1
|
Yahyazadeh R, Baradaran Rahimi V, Ahmad Mohajeri S, Iranshahy M, Hasanpour M, Askari VR. Intra-peritoneal lavage of Zingiber officinale rhizome and its active constituent gingerol impede inflammation, angiogenesis, and fibrosis following post-operative peritoneal adhesion in male rats. Saudi Pharm J 2024; 32:102092. [PMID: 38737808 PMCID: PMC11087237 DOI: 10.1016/j.jsps.2024.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Post-operative peritoneal adhesions (PA) are a common and important clinical problem. In this study, we focused on the ameliorative efficacy of ginger and gingerol compounds on surgical-induced peritoneal adhesion, and their strategies that disrupted the PA formation pathways to suppress their incidence. First, liquid chromatography-mass spectrometry (LC-MS) was established to separate and identify several chemical groups of ginger rhizome extract. In the next steps, male Wistar albino rats were randomly selected and divided into various groups, namely sham, control, ginger extract (0.6, 1.8, 5 %w/v), and gingerol (0.05, 0.1, 0.3, and 1 %w/v). Finally, we investigated the macroscopic parameters such as wound healing, body weight as well as spleen height and weight. In addition, visual peritoneal adhesion assessment was performed via Nair et al and Adhesion Scoring Scheme. Moreover, the microscopic parameters and biological assessment was performed via and immunoassays. The present findings revealed significant improvement in wound healing and reduction of the adhesion range, as Nair et al. and Adhesion Scoring Scheme scoring, in both the ginger and gingerol groups compared to the PA group (P < 0.05). Whereas, gingerol (0.3 % w/v) was able to increase the body weight in rats (P < 0.0001) at end stage of experiment. Also, inflammation, angiogenesis, and fibrosis were significantly decreased due to the downregulation of interleukin (IL)-6, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF), respectively, in the ginger and gingerol groups compared to the PA group (P < 0.05). In contrast, the levels of IL-10 were increased in the ginger and gingerol groups compared to the control group (P < 0.01). Our results proved that ginger rhizome and gingerol, as novel therapeutic compounds, could be used to prevent PA for their beneficial anti-inflammatory as well as anti-fibrosis properties in clinical trials. However, further clinical studies are required to approve the effectiveness of ginger and gingerol.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Ji J, Wang H, Yuan M, Li J, Song X, Lin K. Exosomes from ectopic endometrial stromal cells promote M2 macrophage polarization by delivering miR-146a-5p. Int Immunopharmacol 2024; 128:111573. [PMID: 38278065 DOI: 10.1016/j.intimp.2024.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Ectopic endometrial stromal cells (ESCs) and M2 macrophages co-exist in the lesions of endometriosis and participate in the occurrence and progression of endometriosis. However, the interaction between ectopic ESCs and M2-type macrophage polarization is poorly understood. This study aims to investigate the effect of exosomes released from ectopic ESCs on M2 macrophage polarization and the potential mechanism. METHODS Human THP-1 monocytic cells induced macrophage differentiation (M0) and M2 polarization. Ectopic ESCs and their exosomes were used to stimulate M2 macrophages. M2 macrophage polarization was examined by detecting CD163 and ARG1 expression. Exosomal microRNAs were analyzed by small-RNA sequencing. RESULTS Our in vitro results suggest that exosomes of ectopic ESCs promoted M2 macrophage polarization. Meanwhile, The miR-146a-5p level was highly increased in ectopic ESCs and their exosomes and promoted the role of exosomes in M2 macrophage polarization. As a target, TRAF6 overexpression inhibits the function of miR-146a-5p mimic on M2 macrophage polarization. In the rat model, exosomes from ectopic ESCs contribute to the development of endometriosis. CONCLUSIONS It was suggested that exosomes derived from ectopic ESCs promote the M2 macrophage polarization by delivering miR-146a-5p targeting TRAF6 in the pathological process of endometriosis.
Collapse
Affiliation(s)
- Jiaqi Ji
- Hangzhou Normal University Division of Health Sciences, Yuhangtang Road 2318, Hangzhou, Zhejiang 311121, PR China
| | - Huihua Wang
- Department of Gynecology, the First People's Hospital of Tongxiang, Jiaochang Road 1918, Tongxiang, Zhejiang 314500, PR China
| | - Ming Yuan
- Hangzhou Normal University Division of Health Sciences, Yuhangtang Road 2318, Hangzhou, Zhejiang 311121, PR China
| | - Jin Li
- Department of Gynecology, Women's Hospital of Hangzhou Normal University, Kunpeng Road 369, Hangzhou, Zhejiang 310000, PR China
| | - Xiaohong Song
- Department of Gynecology, Women's Hospital of Hangzhou Normal University, Kunpeng Road 369, Hangzhou, Zhejiang 310000, PR China
| | - Kaiqing Lin
- Department of Gynecology and Obstetrics, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China.
| |
Collapse
|
3
|
Zhou L, Cai E, Liu H, Cheng H, Ye X, Zhu H, Chang X. Extracellular ATP (eATP) inhibits the progression of endometriosis and enhances the immune function of macrophages. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166895. [PMID: 37748566 DOI: 10.1016/j.bbadis.2023.166895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Extracellular adenosine triphosphate (eATP) is an important inflammatory mediator that can boost the antitumour immune response, but its role in endometriosis remains unknown. We hypothesized that eATP could inhibit endometriosis cell function both directly and indirectly through macrophages. METHODS Peritoneal and cyst fluid from endometriosis patients and non-endometriosis controls was collected to measure eATP levels. The addition of eATP was performed to explore its effects on endometriotic cell and macrophage functions, including cell proliferation, apoptosis, pyroptosis, mitochondrial membrane potential, phagocytosis, and the production of inflammatory cytokines and reactive oxygen species. A coculture of endometriotic epithelial cells and U937 macrophages was established, followed by P2X7 antagonist and eATP treatment. Endometriosis model eATP-treated rats were used to evaluate in situ cell death and macrophage marker expression. RESULTS The pelvic microenvironment of endometriosis patients shows high eATP levels, which could induce endometriotic epithelial cell apoptosis and pyroptosis and significantly inhibit cell growth via the MAPK/JNK/Akt pathway. eATP treatment ameliorated endometriosis-related macrophage dysfunction and promoted macrophage recruitment. eATP treatment in the presence of macrophages exerted a stronger cytotoxic effect on endometriotic epithelial cells by regulating P2X7. eATP treatment effectively induced cell death in an endometriosis rat model and prominently increased the macrophage number without affecting the eutopic endometrium. CONCLUSION eATP induces endometriotic epithelial cell death and enhances the immune function of macrophages to inhibit the progression of endometriosis, while eutopic endometrium is not affected. eATP treatment may serve as a nonhormonal therapeutic strategy for endometriosis.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Obstetrics and Gynaecology, Peking University People's Hospital, Beijing, China; Center of Gynaecological Oncology, Peking University People's Hospital, Beijing, China
| | - E Cai
- Department of Obstetrics and Gynaecology, Peking University People's Hospital, Beijing, China; Center of Gynaecological Oncology, Peking University People's Hospital, Beijing, China
| | - Huiping Liu
- Department of Obstetrics and Gynaecology, Peking University People's Hospital, Beijing, China; Center of Gynaecological Oncology, Peking University People's Hospital, Beijing, China
| | - Hongyan Cheng
- Department of Obstetrics and Gynaecology, Peking University People's Hospital, Beijing, China; Center of Gynaecological Oncology, Peking University People's Hospital, Beijing, China
| | - Xue Ye
- Department of Obstetrics and Gynaecology, Peking University People's Hospital, Beijing, China; Center of Gynaecological Oncology, Peking University People's Hospital, Beijing, China
| | - Honglan Zhu
- Department of Obstetrics and Gynaecology, Peking University People's Hospital, Beijing, China.
| | - Xiaohong Chang
- Department of Obstetrics and Gynaecology, Peking University People's Hospital, Beijing, China; Center of Gynaecological Oncology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
4
|
Huang X, Wu L, Pei T, Liu D, Liu C, Luo B, Xiao L, Li Y, Wang R, Ouyang Y, Zhu H, Huang W. Single-cell transcriptome analysis reveals endometrial immune microenvironment in minimal/mild endometriosis. Clin Exp Immunol 2023; 212:285-295. [PMID: 36869723 PMCID: PMC10243848 DOI: 10.1093/cei/uxad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023] Open
Abstract
Endometriosis is a common inflammatory disorder in women of reproductive age due to an abnormal endometrial immune environment and is associated with infertility. This study aimed to systematically understand the endometrial leukocyte types, inflammatory environment, and impaired receptivity at single-cell resolution. We profiled single-cell RNA transcriptomes of 138 057 endometrial cells from endometriosis patients (n = 6) and control (n = 7), respectively, using 10x Genomics platform. We found that one cluster of epithelial cells that expressed PAEP and CXCL14 was mostly from the control during the window of implantation (WOI). This epithelial cell type is absent in the eutopic endometrium during the secretory phase. The proportion of endometrial immune cells decreased in the secretory phase in the control group, whereas the cycle variation of total immune cells, NK cells, and T cells was absent in endometriosis. Endometrial immune cells secreted more IL-10 in the secretory phase than in the proliferative phase in the control group; the opposite trend was observed in endometriosis. Proinflammatory cytokines levels in the endometrial immune cells were higher in endometriosis than in the control group. Trajectory analysis revealed that the secretory phase epithelial cells decreased in endometriosis. Ligand-receptor analysis revealed that 11 ligand-receptor pairs were upregulated between endometrial immune and epithelial cells during WOI. These results provide new insights into the endometrial immune microenvironment and impaired endometrial receptivity in infertile women with minimal/mild endometriosis.
Collapse
Affiliation(s)
- Xin Huang
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, Sichuan, China
| | - Lukanxuan Wu
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, Sichuan, China
| | - Tianjiao Pei
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, Sichuan, China
| | - Dong Liu
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
| | - Chang Liu
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
| | - Bin Luo
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
| | - Li Xiao
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
| | - Yujing Li
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, Sichuan, China
| | - Ruiying Wang
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, Sichuan, China
| | - Yunwei Ouyang
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
| | - Huili Zhu
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
| | - Wei Huang
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, Sichuan, China
| |
Collapse
|
5
|
Jiang T, Chen Y, Gu X, Miao M, Hu D, Zhou H, Chen J, Teichmann AT, Yang Y. Review of the Potential Therapeutic Effects and Molecular Mechanisms of Resveratrol on Endometriosis. Int J Womens Health 2023; 15:741-763. [PMID: 37200624 PMCID: PMC10187648 DOI: 10.2147/ijwh.s404660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/08/2023] [Indexed: 05/20/2023] Open
Abstract
Endometriosis is a hormone-dependent inflammatory disease characterized by the existence of endometrial tissues outside the uterine cavity. Pharmacotherapy and surgery are the current dominant management options for endometriosis. The greater incidence of recurrence and reoperation after surgical treatment as well as the adverse effects of medical approaches predispose patients to potential limitations for their long-term usage. Consequently, it is essential to explore novel supplementary and alternative drugs to ameliorate the therapeutic outcomes of endometriotic patients. Resveratrol is a phenolic compound that has attracted increasing interest from many researchers due to its pleiotropic biological activities. Here, we review the possible therapeutic efficacies and molecular mechanisms of resveratrol against endometriosis based on in vitro, animal, and clinical studies. The potential mechanisms of resveratrol include anti-proliferative, pro-apoptotic, anti-angiogenic, anti-oxidative stress, anti-invasive and anti-adhesive effects, thereby suggesting that resveratrol is a promising candidate for endometriosis. Because most studies have investigated the effectiveness of resveratrol on endometriosis via in vitro trials and/or experimental animal models, further high-quality clinical trials should be undertaken to comprehensively estimate the clinical application feasibility of resveratrol on endometriosis.
Collapse
Affiliation(s)
- Tao Jiang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yuan Chen
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xia Gu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People’s Republic of China
| | - Mengyue Miao
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Daifeng Hu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Hui Zhou
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jing Chen
- Reproductive Medicine Center, The Second People’s Hospital of Yibin, Yibin, 644000, People’s Republic of China
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Correspondence: Alexander Tobias Teichmann; Youzhe Yang, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, People’s Republic of China, Email ;
| | - Youzhe Yang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
6
|
Moghaddam MZ, Ansariniya H, Seifati SM, Zare F, Fesahat F. Immunopathogenesis of endometriosis: An overview of the role of innate and adaptive immune cells and their mediators. Am J Reprod Immunol 2022; 87:e13537. [PMID: 35263479 DOI: 10.1111/aji.13537] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Endometriosis is a chronic inflammatory disease associated with the growth and proliferation of endometrial-like tissues outside the uterus. Although the exact etiology and mechanism of the pathogenesis of the disease have not been fully elucidated, the immune system cells and the mediators produced by them can be named as effective factors in the onset and progression of the disease. AIMS We aim to attempt to review studies on the role of the immune system in endometriosis to better understand the pathogenesis of endometriosis. CONTENT Abundant production of inflammatory mediators by neutrophils and macrophages and reduced cytotoxicity of defined cells promote endometriosis at the early stages of the disease. Following an increase in the inflammation of the environment, the body takes compensatory mechanisms to reduce inflammation and establish homeostasis. For this purpose, the body produces remodeling and anti-inflammatory factors leading to slow conversion of the inflammatory environment into a non-inflammatory environment with proliferative and immunosuppressive properties. Environmental conditions induce M2 macrophages, TH2 cells, and Tregs differentiation, promoting disease progression by producing angiogenic and immunosuppressive factors. However, the exact molecular mechanism involved in changing inflammatory to non-inflammatory conditions is not yet fully understood. IMPLICATIONS Due to the common characteristics of endometriotic cells and cancer cells, most potential treatment options for endometriosis have been suggested due to the results of these methods in the treatment of cancer. In this pathway, immune system cells and soluble mediators can be used as targets.
Collapse
Affiliation(s)
- Maryam Zare Moghaddam
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Ansariniya
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Seifati
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
7
|
Kobayashi H, Imanaka S. Understanding the molecular mechanisms of macrophage polarization and metabolic reprogramming in endometriosis: A narrative review. Reprod Med Biol 2022; 21:e12488. [PMID: 36310658 PMCID: PMC9596393 DOI: 10.1002/rmb2.12488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
Background Endometriosis is an estrogen-dependent disease and causes pelvic pain and infertility. The limits of current pharmacotherapy in women who desire to become pregnant prompt the development of various targeted molecules for more effective treatment. A review article focused on the unique aspect of cellular metabolic reprogramming of endometriotic cells has been reported. The cellular metabolic pathways are reprogrammed to adapt to a variety of environmental stresses (e.g., nutrient starvation or glucose deprivation, hypoxic stress, excessive reactive oxygen species generation, and other environmental factors). This review aims to summarize macrophage polarization and metabolic reprogramming in endometriosis. Methods A literature search was performed between January 2000 and March 2022 in the PubMed and Google Scholar databases using a combination of specific terms. Results Macrophage cellular metabolism has a marked influence on its phenotype and function. Preclinical studies showed that metabolic conversion toward glycolysis or oxidative phosphorylation drives macrophage polarization to M1 or M2 phenotype, respectively. Such cellular metabolic rewiring can offer new therapeutic opportunities. Conclusion A better understanding of metabolic reprogramming biology in endometriosis-associated macrophages is essential in considering novel therapeutic approach for endometriosis. However, there are currently no detailed studies on therapeutic strategies targeting the cellular metabolic properties of endometriosis-associated macrophages.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of GynecologyMs.Clinic MayOneKashihara, NaraJapan
- Department of Obstetrics and GynecologyNara Medical UniversityKashihara, NaraJapan
| | - Shogo Imanaka
- Department of GynecologyMs.Clinic MayOneKashihara, NaraJapan
- Department of Obstetrics and GynecologyNara Medical UniversityKashihara, NaraJapan
| |
Collapse
|
8
|
Ramírez-Pavez TN, Martínez-Esparza M, Ruiz-Alcaraz AJ, Marín-Sánchez P, Machado-Linde F, García-Peñarrubia P. The Role of Peritoneal Macrophages in Endometriosis. Int J Mol Sci 2021; 22:ijms221910792. [PMID: 34639133 PMCID: PMC8509388 DOI: 10.3390/ijms221910792] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Endometriosis is an estrogen-dependent gynecological disorder, defined as the growth of endometrial stromal cells and glands at extrauterine sites. Endometriotic lesions are more frequently located into the abdominal cavity, although they can also be implanted in distant places. Among its etiological factors, the presence of immune dysregulation occupies a prominent place, pointing out the beneficial and harmful outcomes of macrophages in the pathogenesis of this disease. Macrophages are tissue-resident cells that connect innate and adaptive immunity, playing a key role in maintaining local homeostasis in healthy conditions and being critical in the development and sustainment of many inflammatory diseases. Macrophages accumulate in the peritoneal cavity of women with endometriosis, but their ability to clear migrated endometrial fragments seems to be inefficient. Hence, the characteristics of the peritoneal immune system in endometriosis must be further studied to facilitate the search for new diagnostic and therapeutic tools. In this review, we summarize recent relevant advances obtained in both mouse, as the main animal model used to study endometriosis, and human, focusing on peritoneal macrophages obtained from endometriotic patients and healthy donors, under the perspective of its future clinical translation to the role that these cells play on this pathology.
Collapse
Affiliation(s)
- Tamara N. Ramírez-Pavez
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (T.N.R.-P.); (M.M.-E.); (A.J.R.-A.)
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (T.N.R.-P.); (M.M.-E.); (A.J.R.-A.)
| | - Antonio J. Ruiz-Alcaraz
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (T.N.R.-P.); (M.M.-E.); (A.J.R.-A.)
| | - Pilar Marín-Sánchez
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB, 30120 Murcia, Spain;
| | - Francisco Machado-Linde
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Reina Sofía, CARM, 30002 Murcia, Spain;
| | - Pilar García-Peñarrubia
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (T.N.R.-P.); (M.M.-E.); (A.J.R.-A.)
- Correspondence: ; Tel.: +34-8-6888-4673
| |
Collapse
|
9
|
Chai X, Wu X, He L, Ding H. Protein arginine methyltransferase 5 mediates THP-1-derived macrophage activation dependent on NF-κB in endometriosis. Exp Ther Med 2021; 22:1003. [PMID: 34345285 PMCID: PMC8311241 DOI: 10.3892/etm.2021.10436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/24/2021] [Indexed: 01/16/2023] Open
Abstract
Macrophage-induced inflammation is a major factor in the pathogenesis of endometriosis. The underlying mechanisms, however, remain largely unknown. TNF-α, IL-6, IL-10 and C-C motif chemokine 20 (CCL20) levels in endometrial extracts were determined using Luminex cytokine kits. Additionally, protein arginine methyltransferase 5 (PRMT5) levels were measured using reverse transcription-quantitative PCR and western blotting. IL-6 and IP-10 levels in cells were measured using ELISA kits. In the present study, it was revealed that PRMT5 expression at both the mRNA and protein levels in THP-1-derived macrophages was significantly decreased following treatment with serum or extracts of endometrium from patients with endometriosis in the presence of lipopolysaccharide, compared with that in control cells, suggesting a possible role for macrophage-derived PRMT5 in mediating the interaction between macrophages and endometrium in endometriosis. Mechanistically, macrophage PRMT5 expression was regulated in an NF-κB-dependent and Smad2/3-independent manner, indicating that PRMT5 is a downstream target of NF-κB. Importantly, macrophage-derived PRMT5 was required for macrophage activation in endometriosis, as evidenced by the PRMT5-dependent secretion of IL-6 and IFN-γ-induced protein 10 from THP-1-derived macrophages. The present study identified NF-κB-dependent PRMT5 as a novel regulator of macrophage activation in endometriosis. Targeting PRMT5 in macrophages may be a potential therapeutic strategy against endometriosis.
Collapse
Affiliation(s)
- Xiaoshan Chai
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xianqing Wu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ling He
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Hui Ding
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
10
|
Kolahdouz-Mohammadi R, Shidfar F, Khodaverdi S, Arablou T, Heidari S, Rashidi N, Delbandi AA. Resveratrol treatment reduces expression of MCP-1, IL-6, IL-8 and RANTES in endometriotic stromal cells. J Cell Mol Med 2020; 25:1116-1127. [PMID: 33325132 PMCID: PMC7812293 DOI: 10.1111/jcmm.16178] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Endometriosis is an inflammatory disease affecting reproductive‐aged women. Immunologic disturbance, as well as inflammation, have crucial roles in the pathogenesis of endometriosis. In this study, we evaluated the effects of resveratrol treatment on expression of monocyte chemotactic protein‐1 (MCP‐1), interleukin‐6 (IL‐6), IL‐8, and regulated upon activation, normal T cell expressed and secreted (RANTES) in endometrial stromal cells from patients with endometriosis compared with non‐endometriotic controls. Thirteen eutopic (EuESCs) and nine ectopic (EESCs) endometrial stromal cells from endometriotic patients as well as eleven endometrial stromal cells from non‐endometriotic controls (CESCs) were treated with resveratrol (100 μmol/L) or ethanol, and gene and/or protein expression of MCP‐1, IL‐6, IL‐8 and RANTES was examined at 6, 24 and 48 hours following treatment in the cells from all origins. Resveratrol treatment significantly reduced gene and protein expression of MCP‐1, IL‐6, and IL‐8 in EuESCs and EESCs compared with CESCs (P < .05‐.001, P < .05‐.001 and P < .05‐<.01, respectively), and this reduction was more noticeable in EESCs than EuESCs (P < .05‐<.001). Besides, resveratrol treatment significantly reduced RANTES protein expression in EESCs in all time intervals (P < .05). Resveratrol treatment significantly reduced the expression of MCP‐1, IL‐6, IL‐8 and RANTES in EESCs.
Collapse
Affiliation(s)
- Roya Kolahdouz-Mohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Khodaverdi
- Endometriosis Research Center, Iran University of Medical Science, Tehran, Iran
| | - Tahereh Arablou
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sahel Heidari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nesa Rashidi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|