1
|
Fang F, Xiao C, Li C, Liu X, Li S. Tuning macrophages for atherosclerosis treatment. Regen Biomater 2022; 10:rbac103. [PMID: 36683743 PMCID: PMC9845526 DOI: 10.1093/rb/rbac103] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease and a leading cause of death worldwide. Macrophages play an important role in inflammatory responses, cell-cell communications, plaque growth and plaque rupture in atherosclerotic lesions. Here, we review the sources, functions and complex phenotypes of macrophages in the progression of atherosclerosis, and discuss the recent approaches in modulating macrophage phenotype and autophagy for atherosclerosis treatment. We then focus on the drug delivery strategies that target macrophages or use macrophage membrane-coated particles to deliver therapeutics to the lesion sites. These biomaterial-based approaches that target, modulate or engineer macrophages have broad applications for disease therapies and tissue regeneration.
Collapse
Affiliation(s)
- Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Crystal Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Chunli Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
2
|
Perkins LEL, Rippy MK. Balloons and Stents and Scaffolds: Preclinical Evaluation of Interventional Devices for Occlusive Arterial Disease. Toxicol Pathol 2018; 47:297-310. [DOI: 10.1177/0192623318815604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Atherosclerosis places a significant burden on humankind; it is the leading cause of mortality globally, and for those living with atherosclerosis, it can significantly impact quality of life. Fortunately, treatment advances have effectively reduced the morbidity and mortality related to atherosclerosis, with one such modality being percutaneous intervention (PCI) to open occluded arteries. Over the 40-year history of PCI, preclinical models have played a critical role in demonstrating proof of concept, characterizing the in vivo behavior (pharmacokinetics, degradation) and providing a reasonable assurance of biologic safety of interventional devices before entering into clinical trials. Further, preclinical models may provide insight into the potential efficacy of these devices with the appropriate study design and end points. While several species have been used in the evaluation of interventional devices, the porcine model has been the principal model used in the evaluation of safety of devices for both coronary and endovascular treatments. This article reviews the fundamentals of permanent stents, transient scaffolds, and drug-coated balloons and the models, objectives, and methods used in their preclinical evaluation.
Collapse
|
3
|
Impact of low tissue backscattering by optical coherence tomography on endothelial function after drug-eluting stent implantation. Cardiovasc Interv Ther 2018; 34:164-170. [PMID: 30073462 DOI: 10.1007/s12928-018-0540-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
This study evaluated the impact of optical coherence tomography (OCT)-derived low-backscattered tissue on mid-term coronary endothelial function after drug-eluting stent (DES) implantation. Although OCT enables detailed in vivo evaluation of neointimal tissue characterization after DES implantation, its association with physiological vascular healing response is unclear. Thirty-three stable angina pectoris patients underwent OCT examination and endothelial function testing with intracoronary infusion of incremental doses of acetylcholine 8-month after DES implantation in a single lesion of the left anterior descending artery. Neointimal tissue was classified into two patterns based on the predominant OCT light backscatter: high backscatter and low backscatter. Although the presence of uncovered or malapposed stent strut was not associated with the degree of vasoconstriction, the degree of vasoconstriction was significantly greater in the DES with low-backscattered neointima than in the DES without low-backscattered neointima (- 32.1 ± 25.7 vs. - 4.1 ± 20.1%, p = 0.003). Moreover, there was an inverse linear relationship between low backscatter tissue index and degree of vasoconstriction after acetylcholine infusion (r = 0.50 and p = 0.003). The endothelium-dependent vasomotor response after 8-month of DES was impaired in patients with low neointimal tissue backscatter on OCT imaging. OCT assessment of low-backscattered tissue may be used as surrogate markers for impairment of endothelial function after DES.
Collapse
|
4
|
Tomulić V, Gobić D, Lulić D, Židan D, Zaputović L. Soluble adhesion molecules in patients with acute coronary syndrome after percutaneous coronary intervention with drug-coated balloon, drug-eluting stent or bare metal stent. Med Hypotheses 2016; 95:20-23. [PMID: 27692158 DOI: 10.1016/j.mehy.2016.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 08/14/2016] [Indexed: 01/06/2023]
Abstract
Adhesion molecules play an important role in inflammation, atherosclerosis and coronary artery disease (CAD). These molecules are expressed on the surface of dysfunctional endothelial cells, causing inflammatory cells from the circulation to adhere and migrate through the endothelium. Their expression is upregulated in acute coronary syndrome (ACS) and after percutaneous coronary intervention (PCI). The contact between stent struts and endothelium upregulates endothelial cell gene expression, endothelial cell activation and inflammation. The paclitaxel or sirolimus eluting stents inhibited expression of adhesion molecules in several studies and reduced the incidence of major adverse cardiac events (MACE) after drug-eluting stent (DES) over bare metal stent (BMS) implantation. Therefore, we propose that elevated serum levels of the soluble adhesion molecules after primary PCI in patients treated with BMS or DES implantation versus drug-coated balloon (DCB) application to the vulnerable coronary plaque might be a predictor of MACE and further adverse outcomes. Consequently, DCB-only strategy in patients with ACS might be a superior approach in comparison to BMS implantation and non-inferior approach when compared to DES implantation.
Collapse
Affiliation(s)
- Vjekoslav Tomulić
- Department of Cardiovascular Disease, University Hospital Rijeka, Rijeka 51000, Croatia.
| | - David Gobić
- Department of Cardiovascular Disease, University Hospital Rijeka, Rijeka 51000, Croatia
| | - Davorka Lulić
- Department of Cardiovascular Disease, University Hospital Rijeka, Rijeka 51000, Croatia
| | - David Židan
- Department of Cardiovascular Disease, University Hospital Rijeka, Rijeka 51000, Croatia
| | - Luka Zaputović
- Department of Cardiovascular Disease, University Hospital Rijeka, Rijeka 51000, Croatia
| |
Collapse
|
5
|
The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol Sin 2016; 37:150-6. [PMID: 26750103 DOI: 10.1038/aps.2015.87] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/07/2015] [Indexed: 12/11/2022] Open
Abstract
Although various types of drugs and therapies are available to treat atherosclerosis, it remains a major cause of mortality throughout the world. Macrophages are the major source of foam cells, which are hallmarks of atherosclerotic lesions. Consequently, the roles of macrophages in the pathophysiology of atherosclerosis are increasingly investigated. Autophagy is a self-protecting cellular catabolic pathway. Since its discovery, autophagy has been found to be associated with a variety of diseases, including cardiovascular diseases, malignant tumors, neurodegenerative diseases, and immune system disorders. Accumulating evidence demonstrates that autophagy plays an important role in inhibiting inflammation and apoptosis, and in promoting efferocytosis and cholesterol efflux. These facts suggest the induction of autophagy may be exploited as a potential strategy for the treatment of atherosclerosis. In this review we mainly discuss the relationship between macrophage autophagy and atherosclerosis and the molecular mechanisms, as well as the recent advances in targeting the process of autophagy to treat atherosclerosis.
Collapse
|
6
|
McKittrick CM, Kennedy S, Oldroyd KG, McGinty S, McCormick C. Modelling the Impact of Atherosclerosis on Drug Release and Distribution from Coronary Stents. Ann Biomed Eng 2016; 44:477-87. [PMID: 26384667 PMCID: PMC4764635 DOI: 10.1007/s10439-015-1456-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/09/2015] [Indexed: 11/24/2022]
Abstract
Although drug-eluting stents (DES) are now widely used for the treatment of coronary heart disease, there remains considerable scope for the development of enhanced designs which address some of the limitations of existing devices. The drug release profile is a key element governing the overall performance of DES. The use of in vitro, in vivo, ex vivo, in silico and mathematical models has enhanced understanding of the factors which govern drug uptake and distribution from DES. Such work has identified the physical phenomena determining the transport of drug from the stent and through tissue, and has highlighted the importance of stent coatings and drug physical properties to this process. However, there is limited information regarding the precise role that the atherosclerotic lesion has in determining the uptake and distribution of drug. In this review, we start by discussing the various models that have been used in this research area, highlighting the different types of information they can provide. We then go on to describe more recent methods that incorporate the impact of atherosclerotic lesions.
Collapse
Affiliation(s)
- C M McKittrick
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - S Kennedy
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - K G Oldroyd
- West of Scotland Region Heart and Lung Centre, Golden Jubilee National Hospital, Dunbartonshire, UK
| | - S McGinty
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
| | - C McCormick
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK.
| |
Collapse
|