1
|
Raman, Labisch S, Dirks JH. A starfish-inspired 4D self-healing morphing structure. Sci Rep 2024; 14:22024. [PMID: 39322641 PMCID: PMC11424623 DOI: 10.1038/s41598-024-71919-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
Inspired by the starfish's unique ability to achieve flexibility and posture-holding with minimal energy expenditure, we present a novel bioinspired morphing structure. Our two-component design, consisting of a thermoplastic mesh and elastomeric jacket, effectively mimics the functions of the starfish's ossicles, mutable collagenous tissues, and derma. This structure exhibits a remarkable combination of self-healing, time-dependent shape memory, and self-posture-holding properties. Systematic variations in mesh geometry demonstrate precise control over structural stiffness and thermal response, enabling customization for specific applications. The structure's scalability and ease of fabrication further enhance its adaptability. We experimentally demonstrate the potential of our biomimetic morphing structure using several prototypes. This work lays the foundation for developing a new type of versatile morphing structures with applications in diverse fields, including robotics, biomedical devices, and adaptive structures.
Collapse
Affiliation(s)
- Raman
- Biomimetics-Innovation-Centre, Hochschule Bremen - City University of Applied Sciences, Bremen, Germany
| | - Susanna Labisch
- Biomimetics-Innovation-Centre, Hochschule Bremen - City University of Applied Sciences, Bremen, Germany
| | - Jan-Henning Dirks
- Biomimetics-Innovation-Centre, Hochschule Bremen - City University of Applied Sciences, Bremen, Germany.
| |
Collapse
|
2
|
Tomholt L, Baum D, Wood RJ, Weaver JC. High-throughput segmentation, data visualization, and analysis of sea star skeletal networks. J Struct Biol 2023; 215:107955. [PMID: 36905978 DOI: 10.1016/j.jsb.2023.107955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
The remarkably complex skeletal systems of the sea stars (Echinodermata, Asteroidea), consisting of hundreds to thousands of individual elements (ossicles), have intrigued investigators for more than 150 years. While the general features and structural diversity of isolated asteroid ossicles have been well documented in the literature, the task of mapping the spatial organization of these constituent skeletal elements in a whole-animal context represents an incredibly laborious process, and as such, has remained largely unexplored. To address this unmet need, particularly in the context of understanding structure-function relationships in these complex skeletal systems, we present an integrated approach that combines micro-computed tomography, semi-automated ossicle segmentation, data visualization tools, and the production of additively manufactured tangible models to reveal biologically relevant structural data that can be rapidly analyzed in an intuitive manner. In the present study, we demonstrate this high-throughput workflow by segmenting and analyzing entire skeletal systems of the giant knobby star, Pisaster giganteus, at four different stages of growth. The in-depth analysis, presented herein, provides a fundamental understanding of the three-dimensional skeletal architecture of the sea star body wall, the process of skeletal maturation during growth, and the relationship between skeletal organization and morphological characteristics of individual ossicles. The widespread implementation of this approach for investigating other species, subspecies, and growth series has the potential to fundamentally improve our understanding of asteroid skeletal architecture and biodiversity in relation to mobility, feeding habits, and environmental specialization in this fascinating group of echinoderms.
Collapse
Affiliation(s)
- Lara Tomholt
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Harvard University Graduate School of Design, 48 Quincy St, Cambridge, MA 02138, USA
| | - Daniel Baum
- Department of Visual and Data-Centric Computing, Zuse Institute Berlin, 14195 Berlin, Germany
| | - Robert J Wood
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - James C Weaver
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Wilkie IC, Candia Carnevali MD. Morphological and Physiological Aspects of Mutable Collagenous Tissue at the Autotomy Plane of the Starfish Asterias rubens L. (Echinodermata, Asteroidea): An Echinoderm Paradigm. Mar Drugs 2023; 21:md21030138. [PMID: 36976186 PMCID: PMC10058165 DOI: 10.3390/md21030138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
The mutable collagenous tissue (MCT) of echinoderms has the capacity to undergo changes in its tensile properties within a timescale of seconds under the control of the nervous system. All echinoderm autotomy (defensive self-detachment) mechanisms depend on the extreme destabilisation of mutable collagenous structures at the plane of separation. This review illustrates the role of MCT in autotomy by bringing together previously published and new information on the basal arm autotomy plane of the starfish Asterias rubens L. It focuses on the MCT components of breakage zones in the dorsolateral and ambulacral regions of the body wall, and details data on their structural organisation and physiology. Information is also provided on the extrinsic stomach retractor apparatus whose involvement in autotomy has not been previously recognised. We show that the arm autotomy plane of A. rubens is a tractable model system for addressing outstanding problems in MCT biology. It is amenable to in vitro pharmacological investigations using isolated preparations and provides an opportunity for the application of comparative proteomic analysis and other “-omics” methods which are aimed at the molecular profiling of different mechanical states and characterising effector cell functions.
Collapse
Affiliation(s)
- Iain C. Wilkie
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
- Correspondence: (I.C.W.); (M.D.C.C.)
| | - M. Daniela Candia Carnevali
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
- Correspondence: (I.C.W.); (M.D.C.C.)
| |
Collapse
|
4
|
Dornburg A, Mallik R, Wang Z, Bernal MA, Thompson B, Bruford EA, Nebert DW, Vasiliou V, Yohe LR, Yoder JA, Townsend JP. Placing human gene families into their evolutionary context. Hum Genomics 2022; 16:56. [PMID: 36369063 PMCID: PMC9652883 DOI: 10.1186/s40246-022-00429-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Following the draft sequence of the first human genome over 20 years ago, we have achieved unprecedented insights into the rules governing its evolution, often with direct translational relevance to specific diseases. However, staggering sequence complexity has also challenged the development of a more comprehensive understanding of human genome biology. In this context, interspecific genomic studies between humans and other animals have played a critical role in our efforts to decode human gene families. In this review, we focus on how the rapid surge of genome sequencing of both model and non-model organisms now provides a broader comparative framework poised to empower novel discoveries. We begin with a general overview of how comparative approaches are essential for understanding gene family evolution in the human genome, followed by a discussion of analyses of gene expression. We show how homology can provide insights into the genes and gene families associated with immune response, cancer biology, vision, chemosensation, and metabolism, by revealing similarity in processes among distant species. We then explain methodological tools that provide critical advances and show the limitations of common approaches. We conclude with a discussion of how these investigations position us to gain fundamental insights into the evolution of gene families among living organisms in general. We hope that our review catalyzes additional excitement and research on the emerging field of comparative genomics, while aiding the placement of the human genome into its existentially evolutionary context.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA.
| | - Rittika Mallik
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Moisés A Bernal
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, USA
| | - Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Elspeth A Bruford
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Laurel R Yohe
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey P Townsend
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Chen H, Jia Z, Li L. Lightweight lattice-based skeleton of the sponge Euplectella aspergillum: On the multifunctional design. J Mech Behav Biomed Mater 2022; 135:105448. [PMID: 36166939 DOI: 10.1016/j.jmbbm.2022.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 10/31/2022]
Abstract
The glass sponge, Euplectella aspergillum, possesses a lightweight, silica spicule-based, cylindrical lattice-like skeleton, representing an excellent model system for bioinspired lattices. Previous analysis suggested that the E. aspergillum's skeletal lattice exhibits improved buckling resistance and suppressed vortex shedding. How the sponge's skeletal lattice with diagonally-oriented reinforcing bundle of fused spicules and the ridge system behaves under different loading conditions and achieves dual mechanical and fluidic transport performance requires further investigation. Here, we first quantified the structural descriptors such as length and thickness of the bundles of fused spicules and hole opening diameter of the sponge skeletons with and without the soft tissue covered. Secondly, parametric modeling and simulations of the sponge lattice in comparison with other bioinspired designs under different loading conditions were implemented to obtain the structure-mechanical property relationship. Our results reveal that the double-diagonal reinforcements of the E. aspergillum's lattices show i) tendency to maximize the torsional rigidity in comparison to longitudinal and radial modulus and flexural rigidity, and ii) independency of mechanical properties on the diagonal spacing, leaving freedom to control the hole-opening position for the sponge's fluid transport. Furthermore, our coupled fluid-mechanical simulations suggest that the ridge system spiraling the cylindrical lattice simultaneously improves the radial stiffness and fluid permeability. Finally, we discuss the general mechanical strategies and design flexibility in the sponge's skeletal lattice. Our work provides understanding of the mechanical and functional trade-offs in E. aspergillum's skeletal lattice which may shed light on the design of lightweight tubular lattices.
Collapse
Affiliation(s)
- Hongshun Chen
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Zian Jia
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Ling Li
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24060, USA.
| |
Collapse
|
6
|
Martins L, Souto C, Tavares M. Exploring the macrostructural anatomy of dendrochirotid sea cucumber's (Echinodermata) calcareous rings under micro-computed tomography and its bearing on phylogeny. J Anat 2020; 238:1386-1403. [PMID: 33372702 DOI: 10.1111/joa.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/01/2022] Open
Abstract
Despite descending from heavily calcified ancestors, the holothuroid skeleton is fully internal and composed of microscopic ossicles and a ring of plates bound by connective tissue, the calcareous ring. The calcareous ring exhibits a complex and poorly understood morphology; as a result, establishing unambiguous homology statements about its macrostructure has been challenging and phylogenetic studies have had to simplify this important structure. Here, we provide the first broad comparative study of Dendrochirotida calcareous rings using micro-computed tomography (μCT). A detailed description of the three-dimensional macrostructure of the calcareous ring of 10 sea cucumber species, including rare and type specimens, is presented. The structures observed were highly variable at the subfamily level, especially at the point of tissue attachment. The relationship between the calcareous ring and its associated organs, and their functional morphology are discussed. To aid future phylogenetic studies, we listed 22 characters and performed a preliminary cladistic analysis. The topology obtained supports the idea that the simple, cucumariid ring is ancestral to the mosaic-like phyllophorid ring; however, it did not support the monophyly of the cucumariids. It also did not support the family Sclerodactylidae, which was described based on the ring morphology. Differently from the dermal ossicles, which are highly homoplastic, the general homoplasy index of the calcareous ring characters was relatively low. This result highlights the importance of this structure for phylogenetic inference. Unfortunately, time since collection, rough collection methods and fixation can damage the skeleton, and the calcareous ring is often overlooked in taxonomic descriptions. The data presented here will improve our understanding of holothuroid relationships and facilitate studies on holothuroid functional morphology and biomechanics.
Collapse
Affiliation(s)
- Luciana Martins
- Museu de Zoologia, Universidade de São Paulo, São Paulo, Brazil
| | - Camilla Souto
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Marcos Tavares
- Museu de Zoologia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Fau M, Villier L. Comparative anatomy and phylogeny of the Forcipulatacea (Echinodermata: Asteroidea): insights from ossicle morphology. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A new phylogenetic analysis of the superorder Forcipulatacea is presented. Forcipulatacea is one of the three major groups of sea stars (Asteroidea: Echinodermata), composed of 400 extant species. The sampled taxa are thought to represent the morphological diversity of the group. Twenty-nine forcipulate taxa were sampled belonging to Asteriidae, Stichasteridae, Heliasteridae, Pedicellasteridae, Zoroasteridae and Brisingida. Specimens were dissected with bleach. Detailed description of the skeleton and the anatomy of the ossicles were investigated using scanning electron microscopy. Comparative anatomy allowed the scoring of 115 phylogenetically informative characters. The consensus tree resulting from the analysis recovers Asteriidae, Stichasteridae, Zoroasteridae and Brisingida as monophyletic. All types of morphological features contribute to tree resolution and may be appropriate for taxon diagnosis. The synapomorphies supporting different clades are described and discussed. Brisingida and Zoroasteridae are the best-supported clades. The potentially challenging position of Brisingida in the tree may be explained by homoplastic changes, but also by the presence of numerous non-applicable characters.
Collapse
Affiliation(s)
- Marine Fau
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, Fribourg, Switzerland
| | - Loïc Villier
- Centre de Recherche en Paléontologie – Paris, UMR 7207 CNRS – MNHN – Sorbonne Université, Paris, France
| |
Collapse
|