TH) immunoreactivities (IR) demonstrated that D1R IR existed in almost all claustral and dorsal endopiriform nucleus (DEn) nerve cell bodies, known as glutamate projection neurons, and D4R IR in large numbers of nerve cell bodies of the claustrum and DEn. However, only a low to moderate density of TH IR nerve terminals was observed in the DEn versus de few scattered TH IR terminals found in the claustrum. These results indicated that DA D1R and D4R transmission in the rat operated via long distance DA volume transmission in the rat claustrum and DEn to modulate claustral-sensory cortical glutamate transmission. Large numbers of these glutamate projection neurons also expressed KOR and SSTR2 which formed KOR-SSTR2 heteroreceptor complexes using PLA. Such receptor–receptor interactions can finetune the activity of the glutamate claustral-sensory cortex projections from inhibition to enhancement of their sensory cortex signaling. This can give the sensory cortical regions significant help in deciding on the salience to be given to various incoming sensory stimuli.
Collapse
Affiliation(s)
- Dasiel O Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden. .,Department of Biomolecular Science, Section of Physiology, University of Urbino, Campus Scientifico Enrico Mattei, via Ca' le Suore 2, 61029, Urbino, Italy. .,Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Zayas 50, 62100, Yaguajay, Cuba. .,Biomedicum, Solnavagen 9, 17177, Stockholm, Sweden.
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden.
| |
Collapse
|
10
|
Pirone A, Miragliotta V, Cozzi B, Granato A. The Claustrum of the Pig: An Immunohistochemical and a Quantitative Golgi Study. Anat Rec (Hoboken) 2019; 302:1638-1646. [DOI: 10.1002/ar.24073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/03/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Andrea Pirone
- Department of Veterinary SciencesUniversity of Pisa Pisa Italy
| | | | - Bruno Cozzi
- Department of Comparative Biomedicine and Food ScienceUniversity of Padova Legnaro Italy
| | - Alberto Granato
- Department of PsychologyCatholic University of the Sacred Heart Milan Italy
| |
Collapse
|
11
|
Hinova-Palova D, Iliev A, Edelstein L, Landzhov B, Kotov G, Paloff A. Electron microscopic study of Golgi-impregnated and gold-toned neurons and fibers in the claustrum of the cat. J Mol Histol 2018; 49:615-630. [DOI: 10.1007/s10735-018-9799-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/05/2018] [Indexed: 12/28/2022]
|