1
|
Ma Y, Deng X, Shen R, Zhang H, Qian Y. Unveiling immune tolerance pathways in preeclampsia placenta: implications for molecular targets and discovery of potential biomarkers. Front Endocrinol (Lausanne) 2024; 15:1385154. [PMID: 38894741 PMCID: PMC11182985 DOI: 10.3389/fendo.2024.1385154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
During pregnancy, there is a link between disruption of maternal immune tolerance and preeclampsia, but the molecular mechanisms that regulate maternal and fetal immune tolerance remain unclear. This study employs bioinformatics to identify new markers related to placental immune tolerance and explore their potential role in predicting preeclampsia. Analyzing preeclampsia-related gene expression profiles in the Gene Expression Omnibus (GEO) dataset reveals 211 differentially expressed genes (DEGs) in the placenta, mainly influencing immune cell differentiation and response pathways. Employing weighted gene co-expression network analysis (WGCNA) and lasso regression, four potential target genes (ANKRD37, CRH, LEP, SIGLEC6) are identified for potential prediction of preeclampsia. Validation using the GSE4707 dataset confirmed the diagnostic and predictive potential of these candidate genes. RT-qPCR verified up-regulation in the placenta, while ELISA showed their correlation with immune tolerance factors associated with placental immune tolerance. As a result of this study, identifies potential biomarkers associated with placental immunity and contributes to understanding the molecular mechanism of preeclampsia.
Collapse
Affiliation(s)
- Yantuanjin Ma
- Institute of Biomedical Engineering, Kunming Medical University, Kunming, China
- Kunming Medical University, Kunming, China
| | - Xingli Deng
- Kunming Medical University, Kunming, China
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ru Shen
- Kunming Medical University, Kunming, China
| | - Hongqing Zhang
- Kunming Medical University, Kunming, China
- Clinical Medical Research Center for Obstetrics and Gynecology (Yunnan Joint Key Laboratory), Kunming City of Maternal and Child Health Hospital, Kunming City of Women and Children, Kunming, China
| | - Yuan Qian
- Kunming Medical University, Kunming, China
- Clinical Medical Research Center for Obstetrics and Gynecology (Yunnan Joint Key Laboratory), Kunming City of Maternal and Child Health Hospital, Kunming City of Women and Children, Kunming, China
| |
Collapse
|
2
|
Luo F, Liu F, Guo Y, Xu W, Li Y, Yi J, Fournier T, Degrelle S, Zitouni H, Hernandez I, Liu X, Huang Y, Yue J. Single-cell profiling reveals immune disturbances landscape and HLA-F-mediated immune tolerance at the maternal-fetal interface in preeclampsia. Front Immunol 2023; 14:1234577. [PMID: 37854606 PMCID: PMC10579943 DOI: 10.3389/fimmu.2023.1234577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Background Preeclampsia is a pregnancy-specific disorder that always causes maternal and fetal serious adverse outcome. Disturbances in maternal immune tolerance to embryo at the maternal-fetal interface (MFI) may be associated with preeclampsia onset. Recent studies have revealed the reduced expression pattern of HLA-F at the MFI in preeclampsia, while the mechanism of it mediating maternal fetal immune tolerance has not been revealed. Methods Single-cell RNA sequencing on placental decidua was performed to reveal the immune disturbances landscape at the MFI in preeclampsia. Human Jar cells and NK-92MI cells were employed to study the role of HLA-F in trophoblasts and lymphocyte. Results A total of 101,250 cells were classified into 22 cell clusters. Disease-related IGFBP1+SPP1+ extracellular villus trophoblast (EVT) was identified in the preeclamptic placental decidua, accompanied by newly discovered immune cellular dysfunction such as reduced ribosomal functions of NK populations and abnormal expression of antigen-presenting molecules in most cell clusters. Certain genes that are characteristic of the intermediate stage of myeloid or EVT cell differentiation were found to have unexplored but important functions in the pathogenesis of preeclampsia; specifically, we detected enhanced cell cross-talk between IGFBP1+SPP1+ EVT2 or SPP1+M1 cells and their receptor cell populations at the MFI of PE patients compared to controls. With respect to HLA-F, mIF staining confirmed its reduced expression in PE samples compared to controls. Over-expression of HLA-F in Jar cells promoted cell proliferation, invasion, and migration while under-expression had the opposite effect. In NK-92MI cells, over-expression of HLA-F increased the secretion of immunoregulation cytokines such as CSF1 and CCL22, and promoted adaptive NKG2C+NK cell transformation. Conclusions We revealed the immune disturbance landscape at the MFI in preeclampsia. Our findings regarding cellular heterogeneity and immune cellular dysfunction, as revealed by scRNA-seq, and the function of HLA-F in cells provide new perspectives for further investigation of their roles in the pathogenesis of preeclampsia, and then provide potential new therapeutic target.
Collapse
Affiliation(s)
- Fangyuan Luo
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Fulin Liu
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Yingzhe Guo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenming Xu
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Yilin Li
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Jun Yi
- Department of Obstetrics and Gynecology Nursing, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Thierry Fournier
- Pathophysiology & Pharmacotoxicology of the Human Placenta, Pre & Postnatal Microbiota, Université Paris Cité, Paris, France
| | | | - Hedia Zitouni
- Laboratory of Human Genome and Multi-factorial Diseases, Faculty of Pharmacy of Monastir, Monastir, Tunisia
| | - Isabelle Hernandez
- Pathophysiology & Pharmacotoxicology of the Human Placenta, Pre & Postnatal Microbiota, Université Paris Cité, Paris, France
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Yu Huang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Jun Yue
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Ersoy Canillioglu Y, Senturk GE, Sahin H, Sahin S, Seval-Celik Y. The Distribution of Foxp3 and CD68 in Preeclamptic and Healthy Placentas: A Histomorphological Evaluation. J Histochem Cytochem 2023; 71:211-225. [PMID: 37070940 PMCID: PMC10149892 DOI: 10.1369/00221554231170662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
Preeclampsia is a complication of pregnancy that affects 3-5% of pregnancies and is one of the major causes of maternal/neonatal mortality and morbidities worldwide. We aimed to investigate the distribution of Foxp3+ regulatory T-cells and CD68+ Hofbauer cells in the placenta of preeclamptic and healthy pregnant women with a special focus on correlating these findings with placental histology. Decidua and chorionic villi of the placenta obtained from healthy and preeclamptic pregnancies were evaluated in full-thickness sections. Sections were stained with hematoxylin and eosin and Masson's trichrome and immunostained for Foxp3 and CD68 for histological analyses. The total histomorphological score for placentas was found to be higher in preeclamptic placentas than that in the controls. The CD68 immunoreactivity was higher in the chorionic villi of preeclamptic placentas than that in the controls. The immunoreactivity of Foxp3 was found widely distributed within the decidua in both the groups and did not differ significantly. Interestingly, Foxp3 immunoreactivity in the chorionic villi was found mainly in the villous core and, to a lesser extent, in the syncytiotrophoblasts. We found no significant relation between Foxp3 expressions and morphological changes observed in preeclamptic placentas. Although extensive research is being carried out regarding the pathophysiology of preeclampsia, the findings are still controversial.
Collapse
Affiliation(s)
| | - Gozde Erkanli Senturk
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hakan Sahin
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sadik Sahin
- Department of Obstetrics and Gynecology, Medeniyet University, Istanbul, Turkey
| | - Yasemin Seval-Celik
- Faculty of Medicine, Department of Histology and Embryology, Izmir University of Economics, Izmir, Turkey
| |
Collapse
|
4
|
Gazzo I, Massarotti C, Chiodi S, Spinelli S, Gualandi F, Passamonti U, Fulcheri E, Angelucci E, Cagnacci A. Pregnancy complications after allogeneic hematopoietic stem cells transplantation: Focus on the placenta. Placenta 2023; 132:27-31. [PMID: 36623416 DOI: 10.1016/j.placenta.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION hematopoietic stem cells transplantation (HSCT) is a treatment option for malignant and non-malignant haematological diseases. Because of the improved survival rates and the more widespread use of reproductive technologies in the last two decades, the number of patients who conceive is increasing while the pathogenesis of some obstetrical complications observed is not yet fully clarified. METHODS we present complete data about two pregnancies in women who had previously undergone HSTC, with conditioning regimen including total body irradiation. One pregnancy is spontaneous and one after oocytes donation. RESULTS In both pregnancies we observed relevant intrauterine growth retardation, attributable to a deficit in implantation and placentation. Ultrasound and histological data point to a defective placenta development, possibly sustained by uterine vessel damage caused by irradiation. A deeper understanding of factors influencing placentation post total body irradiation and HSCT, including the possible role of donor's sex and graft versus host disease, is pivotal to improve pregnancy outcomes in this specific population.
Collapse
Affiliation(s)
- Irene Gazzo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI Dept.), University of Genoa, Genova, Italy; Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Claudia Massarotti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI Dept.), University of Genoa, Genova, Italy; Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Sandra Chiodi
- UO Hematology and Cell Therapy, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Simonetta Spinelli
- UO Hematology and Cell Therapy, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Gualandi
- UO Hematology and Cell Therapy, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Ezio Fulcheri
- Fetal-Perinatal Pathology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics, Università di Genova, Genoa, Italy
| | - Emanuele Angelucci
- UO Hematology and Cell Therapy, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Angelo Cagnacci
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI Dept.), University of Genoa, Genova, Italy; Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
5
|
Zhang L, Jiang T, Yang Y, Deng W, Lu H, Wang S, Liu R, Chang M, Wu S, Gao Y, Hao H, Shen G, Xu M, Chen X, Hu L, Yang L, Bi X, Lin Y, Lu Y, Jiang Y, Li M, Xie Y. Postpartum hepatitis and host immunity in pregnant women with chronic HBV infection. Front Immunol 2023; 13:1112234. [PMID: 36685527 PMCID: PMC9846060 DOI: 10.3389/fimmu.2022.1112234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
In order to develop immune tolerant to the fetal, maternal immune system will have some modification comparing to the time before pregnancy. Immune tolerance starts and develops at the maternal placental interface. In innate immunity, decidual natural killer (dNK) cells, macrophages and dendritic cells play a key role in immue tolerance. In adaptive immunity, a moderate increase of number and immune inhibition function of regulatory T cells (Treg) are essential for immune tolerance. The trophoblast cells and immune cells expressing indoleamine 2,3-dioxygenase (IDO), the trophoblast cells expressing HLA-G, and Th1/Th2 shifting to Th2 dominant and Th17/Treg shifting to Treg domiant are in favor of maternal fetal immune tolerance. Steroids (estrogen and progesterone) and human chorionic gonadotropin (HCG) also participate in immune tolerance by inducing Treg cells or upregulating immunosuppressive cytokines. Most of the patients with chronic HBV infection are in the "HBV immune tolerance period" before pregnancy, and the liver disease is relatively stable during pregnancy. In chronic HBV infection women, after delivery, the relative immunosuppression in vivo is reversed, and Th1 is dominant in Th1/Th2 and Th17 is dominant in Th17/Treg balance. After delivery, the number of Treg decrease and NK cells increase in quantity and cytotoxicity in peripheral blood. Liver NK cells may cause liver inflammation through a non-antigen specific mechanism. After delivery, the number of CD8+ T cells will increase and HBV specific T cell response recovers from the disfunction in pregnancy. Under the background of postpartum inflammation, the rapid decrease of cortisol after delivery, and especially the enhancement of HBV specific T cell response induced by HBV DNA and cytokines, are the main reasons for postpartum hepatitis. HBeAg positive, especially HBeAg<700 S/CO, and HBV DNA>3-5Log10IU/ml are risk factors for postpartum hepatitis. Antiviral treatment in late pregnancy can reduce the incidence of mother to child transmission (MTCT) in chronic HBV infection women. Chronic HBV infection women have hepatitis both during pregnancy and more often in 12 weeks postpartum. It is generally agreed that postpartum hepatitis is mild symptoms and self-limited. Delaying drug withdrawal to 48 weeks can increase the seroconversion rate of HBeAg in delivery women with elevated alanine aminotransferase (ALT) in pregnancy.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Tingting Jiang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ying Yang
- Hepatology Department 2, Xingtai Second Hospital, Xingtai, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huihui Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China,Department of Obstetrics and Gynecology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyu Wang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ruyu Liu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Min Chang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuling Wu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuanjiao Gao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxiao Hao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ge Shen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mengjiao Xu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoxue Chen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Leiping Hu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China,*Correspondence: Yao Lu, ; Yuyong Jiang, ; Minghui Li, ; Yao Xie,
| | - Yuyong Jiang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China,*Correspondence: Yao Lu, ; Yuyong Jiang, ; Minghui Li, ; Yao Xie,
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China,*Correspondence: Yao Lu, ; Yuyong Jiang, ; Minghui Li, ; Yao Xie,
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China,*Correspondence: Yao Lu, ; Yuyong Jiang, ; Minghui Li, ; Yao Xie,
| |
Collapse
|
6
|
Choi H, Yang SW, Joo JS, Park M, Jin Y, Kim JW, Lee SY, Lee SV, Yun TJ, Cho ML, Hwang HS, Kang YS. Sialylated IVIg binding to DC-SIGN + Hofbauer cells induces immune tolerance through the caveolin-1/NF-kB pathway and IL-10 secretion. Clin Immunol 2023; 246:109215. [PMID: 36581222 DOI: 10.1016/j.clim.2022.109215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Although the use of IVIg has increased in various immune-driven diseases and even in pregnancy, the exact action mechanisms of IVIg are not fully understood. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) is a known receptor for α-2,6-sialylated IgG (sIVIg), which is responsible for the anti-inflammatory effect of IVIg. DC-SIGN is expressed on Hofbauer cells (HBCs) of the fetal villi of the placenta which act as an innate immune modulator at the maternal-fetal interface. Preeclampsia is a major complication in pregnancy and is related to IL-10, a cytokine with an important role in immune tolerance. DC-SIGN interaction with sIVIg in HBCs promoted IL-10 secretion through the activation of the caveolin-1/NF-κB pathway, especially in plasma lipid rafts. Consistent results were obtained for HBCs from patients with preeclampsia. Collectively, the stimulation of DC-SIGN+ HBCs with sIVIg enhanced immune tolerance in the feto-maternal environment, suggesting the therapeutic application of sIVIg to prevent preeclampsia.
Collapse
Affiliation(s)
- Hyeongjwa Choi
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Seung-Woo Yang
- Department of Obstetrics and Gynecology, Sang-Gye Paik Hospital, Inje University School of Medicine; Seoul 01757, Republic of Korea
| | - Jin-Soo Joo
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University; 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Min Park
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Yihua Jin
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Ji-Woon Kim
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Seon-Yeong Lee
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Vin Lee
- Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University; 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Tae-Jin Yun
- Department of Pathology, New York University Grossman School of Medicine; New York, NY 10016, USA
| | - Mi-La Cho
- The Rheumatism Research Center, The Catholic University of Korea, Seoul, South Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, South Korea
| | - Han-Sung Hwang
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine; Seoul, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Young-Sun Kang
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University; 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; KU Research Center for Zoonosis, Konkuk University; 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
7
|
Jiang Y, Zou Q, Zhang N, Chen J, Chen X, You Q, Wu H. Tumour necrosis factor inhibitor combined with intravenous immunoglobulin and heparin for treatment of recurrent spontaneous abortion: A two-centre, retrospective, cohort study. J Clin Pharm Ther 2022; 47:2320-2324. [PMID: 36511097 DOI: 10.1111/jcpt.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Immune disorder is a key trigger of recurrent spontaneous abortion (RSA); meanwhile, tumour necrosis factor inhibitor (TNFi) is a fundamental therapeutic for multiple immune and inflammatory diseases. Hence, this real-world study aimed to explore the efficacy and safety of TNFi combined with intravenous immunoglobin (IVIG) and heparin therapy in RSA patients. METHODS A total of 105 RSA patients who received TNFi+IVIG+Heparin (enoxaparin) (n = 48) or IVIG+Heparin (enoxaparin) (n = 57) were retrospectively included in this two-centre cohort study. RESULTS AND DISCUSSION The live birth rate of RSA patients in the TNFi+IVIG+heparin group was 72.9% (95% confidence interval [CI]: 69.6%-85.9%). Besides, the live birth rate in the IVIG+heparin group was 52.6% (95% CI: 42.8%-62.4%). By comparison, the live birth rate was higher in the TNFi+IVIG+heparin group compared to the IVIG+heparin group (p = 0.033). After adjustment by the multivariate logistic regression model using the enter method, TNFi+IVIG+Heparin was also superior to IVIG+Heparin regarding increased live birth rate (odds ratio [OR] = 2.941, p = 0.015). Moreover, TNFi+IVIG+Heparin (vs. IVIG+Heparin) also served as an independent factor for increased live birth rate (OR = 2.423, p = 0.035) by the forward stepwise method in the multivariate analysis. Gestational weeks at delivery (38.3 ± 1.3 vs. 37.7 ± 2.0 weeks, p = 0.155), newborn weight (3123.9 ± 332.1 vs. 3056.6 ± 287.4 g, p = 0.390), Apgar score of newborns (9.8 ± 0.5 vs. 9.7 ± 0.7, p = 0.271) were of no difference between TNFi+IVIG+Heparin and IVIG+Heparin groups. In terms of safety profile, the adverse events were of no difference between the TNFi+IVIG+Heparin and the IVIG+Heparin groups (all p > 0.05), either. WHAT IS NEW AND CONCLUSION TNFi combined with IVIG and heparin therapy improves the live birth rate but does not elevate the adverse events compared to IVIG and heparin therapy in RSA patients.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Rheumatology and Immunology, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Qinghua Zou
- Department of Rheumatology and Immunology, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Nian Zhang
- Department of Traditional Chinese Medicine, The Second Hospital Affiliated to Army Medical University, Chongqing, China
| | - Jingjing Chen
- Department of Rheumatology and Immunology, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Xuemeng Chen
- Department of Rheumatology and Immunology, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Qingxia You
- Department of Rheumatology and Immunology, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Hong Wu
- Department of Rheumatology and Immunology, The First Hospital Affiliated to Army Medical University, Chongqing, China
| |
Collapse
|
8
|
Zhang S, Ding J, Zhang Y, Liu S, Yang J, Yin T. Regulation and Function of Chemokines at the Maternal–Fetal Interface. Front Cell Dev Biol 2022; 10:826053. [PMID: 35938162 PMCID: PMC9354654 DOI: 10.3389/fcell.2022.826053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
Abstract
Successful pregnancy requires the maternal immune system to tolerate the semi-allogeneic embryo. A good trophoblast function is also essential for successful embryo implantation and subsequent placental development. Chemokines are initially described in recruiting leukocytes. There are rich chemokines and chemokine receptor system at the maternal–fetal interface. Numerous studies have reported that they not only regulate trophoblast biological behaviors but also participate in the decidual immune response. At the same time, the chemokine system builds an important communication network between fetally derived trophoblast cells and maternally derived decidual cells. However, abnormal functions of chemokines or chemokine receptors are involved in a series of pregnancy complications. As growing evidence points to the roles of chemokines in pregnancy, there is a great need to summarize the available data on this topic. This review aimed to describe the recent research progress on the regulation and function of the main chemokines in pregnancy at the maternal–fetal interface. In addition, we also discussed the potential relationship between chemokines and pregnancy complications.
Collapse
Affiliation(s)
- Sainan Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- *Correspondence: Su Liu, ; Jing Yang, ; Tailang Yin,
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
- *Correspondence: Su Liu, ; Jing Yang, ; Tailang Yin,
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
- *Correspondence: Su Liu, ; Jing Yang, ; Tailang Yin,
| |
Collapse
|
9
|
True H, Blanton M, Sureshchandra S, Messaoudi I. Monocytes and macrophages in pregnancy: The good, the bad, and the ugly. Immunol Rev 2022; 308:77-92. [PMID: 35451089 DOI: 10.1111/imr.13080] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022]
Abstract
A successful human pregnancy requires precisely timed adaptations by the maternal immune system to support fetal growth while simultaneously protecting mother and fetus against microbial challenges. The first trimester of pregnancy is characterized by a robust increase in innate immune activity that promotes successful implantation of the blastocyst and placental development. Moreover, early pregnancy is also a state of increased vulnerability to vertically transmitted pathogens notably, human immunodeficiency virus (HIV), Zika virus (ZIKV), SARS-CoV-2, and Listeria monocytogenes. As gestation progresses, the second trimester is marked by the establishment of an immunosuppressive environment that promotes fetal tolerance and growth while preventing preterm birth, spontaneous abortion, and other gestational complications. Finally, the period leading up to labor and parturition is characterized by the reinstatement of an inflammatory milieu triggering childbirth. These dynamic waves of carefully orchestrated changes have been dubbed the "immune clock of pregnancy." Monocytes in maternal circulation and tissue-resident macrophages at the maternal-fetal interface play a critical role in this delicate balance. This review will summarize the current data describing the longitudinal changes in the phenotype and function of monocyte and macrophage populations in healthy and complicated pregnancies.
Collapse
Affiliation(s)
- Heather True
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | - Madison Blanton
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | | | - Ilhem Messaoudi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
10
|
|
11
|
Placental Development and Pregnancy-Associated Diseases. MATERNAL-FETAL MEDICINE 2022. [DOI: 10.1097/fm9.0000000000000134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
12
|
Implantation Failures and Miscarriages in Frozen Embryo Transfers Timed in Hormone Replacement Cycles (HRT): A Narrative Review. Life (Basel) 2021; 11:life11121357. [PMID: 34947887 PMCID: PMC8708868 DOI: 10.3390/life11121357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 01/12/2023] Open
Abstract
The recent advent of embryo vitrification and its remarkable efficacy has focused interest on the quality of hormone administration for priming frozen embryo transfers (FETs). Products available for progesterone administration have only been tested in fresh assisted reproduction technologies (ARTs) and not in FET. Recently, there have been numerous concordant reports pointing at the inefficacy of vaginal preparations at delivering sufficient progesterone levels in a sizable fraction of FET patients. The options available for coping with these shortcomings of vaginal progesterone include (i) rescue options with the addition of injectable subcutaneous (SC) progesterone at the dose of 25 mg/day administered either solely to women whose circulating progesterone is <10 ng/mL or to all in a combo option and (ii) the exclusive administration of SC progesterone at the dose of 25 mg BID. The wider use of segmented ART accompanied with FET forces hormone replacement regimens used for priming endometrial receptivity to be adjusted in order to optimize ART outcomes.
Collapse
|
13
|
Gregory EJ, Liu J, Miller-Handley H, Kinder JM, Way SS. Epidemiology of Pregnancy Complications Through the Lens of Immunological Memory. Front Immunol 2021; 12:693189. [PMID: 34248991 PMCID: PMC8267465 DOI: 10.3389/fimmu.2021.693189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Abstract
In the fifteen minutes it takes to read this short commentary, more than 400 babies will have been born too early, another 300 expecting mothers will develop preeclampsia, and 75 unborn third trimester fetuses will have died in utero (stillbirth). Given the lack of meaningful progress in understanding the physiological changes that occur to allow a healthy, full term pregnancy, it is perhaps not surprising that effective therapies against these great obstetrical syndromes that include prematurity, preeclampsia, and stillbirth remain elusive. Meanwhile, pregnancy complications remain the leading cause of infant and childhood mortality under age five. Does it have to be this way? What more can we collectively, as a biomedical community, or individually, as clinicians who care for women and newborn babies at high risk for pregnancy complications, do to protect individuals in these extremely vulnerable developmental windows? The problem of pregnancy complications and neonatal mortality is extraordinarily complex, with multiple unique, but complementary perspectives from scientific, epidemiological and public health viewpoints. Herein, we discuss the epidemiology of pregnancy complications, focusing on how the outcome of prior pregnancy impacts the risk of complication in the next pregnancy — and how the fundamental immunological principle of memory may promote this adaptive response.
Collapse
Affiliation(s)
- Emily J Gregory
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - James Liu
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hilary Miller-Handley
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jeremy M Kinder
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
14
|
Feng X, Liu Y, Zhang Y, Zhang Y, Li H, Zheng Q, Li N, Tang J, Xu Z. New views on endothelial dysfunction in gestational hypertension and potential therapy targets. Drug Discov Today 2021; 26:1420-1436. [PMID: 33677145 DOI: 10.1016/j.drudis.2021.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/10/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
The placenta has vital roles in metabolite exchange, fetal growth, and pre-eclampsia (PE). In this review, we discuss the pathogenesis of hypertension in pregnancy, focusing on four major theories to explain PE, discussing endothelial roles in those theories. We focus in particular on the roles of nitric oxide (NO) and prostacyclin (PGI2) in placental endothelium, and propose new hypotheses for the influence and mechanisms of endothelial NO and PGI2 signaling pathways in PE.
Collapse
Affiliation(s)
- Xueqin Feng
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China; Department of Obstetrics, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Yanping Liu
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China
| | - Yingying Zhang
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China
| | - Yumeng Zhang
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China
| | - Huan Li
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China
| | - Qiutong Zheng
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China
| | - Na Li
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China
| | - Jiaqi Tang
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China.
| | - Zhice Xu
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China.
| |
Collapse
|
15
|
PlGF Immunological Impact during Pregnancy. Int J Mol Sci 2020; 21:ijms21228714. [PMID: 33218096 PMCID: PMC7698813 DOI: 10.3390/ijms21228714] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, the mother’s immune system has to tolerate the persistence of paternal alloantigens without affecting the anti-infectious immune response. Consequently, several mechanisms aimed at preventing allograft rejection, occur during a pregnancy. In fact, the early stages of pregnancy are characterized by the correct balance between inflammation and immune tolerance, in which proinflammatory cytokines contribute to both the remodeling of tissues and to neo-angiogenesis, thus, favoring the correct embryo implantation. In addition to the creation of a microenvironment able to support both immunological privilege and angiogenesis, the trophoblast invades normal tissues by sharing the same behavior of invasive tumors. Next, the activation of an immunosuppressive phase, characterized by an increase in the number of regulatory T (Treg) cells prevents excessive inflammation and avoids fetal immuno-mediated rejection. When these changes do not occur or occur incompletely, early pregnancy failure follows. All these events are characterized by an increase in different growth factors and cytokines, among which one of the most important is the angiogenic growth factor, namely placental growth factor (PlGF). PlGF is initially isolated from the human placenta. It is upregulated during both pregnancy and inflammation. In this review, we summarize current knowledge on the immunomodulatory effects of PlGF during pregnancy, warranting that both innate and adaptive immune cells properly support the early events of implantation and placental development. Furthermore, we highlight how an alteration of the immune response, associated with PlGF imbalance, can induce a hypertensive state and lead to the pre-eclampsia (PE).
Collapse
|