1
|
Zhao H, Jin L, Huang K, Zhong K, Zhou Y, Xu Y, Zhu Q, Zhou J, Tang J, Luo Q, Guo J, Zhang D, Chen G. Associations between metal/metalloid exposure during pregnancy and placental growth characteristics: Findings from the Hangzhou birth cohort study II. Int J Hyg Environ Health 2024; 263:114470. [PMID: 39342751 DOI: 10.1016/j.ijheh.2024.114470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Previous studies have suggested that metal/metalloid (hereafter referred to as metal) exposure may influence placental growth by affecting gene expression in the placenta. However, no epidemiological studies have been conducted to validate the relationships between metals exposure, placental gene expression, and placental growth at the population level. This study aims to investigate these relationships based on Hangzhou birth cohort study II (HBCS-II). Totally, 1025 participants were derived from HBCS-II. Thirteen metals levels in the placenta were measured using inductively coupled plasma mass spectrometry. Placental growth characteristics were assessed, including placental weight, chorionic disc area, placental eccentricity, and distance from cord insertion site to the nearest edge of placenta (DCIEP). The relationships between metals exposure and placental growth characteristics were examined using the elastic net model combined unpenalized linear regression model. Placental gene expression levels were analyzed through RNA sequencing and real-time polymerase chain reaction (RT-qPCR), and mediation analysis was conducted to investigate whether placental gene expression could mediate the relationship between metal exposure and placental growth. Notably, the results showed that a unite increase in Ln-transformed cadmium (Cd) levels was associated with a reduction of 16.4 g [95% confidence interval (CI): 31.2, -1.5] in placental weight, 13.9 cm2 (95%CI: 20.0, -7.8) in chorionic disc area, and 0.3 cm (95%CI: 0.55, -0.06) in DCIEP. Through RNA sequencing followed by validation, significant associations were observed between placental Cd level and increased expression of placental genes, including TNFAIP2, OLAH, FLT4, SH3PXD2A, LIMCH1, BCL6, SLCO2A1, and CPSF1. Additionally, increased placental TNFAIP2, OLAH, FLT4, SH3PXD2A and LIMCH1 expression was linked to reduced placental weight. Moreover, SH3PXD2A was associated with decreased chorionic disc area. Mediation analysis showed that placental Cd level was associated with a 12.0 g (95%CI: 23.8, -2.7) decrease in placental weight mediated through the upregulation of FTL4 gene expression. The study provides evidence of the association between placental Cd exposure and decreased placental weight, and the FLT4 gene may play a mediating role in this relationship. Future experiment studies should be performed to validate the results.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Social Medicine and Public Health, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Lanfei Jin
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kegui Huang
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kunhong Zhong
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yexinyi Zhou
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Xu
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qinheng Zhu
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiena Zhou
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Qiong Luo
- Key Laboratory of Reproductive Genetics (Ministry of Education), and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Guo
- Key Laboratory of Reproductive Genetics (Ministry of Education), and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guangdi Chen
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Reproductive Genetics (Ministry of Education), and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Bioelectromagnetics Laboratory, Zhejiang University School of Public Health, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Babić Leko M, Mihelčić M, Jurasović J, Nikolac Perković M, Španić E, Sekovanić A, Orct T, Zubčić K, Langer Horvat L, Pleić N, Kiđemet-Piskač S, Vogrinc Ž, Pivac N, Diana A, Borovečki F, Hof PR, Šimić G. Heavy Metals and Essential Metals Are Associated with Cerebrospinal Fluid Biomarkers of Alzheimer's Disease. Int J Mol Sci 2022; 24:467. [PMID: 36613911 PMCID: PMC9820819 DOI: 10.3390/ijms24010467] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Various metals have been associated with the pathogenesis of Alzheimer's disease (AD), principally heavy metals that are environmental pollutants (such as As, Cd, Hg, and Pb) and essential metals whose homeostasis is disturbed in AD (such as Cu, Fe, and Zn). Although there is evidence of the involvement of these metals in AD, further research is needed on their mechanisms of toxicity. To further assess the involvement of heavy and essential metals in AD pathogenesis, we compared cerebrospinal fluid (CSF) AD biomarkers to macro- and microelements measured in CSF and plasma. We tested if macro- and microelements' concentrations (heavy metals (As, Cd, Hg, Ni, Pb, and Tl), essential metals (Na, Mg, K, Ca, Fe, Co, Mn, Cu, Zn, and Mo), essential non-metals (B, P, S, and Se), and other non-essential metals (Al, Ba, Li, and Sr)) are associated with CSF AD biomarkers that reflect pathological changes in the AD brain (amyloid β1-42, total tau, phosphorylated tau isoforms, NFL, S100B, VILIP-1, YKL-40, PAPP-A, and albumin). We used inductively coupled plasma mass spectroscopy (ICP-MS) to determine macro- and microelements in CSF and plasma, and enzyme-linked immunosorbent assays (ELISA) to determine protein biomarkers of AD in CSF. This study included 193 participants (124 with AD, 50 with mild cognitive impairment, and 19 healthy controls). Simple correlation, as well as machine learning algorithms (redescription mining and principal component analysis (PCA)), demonstrated that levels of heavy metals (As, Cd, Hg, Ni, Pb, and Tl), essential metals (Ca, Co, Cu, Fe, Mg, Mn, Mo, Na, K, and Zn), and essential non-metals (P, S, and Se) are positively associated with CSF phosphorylated tau isoforms, VILIP-1, S100B, NFL, and YKL-40 in AD.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Medical Biology, University of Split School of Medicine, 21000 Split, Croatia
| | - Matej Mihelčić
- Department of Mathematics, University of Zagreb Faculty of Science, 10000 Zagreb, Croatia
| | - Jasna Jurasović
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | | | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ankica Sekovanić
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Tatjana Orct
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Klara Zubčić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Nikolina Pleić
- Department of Medical Biology, University of Split School of Medicine, 21000 Split, Croatia
| | | | - Željka Vogrinc
- Laboratory for Neurobiochemistry, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Ruđer Bošković Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia
| | - Andrea Diana
- Laboratory of Neurogenesis and Neuropoiesis, Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Fran Borovečki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Valenzuela I, Kinoshita M, van der Merwe J, Maršál K, Deprest J. Prenatal interventions for fetal growth restriction in animal models: A systematic review. Placenta 2022; 126:90-113. [PMID: 35796064 DOI: 10.1016/j.placenta.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/20/2022] [Accepted: 06/17/2022] [Indexed: 12/09/2022]
Abstract
Fetal growth restriction (FGR) in human pregnancy is associated with perinatal mortality, short- and long-term morbidities. No prenatal therapy is currently established despite decades of research. We aimed to review interventions in animal models for prenatal FGR treatment, and to seek the next steps for an effective clinical therapy. We registered our protocol and searched MEDLINE, Embase, and The Cochrane Library with no language restrictions, in accordance with the PRISMA guideline. We included all studies that reported the effects of any prenatal intervention in animal models of induced FGR. From 3257 screened studies, 202 describing 237 interventions were included for the final synthesis. Mice and rats were the most used animals (79%) followed by sheep (16%). Antioxidants (23%), followed by vasodilators (18%), nutrients (14%), and immunomodulators (12%) were the most tested therapy. Two-thirds of studies only reported delivery or immediate neonatal outcomes. Adverse effects were rarely reported (11%). Most studies (73%), independent of the intervention, showed a benefit in fetal survival or birthweight. The risk of bias was high, mostly due to the lack of randomization, allocation concealment, and blinding. Future research should aim to describe both short- and long-term outcomes across various organ systems in well-characterized models. Further efforts must be made to reduce selection, performance, and detection bias.
Collapse
|
4
|
GENDER DIFFERENCES IN EFFECTS OF PRENATAL AND POSTNATAL EXPOSURE TO ELECTROMAGNETIC FIELD AND PRENATAL ZINC ON BEHAVIOUR AND SYNAPTIC PROTEINS IN RATS. J Chem Neuroanat 2022; 122:102092. [DOI: 10.1016/j.jchemneu.2022.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022]
|
5
|
Busse M, Scharm M, Oettel A, Redlich A, Costa SD, Zenclussen AC. Enhanced S100B expression in T and B lymphocytes in spontaneous preterm birth and preeclampsia. J Perinat Med 2022; 50:157-166. [PMID: 34717052 DOI: 10.1515/jpm-2021-0326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/20/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVES S100B belongs to the family of danger signaling proteins. It is mainly expressed by glial-specific cells in the brain. However, S100B was also detected in other cell likewise immune cells. This molecule was suggested as biomarker for inflammation and fetal brain damage in spontaneous preterm birth (sPTB), preeclampsia (PE) and HELLP (hemolysis, elevated liver enzymes, and low platelet count). METHODS The aim of our study was to determine the concentration of S100B in maternal and cord blood (CB) plasma and placenta supernatant as well as the expression of S100B in maternal and CB CD4+ T cells and CD19+ B cells in sPTB and patients delivering following PE/HELLP diagnosis compared to women delivering at term (TD). The S100B expression was further related to the birth weight in our study cohort. RESULTS S100B concentration was enhanced in maternal and CB plasma of sPTB and PE/HELLP patients and positively correlated with interleukin-6 (IL-6) levels. Increased S100B was also confirmed in CB of small-for-gestational-age (SGA) infants. S100B expression in maternal blood was elevated in CD4+ T cells of PE/HELLP patients and patients who gave birth to SGA newborns as well as in CD19+ B cells of sPTB and PE/HELLP patients and patients with SGA babies. In CB, the expression of S100B was increased in CD19+ B cells of sPTB, PE/HELLP and SGA babies. CONCLUSIONS Our results support the hypothesis that S100B expression is enhanced in inflammatory events associated with preterm birth and that S100B expression in immune cells is a relevant marker for inflammation during pregnancy complications.
Collapse
Affiliation(s)
- Mandy Busse
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Markus Scharm
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Anika Oettel
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.,Medical Faculty, University Hospital for Obstetrics and Gynecology, Otto-von-Guericke University, Magdeburg, Germany
| | - Anke Redlich
- Medical Faculty, University Hospital for Obstetrics and Gynecology, Otto-von-Guericke University, Magdeburg, Germany
| | - Serban-Dan Costa
- Medical Faculty, University Hospital for Obstetrics and Gynecology, Otto-von-Guericke University, Magdeburg, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany.,Perinatal Immunology Research Group, Saxonian Incubator for Translational Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
Biochemical Studies in Perfundates and Homogenates of Isolated Porcine Kidneys after Flushing with Zinc or Zinc-Prolactin Modified Preservation Solution Using a Static Cold Storage Technique. Molecules 2021; 26:molecules26113465. [PMID: 34200394 PMCID: PMC8200954 DOI: 10.3390/molecules26113465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/22/2022] Open
Abstract
Zinc is an effective anti-inflammatory and antioxidant trace element. The aim of this study was to analyse the protective effect of zinc and zinc–prolactin systems as additives of preservation solutions in the prevention of nephron damage caused during ischemia. The study used a model for storing isolated porcine kidneys in Biolasol®. The solution was modified with the addition of Zn at a dose of 1 µg/L and Zn: 1 µg/L with prolactin (PRL): 0.1 µg/L. After 2 h and 48 h of storage, the levels of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, sodium, potassium, creatinine and total protein were determined. Zinc added to the Biolasol® composition at a dose of 1 µg/L showed minor effectiveness in the protection of nephrons. In turn, Zn2+ added to Biolasol + PRL (PRL: 0.1 µg/L) acted as a prolactin inhibitor. We do not recommend the addition of Zn(II) (1 µg/L) and Zn(II) (1 µg/L) + PRL (0.1 µg/L) to the Biolasol solution.
Collapse
|
7
|
Xiang H, Tao Y, Zhang B, Liang C, Li Z, Feng L, Qi J, Pan W, Tong J, Yan S, Tao F. Protective effect of high zinc levels on preterm birth induced by mercury exposure during pregnancy: A birth cohort study in China. J Trace Elem Med Biol 2019; 55:71-77. [PMID: 31345369 DOI: 10.1016/j.jtemb.2019.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aims of our study were to determine whether prenatal mercury levels are associated with the risk of preterm birth (PTB) and whether high maternal serum zinc (Zn) levels alleviate any negative effects of maternal mercury (Hg) exposure regarding PTB. METHODS Serum concentrations of Zn and Hg were measured in 3025 pregnant women from the Ma'anshan Birth Cohort. Before the collection of blood samples, they underwent examinations via the completion of questionnaires. The delivery records of the women were obtained from a series of medical records. We divided the study population into tertiles according to the participants' Hg levels: the low-Hg group (the first tertile, <0.30 μg/L), the medium-Hg group (the second tertile, 0.30-0.43 μg/L) and the high-Hg group (the third tertile, ≥0.43 μg/L). The associations of Hg exposure with both the risk of PTB and gestational age (weeks) at birth were estimated using a binary logistic regression model and multivariable linear regression analysis, respectively. Afterwards, we conducted a repeated analyses test after the participants were stratified according to their Zn levels, using the 75th percentile division method. RESULTS Overall, the medians and the interquartile ranges of Hg and Zn in the second trimester were 0.36 (0.27, 0.48) μg/L and 812.34 (731.26, 896.59) μg/L, respectively. Hg levels were associated with PTB [adjusted odds ratio (OR) and 95% confidence interval (95% CI): 1.91 (1.17, 3.12) for the third tertile vs. the first tertile of the serum Hg levels]. In the stratification analysis of the participants in the low-Zn group, the high-Hg group exhibited a significant odds ratio of PTB [adjusted OR (95% CI): 1.87 (1.08, 3.24)], compared to the low-Hg group. However, in the participants from the high-Zn group, the high-Hg group exhibited a non-significant OR of PTB [adjusted OR (95% CI): 2.32 (0.73, 7.42)]. In the multivariate linear regression analysis, gestational age (weeks) at delivery was significantly and inversely associated with the ln-transformed Hg concentrations [adjusted β (95% CI): -0.16 (-0.26, -0.06)]. Similarly, after the stratification analysis in the high-Zn group, there were no significant associations between PTB and the Hg levels [adjusted β (95% CI): -0.12 (-0.33, 0.09)]. CONCLUSION Prenatal Hg exposure adversely affected PTB, and high Zn levels alleviate this effect, which indicates that a more stringent control of Hg and a sufficient intake of Zn are necessary to help birth outcomes.
Collapse
Affiliation(s)
- Haiyun Xiang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Yiran Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Baoli Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Chunmei Liang
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Zhijuan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Lanlan Feng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Juan Qi
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Wan Pan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Health (MCH) Center, Ma'anshan, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China.
| |
Collapse
|
8
|
Bousleiman J, Pinsky A, Ki S, Su A, Morozova I, Kalachikov S, Wiqas A, Silver R, Sever M, Austin RN. Function of Metallothionein-3 in Neuronal Cells: Do Metal Ions Alter Expression Levels of MT3? Int J Mol Sci 2017; 18:ijms18061133. [PMID: 28587098 PMCID: PMC5485957 DOI: 10.3390/ijms18061133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 11/25/2022] Open
Abstract
A study of factors proposed to affect metallothionein-3 (MT3) function was carried out to elucidate the opaque role MT3 plays in human metalloneurochemistry. Gene expression of Mt2 and Mt3 was examined in tissues extracted from the dentate gyrus of mouse brains and in human neuronal cell cultures. The whole-genome gene expression analysis identified significant variations in the mRNA levels of genes associated with zinc homeostasis, including Mt2 and Mt3. Mt3 was found to be the most differentially expressed gene in the identified groups, pointing to the existence of a factor, not yet identified, that differentially controls Mt3 expression. To examine the expression of the human metallothioneins in neurons, mRNA levels of MT3 and MT2 were compared in BE(2)C and SH-SY5Y cell cultures treated with lead, zinc, cobalt, and lithium. MT2 was highly upregulated by Zn2+ in both cell cultures, while MT3 was not affected, and no other metal had an effect on either MT2 or MT3.
Collapse
Affiliation(s)
- Jamie Bousleiman
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Alexa Pinsky
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Sohee Ki
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Angela Su
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Irina Morozova
- Center for Genome Technology and Biomolecular Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Sergey Kalachikov
- Center for Genome Technology and Biomolecular Engineering, Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Amen Wiqas
- Department of Biology, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Rae Silver
- Department of Psychology and Program in Neuroscience, Barnard College of Columbia University, New York, NY 10027, USA.
- Department of Psychology, Columbia University, New York, NY 10027, USA.
- Department of Pathology and Cell Biology Columbia Health Sciences, New York, NY 10027, USA.
| | - Mary Sever
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| | - Rachel Narehood Austin
- Department of Chemistry, Barnard College of Columbia University, New York, NY 10027, USA.
| |
Collapse
|