1
|
Nagase T, Nagase M. Piezo ion channels: long-sought-after mechanosensors mediating hypertension and hypertensive nephropathy. Hypertens Res 2024; 47:2786-2799. [PMID: 39103520 DOI: 10.1038/s41440-024-01820-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024]
Abstract
Recent advances in mechanobiology and the discovery of mechanosensitive ion channels have opened a new era of research on hypertension and related diseases. Piezo1 and Piezo2, first reported in 2010, are regarded as bona fide mechanochannels that mediate various biological and pathophysiological phenomena in multiple tissues and organs. For example, Piezo channels have pivotal roles in blood pressure control, triggering shear stress-induced nitric oxide synthesis and vasodilation, regulating baroreflex in the carotid sinus and aorta, and releasing renin from renal juxtaglomerular cells. Herein, we provide an overview of recent literature on the roles of Piezo channels in the pathogenesis of hypertension and related kidney damage, including our experimental data on the involvement of Piezo1 in podocyte injury and that of Piezo2 in renin expression and renal fibrosis in animal models of hypertensive nephropathy. The mechanosensitive ion channels Piezo1 and Piezo2 play various roles in the pathogenesis of systemic hypertension by acting on vascular endothelial cells, baroreceptors in the carotid artery and aorta, and the juxtaglomerular apparatus. Piezo channels also contribute to hypertensive nephropathy by acting on mesangial cells, podocytes, and perivascular mesenchymal cells.
Collapse
Affiliation(s)
- Takashi Nagase
- Kunitachi Aoyagien Tachikawa Geriatric Health Services Facility, Tokyo, Japan
| | - Miki Nagase
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan.
| |
Collapse
|
2
|
Özdemir-Sancı T, Sancı A, Nakkaş H. Foreskin neurovascular structure: A histological analysis comparing 0-3 years and 6-11 years children. J Pediatr Urol 2024; 20:704.e1-704.e7. [PMID: 38580481 DOI: 10.1016/j.jpurol.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Circumcision is a surgical operation that is frequently performed throughout the world due to religious, cultural, and medical reasons. The best age for circumcision is still debatable, with different procedures depending on geography, culture, and surgeon preference. OBJECTIVE This study aims to immunohistochemical examination using S100 staining and histologically evaluate the neurovascular structures in foreskin samples obtained from children aged 0-3 years and 6-11 years. The goal is to provide guidance in determining an appropriate age for circumcision based on these data. STUDY DESIGN Concerns regarding potential effects on glans sensitivity and sexual function led to the investigation and comparison of sensory innervation in the foreskin of children aged 0-3 and 6-11 years, a total 54 samples, divided into pre-phallic (0-3 years) and post-phallic (6-11 years) groups, were examined. The mean number of Meissner and Pacinian corpuscles, Ruffini endings, free nerve endings and the diameters of arteries were investigated. RESULTS Our findings show that compared to the 6-11 age group, the 0-3 age group had considerably lower sensory innervation in terms of, Meissner's corpuscles, Pacinian corpuscles, Ruffini endings and free nerve endings. Additionally, the diameter of arteries was noticeably smaller in the 0-3 age group. CONCLUSIONS In conclusion, this study supports the idea that circumcision performed in the early years of life may be associated with less adverse effects on neurovascular structures.
Collapse
Affiliation(s)
- Tuba Özdemir-Sancı
- Ankara Yıldırım Beyazıt University, Department of Histology and Embryology, Ankara, Turkey.
| | - Adem Sancı
- Etlik City Hospital, Department of Urology, Ankara, Turkey
| | - Hilal Nakkaş
- Ankara Yıldırım Beyazıt University, Department of Histology and Embryology, Ankara, Turkey
| |
Collapse
|
3
|
Cuendias P, Vega JA, García-Suárez O, Suazo I, Cobo R, García-Piqueras J, García-Mesa Y. Axonal and Glial PIEZO1 and PIEZO2 Immunoreactivity in Human Clitoral Krause's Corpuscles. Int J Mol Sci 2024; 25:6722. [PMID: 38928429 PMCID: PMC11203881 DOI: 10.3390/ijms25126722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Krause's corpuscles are typical of cutaneous mucous epithelia, like the lip vermillion or the glans clitoridis, and are associated with rapidly adapting low-threshold mechanoreceptors involved in gentle touch or vibration. PIEZO1 and PIEZO2 are transmembrane mechano-gated proteins that form a part of the cationic ion channels required for mechanosensitivity in mammalian cells. They are involved in somatosensitivity, especially in the different qualities of touch, but also in pain and proprioception. In the present study, immunohistochemistry and immunofluorescence were used to analyze the occurrence and cellular location of PIEZO1 and PIEZO2 in human clitoral Krause's corpuscles. Both PIEZO1 and PIEZO2 were detected in Krause's corpuscles in both the axon and the terminal glial cells. The presence of PIEZOs in the terminal glial cells of Kraus's corpuscles is reported here for the first time. Based on the distribution of PIEZO1 and PIEZO2, it may be assumed they could be involved in mechanical stimuli, sexual behavior, and sexual pleasure.
Collapse
Affiliation(s)
- Patricia Cuendias
- Grupo de Investigación SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (P.C.); (J.A.V.); (O.G.-S.); (J.G.-P.)
| | - José A. Vega
- Grupo de Investigación SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (P.C.); (J.A.V.); (O.G.-S.); (J.G.-P.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Providencia, Santiago de Chile 4810010, Chile;
| | - Olivia García-Suárez
- Grupo de Investigación SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (P.C.); (J.A.V.); (O.G.-S.); (J.G.-P.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Iván Suazo
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Providencia, Santiago de Chile 4810010, Chile;
| | - Ramón Cobo
- Servicio de Otorrinolaringología, Hospital Universitario “Marqués de Valdecilla”, 39008 Santander, Spain;
| | - Jorge García-Piqueras
- Grupo de Investigación SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (P.C.); (J.A.V.); (O.G.-S.); (J.G.-P.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Yolanda García-Mesa
- Grupo de Investigación SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (P.C.); (J.A.V.); (O.G.-S.); (J.G.-P.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
4
|
Cho KH, Sugiyama Y, Watanabe G, Hirouchi H, Murakami G, Rodríguez-Vázquez JF, Abe SI. Mentalis nerve branches supplying the lower lip revisited: a study of human fetuses and donated elderly cadavers. Surg Radiol Anat 2024; 46:895-904. [PMID: 38684555 DOI: 10.1007/s00276-024-03365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE Little information is known about the mentalis nerve course from the lower lip approximation margin (free margin) to the upper lip. Likewise, no difference in nerve distribution has been observed between the cutaneous and mucosal parts of the lip. Therefore, this study reexamined mentalis nerve morphology. METHODS For macroscopic observations, three fresh cadavers were dissected (one male and two females; aged 78-93). We also evaluated histological sections obtained from five donated elderly cadavers (two males and three females, aged 82-96 years) and 15 human fetuses (11-40 weeks or crown-rump length 80-372 mm). Immunohistochemical analysis for S100 protein and tyrosine hydroxylase was performed. RESULTS In both fetuses and adult cadavers, one to three nerve branches ran upward in the submucosal tissue from the mental foramen. Near the free margin of the lip, some branches passed through the orbicularis oris muscle layer toward the lip skin, whereas others followed a reversed J-shaped course along the free margin. Nerve twigs ran in parallel beneath the mucosa, whereas wavy nerve twigs attached to the basal lamina of the lip epidermis. The difference in nerve endings abruptly occurred at the skin-mucosal junction. Tyrosine hydroxylase-positive sympathetic nerve twigs surrounded arteries and formed a branch composed of S100-negative unmyelinated fibers. CONCLUSION The lower lip skin was innervated by a perforating branch passing through the orbicularis oris muscle, that was different from the lip mucosa. A sudden change in the nerve ending configuration at the mucocutaneous junction seemed to develop postnatally.
Collapse
Affiliation(s)
- Kwang Ho Cho
- Department of Neurology, Institute of Wonkwang Medical Science, Wonkwang University School of Medicine and Hospital, 895, Muwang-ro, Iksan-si, 54538, Jeollabuk-do, Republic of Korea.
| | - Yuki Sugiyama
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Genji Watanabe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Hidetomo Hirouchi
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan
- Division of Internal Medicine, Cupid Clinic, Iwamizawa, Japan
| | | | - Shin-Ichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan
| |
Collapse
|
5
|
Kacem H, Cimini A, d’Angelo M, Castelli V. Molecular and Cellular Involvement in CIPN. Biomedicines 2024; 12:751. [PMID: 38672107 PMCID: PMC11048589 DOI: 10.3390/biomedicines12040751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Many anti-cancer drugs, such as taxanes, platinum compounds, vinca alkaloids, and proteasome inhibitors, can cause chemotherapy-induced peripheral neuropathy (CIPN). CIPN is a frequent and harmful side effect that affects the sensory, motor, and autonomic nerves, leading to pain, numbness, tingling, weakness, and reduced quality of life. The causes of CIPN are not fully known, but they involve direct nerve damage, oxidative stress, inflammation, DNA damage, microtubule dysfunction, and altered ion channel activity. CIPN is also affected by genetic, epigenetic, and environmental factors that modulate the risk and intensity of nerve damage. Currently, there are no effective treatments or prevention methods for CIPN, and symptom management is mostly symptomatic and palliative. Therefore, there is a high demand for better understanding of the cellular and molecular mechanisms involved in CIPN, as well as the development of new biomarkers and therapeutic targets. This review gives an overview of the current knowledge and challenges in the field of CIPN, focusing on the biological and molecular mechanisms underlying this disorder.
Collapse
Affiliation(s)
| | | | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (H.K.); (A.C.); (V.C.)
| | | |
Collapse
|
6
|
García-Mesa Y, Cuendias P, Alonso-Guervós M, García-Piqueras J, Martín-Biedma B, Cobo T, García-Suárez O, Vega JA. Immunohistochemical detection of PIEZO1 and PIEZO2 in human digital Meissner´s corpuscles. Ann Anat 2024; 252:152200. [PMID: 38109982 DOI: 10.1016/j.aanat.2023.152200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND The cutaneous end organ complexes or cutaneous sensory corpuscles are specialized sensory organs associated to low-threshold mechanoreceptors. Mechano-gated proteins forming a part of ion channels have been detected in both the axon and terminal glial cells of Meissner corpuscles, a specific cutaneous end organ complex in the human glabrous skin. The main candidates to mechanotransduction in Meissner corpuscles are members of the Piezo family of cationic ion channels. PIEZO2 has been detected in the axon of these sensory structures whereas no data exists about the occurrence and cell localization of PIEZO1. METHODS Skin samples (n = 18) from the palmar aspect of the distal phalanx of the first and second fingers were analysed (8 female and 10 males; age range 26 to 61 26-61 years). Double immunofluorescence for PIEZO1 and PIEZO2 together with axonal or terminal glial cell markers was captured by laser confocal microscopy, and the percentage of PIEZOs positive Meissner corpuscles was evaluated. RESULTS MCs from human fingers showed variable morphology and degree of lobulation. Regarding the basic immunohistochemical profile, in all cases the axons were immunoreactive for neurofilament proteins, neuron specific enolase and synaptophysin, while the lamellar cells displayed strong S100P immunoreactivity. PIEZO1 was detected co-localizing with axonal markers, but never with terminal glial cell markers, in the 56% of Meissner corpuscles; weak but specific immunofluorescence was additionally detected in the epidermis, especially in basal keratinocytes. Similarly, PIEZO2 immunoreactivity was found restricted to the axon in the 85% of Meissner corpuscles. PIEZO2 positive Merkel cells were also regularly found. CONCLUSIONS PIEZO1 and PIEZO2 are expressed exclusively in the axon of a subpopulation of human digital Meissner corpuscles, thus suggesting that not only PIEZO2, but also PIEZO1 may be involved in the mechanotransduction from low-threshold mechanoreceptors.
Collapse
Affiliation(s)
- Yolanda García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain.
| | - Patricia Cuendias
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain.
| | - Marta Alonso-Guervós
- Unidad de Microscopía Fotónica y Análisis de Imágenes, Servicios Científico-Técnicos, Universidad de Oviedo, Spain.
| | - Jorge García-Piqueras
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain; Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de Madrid, Spain.
| | - Benjamín Martín-Biedma
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Santiago de Compostela, Spain.
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Instituto Asturiano de Odontología, Oviedo, Spain.
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain.
| | - José A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Providencia, Santiago de Chile, Chile.
| |
Collapse
|
7
|
Moreton S, Cox G, Sheldon M, Bailis SA, Klausner JD, Morris BJ. Comments by opponents on the British Medical Association's guidance on non-therapeutic male circumcision of children seem one-sided and may undermine public health. World J Clin Pediatr 2023; 12:244-262. [PMID: 38178933 PMCID: PMC10762604 DOI: 10.5409/wjcp.v12.i5.244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 12/08/2023] Open
Abstract
The British Medical Association (BMA) guidance on non-therapeutic circumcision (NTMC) of male children is limited to ethical, legal and religious issues. Here we evaluate criticisms of the BMA's guidance by Lempert et al. While their arguments promoting autonomy and consent might be superficially appealing, their claim of high procedural risks and negligible benefits seem one-sided and contrast with high quality evidence of low risk and lifelong benefits. Extensive literature reviews by the American Academy of Pediatrics and the United States Centers for Disease Control and Prevention in developing evidence-based policies, as well as risk-benefit analyses, have found that the medical benefits of infant NTMC greatly exceed the risks, and there is no reduction in sexual function and pleasure. The BMA's failure to consider the medical benefits of early childhood NTMC may partly explain why this prophylactic intervention is discouraged in the United Kingdom. The consequence is higher prevalence of preventable infections, adverse medical conditions, suffering and net costs to the UK's National Health Service for treatment of these. Many of the issues and contradictions in the BMA guidance identified by Lempert et al stem from the BMA's guidance not being sufficiently evidence-based. Indeed, that document called for a review by others of the medical issues surrounding NTMC. While societal factors apply, ultimately, NTMC can only be justified rationally on scientific, evidence-based grounds. Parents are entitled to an accurate presentation of the medical evidence so that they can make an informed decision. Their decision either for or against NTMC should then be respected.
Collapse
Affiliation(s)
| | - Guy Cox
- Australian Centre for Microscopy & Microanalysis and School of Aeronautical, Mechanical and Mechatronic Engineering, University of Sydney, Sydney 2006, New South Wales, Australia
| | - Mark Sheldon
- Medical Humanities and Bioethics Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60661, United States
| | - Stefan A Bailis
- Cornerstone Therapy & Recovery Center, St. Paul, MN 55101, United States
| | - Jeffrey D Klausner
- Department of Medicine, Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States
| | - Brian J Morris
- School of Medical Sciences, University of Sydney, Sydney 2006, New South Wales, Australia
| |
Collapse
|
8
|
Martín-Cruces J, Martín-Biedma B, García-Mesa Y, Cuendias P, Gaite JJ, García-Suárez O, Cobo JL, Vega JA. Exploring somatosensory innervation of the human lip: A focus on the vermilion. Ann Anat 2023; 250:152159. [PMID: 37741584 DOI: 10.1016/j.aanat.2023.152159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND The lips are a vital component of the face and are densely innervated to perform various functions. The lip edges are covered with mucocutaneous tissue called vermilion which is particularly receptive to touch and temperature. The aim of this study was to investigate the somatosensory innervation of human lips, focusing on sensory corpuscles and the presence of mechano-gated (ASIC2, PIEZO2, and TRPV4) and thermosensing (TRPV1, TRPM2, and RPM8) ion channels within them. METHODS Twelve intact lips (6 upper and 6 lower) were obtained from non-embalmed frozen cadavers (five females and seven males) with an age range of 60-80 years. The specimens were divided into three zones (medial, lateral, and median). The morphotypes of sensory corpuscles and their immunohistochemical profile was analysed. The occurrence of ion channels involved in mechanosensation and temperature detection was examined using various antibodies. Sensory corpuscle density was quantified in vermilion sections, and statistical analyses were conducted to assess differences between the upper and lower lips, as well as between females and males (p < 0.05). RESULTS Different morphotypes of sensory corpuscles were identified: Ruffini-like associated with hair follicles, Meissner and glomerular corpuscles in the vermilion, and less classifiable sensory corpuscles within the mucosa. The density of sensory corpuscles in the vermilion was higher in the upper lip than in the lower lip; glomerular corpuscles predominated in the medial and median segments, whereas Meissner corpuscles were more abundant in the lateral segment. No sex-related differences were observed in the density or distribution of the two main corpuscular morphotypes. In contrast, the axons of both the glomeruli and Meissner corpuscles regularly displayed ASIC2 and PIEZO2 immunoreactivity, whereas immunoreactivity for TRPV1, TRPV4, TRPM2, and TRPV8 was absent. CONCLUSIONS These results demonstrate that the sensory corpuscles of the vermilion are a mixture of those typical of glabrous skin mucocutaneous tissues. The presence of PIEZO2 and ASIC2 in their axons suggests that these sensory corpuscles function as mechanosensors.
Collapse
Affiliation(s)
- José Martín-Cruces
- Departamento de Morfología y Biología Celular - Grupo SINPOs, Universidad de Oviedo, Oviedo, Spain
| | - Benjamín Martín-Biedma
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Yolanda García-Mesa
- Departamento de Morfología y Biología Celular - Grupo SINPOs, Universidad de Oviedo, Oviedo, Spain
| | - Patricia Cuendias
- Departamento de Morfología y Biología Celular - Grupo SINPOs, Universidad de Oviedo, Oviedo, Spain
| | - Juan J Gaite
- Unidad Dental, Clínica Universitaria de Navarra, Pamplona, Spain
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular - Grupo SINPOs, Universidad de Oviedo, Oviedo, Spain
| | - Juan L Cobo
- Departamento de Morfología y Biología Celular - Grupo SINPOs, Universidad de Oviedo, Oviedo, Spain; Servico de Cirugía Maxillofacial, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - José A Vega
- Departamento de Morfología y Biología Celular - Grupo SINPOs, Universidad de Oviedo, Oviedo, Spain; Facutad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago de Chile, Chile.
| |
Collapse
|
9
|
Lam RM, von Buchholtz LJ, Falgairolle M, Osborne J, Frangos E, Rocio Servin-Vences M, Nagel M, Nguyen MQ, Jayabalan M, Saade D, Patapoutian A, Bönnemann CG, Ryba NJP, Chesler AT. PIEZO2 and perineal mechanosensation are essential for sexual function. Science 2023; 381:906-910. [PMID: 37616369 PMCID: PMC11418610 DOI: 10.1126/science.adg0144] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/13/2023] [Indexed: 08/26/2023]
Abstract
Despite the potential importance of genital mechanosensation for sexual reproduction, little is known about how perineal touch influences mating. We explored how mechanosensation affords exquisite awareness of the genitals and controls reproduction in mice and humans. Using genetic strategies and in vivo functional imaging, we demonstrated that the mechanosensitive ion channel PIEZO2 (piezo-type mechanosensitive ion channel component 2) is necessary for behavioral sensitivity to perineal touch. PIEZO2 function is needed for triggering a touch-evoked erection reflex and successful mating in both male and female mice. Humans with complete loss of PIEZO2 function have genital hyposensitivity and experience no direct pleasure from gentle touch or vibration. Together, our results help explain how perineal mechanoreceptors detect the gentlest of stimuli and trigger physiologically important sexual responses, thus providing a platform for exploring the sensory basis of sexual pleasure and its relationship to affective touch.
Collapse
Affiliation(s)
- Ruby M. Lam
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD 20892, USA
- Brown-National Institutes of Health Graduate Partnerships Program, Brown University, Providence, RI 02912, USA
| | | | - Melanie Falgairolle
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD 20892, USA
| | - Jennifer Osborne
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD 20892, USA
| | - Eleni Frangos
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD 20892, USA
| | - M. Rocio Servin-Vences
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maximilian Nagel
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD 20892, USA
| | - Minh Q. Nguyen
- National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Monessha Jayabalan
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD 20892, USA
| | - Dimah Saade
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Carsten G. Bönnemann
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Nicholas J. P. Ryba
- National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Alexander T. Chesler
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD 20892, USA
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
IWANAGA T, TAKAHASHI-IWANAGA H, NIO-KOBAYASHI J, EBARA S. Structure and barrier functions of the perineurium and its relationship with associated sensory corpuscles: A review. Biomed Res 2022; 43:145-159. [DOI: 10.2220/biomedres.43.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Toshihiko IWANAGA
- Department of Anatomy, Hokkaido University Graduate School of Medicine
| | | | | | | |
Collapse
|
11
|
Cepeda-Emiliani A, Gándara-Cortés M, Otero-Alén M, García H, Suárez-Quintanilla J, García-Caballero T, Gallego R, García-Caballero L. Immunohistological study of the density and distribution of human penile neural tissue: gradient hypothesis. Int J Impot Res 2022; 35:286-305. [PMID: 35501394 DOI: 10.1038/s41443-022-00561-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 01/12/2023]
Abstract
Immunohistological patterns of density and distribution of neural tissue in the human penis, including the prepuce, are not fully characterized, and effects of circumcision (partial or total removal of the penile prepuce) on penile sexual sensation are controversial. This study analyzed extra- and intracavernosal innervation patterns on the main penile axes using formalin-fixed, paraffin-embedded human adult and fetal penile tissues, single- and double-staining immunohistochemistry and a variety of neural and non-neural markers, with a special emphasis on the prepuce and potential sexual effects of circumcision. Immunohistochemical profiles of neural structures were determined and the most detailed immunohistological characterizations to date of preputial nerve supply are provided. The penile prepuce has a highly organized, dense, afferent innervation pattern that is manifest early in fetal development. Autonomically, it receives noradrenergic sympathetic and nitrergic parasympathetic innervation. Cholinergic nerves are also present. We observed cutaneous and subcutaneous neural density distribution biases across our specimens towards the ventral prepuce, including a region corresponding in the adult anatomical position (penis erect) to the distal third of the ventral penile aspect. We also describe a concept of innervation gradients across the longitudinal and transverse penile axes. Results are discussed in relation to the specialized literature. An argument is made that neuroanatomic substrates underlying unusual permanent penile sensory disturbances post-circumcision are related to heightened neural levels in the distal third of the ventral penile aspect, which could potentially be compromised by deep incisions during circumcision.
Collapse
Affiliation(s)
- Alfonso Cepeda-Emiliani
- Department of Morphological Sciences, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Marina Gándara-Cortés
- Department of Morphological Sciences, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain.,Department of Pathology, University Clinical Hospital, Santiago de Compostela, Spain
| | - María Otero-Alén
- Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Heidy García
- National Institute of Legal Medicine and Forensic Sciences of Colombia, Barranquilla, Colombia
| | - Juan Suárez-Quintanilla
- Department of Morphological Sciences, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomás García-Caballero
- Department of Morphological Sciences, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain.,Department of Pathology, University Clinical Hospital, Santiago de Compostela, Spain
| | - Rosalía Gallego
- Department of Morphological Sciences, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Lucía García-Caballero
- Department of Morphological Sciences, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
12
|
Cox G, Morris BJ. Re: Sensory innervation of the human male prepuce-Meissner's corpuscles predominate. J Anat 2022; 240:1002-1003. [PMID: 34914107 PMCID: PMC9005673 DOI: 10.1111/joa.13610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
Density of Meissner's corpuscles in the prepuce as a function of age in patients circumcised for phimosis and redundant prepuce.
Collapse
Affiliation(s)
- Guy Cox
- School of Medical Sciences and Australian Centre for Microscopy & MicroanalysisUniversity of SydneySydneyNew South WalesAustralia
| | - Brian J. Morris
- School of Medical Sciences and Australian Centre for Microscopy & MicroanalysisUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
13
|
García-Mesa Y, García-Piqueras J, Cuendias P, Cobo R, Martín-Cruces J, Feito J, García-Suarez O, Biedma BM, Vega J. SYNAPTOPHYSIN IS A SELECTIVE MARKER FOR AXONS IN HUMAN CUTANEOUS END ORGAN COMPLEXES. Ann Anat 2022; 243:151955. [DOI: 10.1016/j.aanat.2022.151955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/04/2022] [Accepted: 04/24/2022] [Indexed: 12/25/2022]
|